
A 5 Meps $100 USB2.0 Address-Event
Monitor-Sequencer Interface

R. Berner∗, T. Delbruck†, A. Civit-Balcells‡ and A. Linares-Barranco‡
∗Signal- and Information Processing Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland

†Institute of Neuroinformatics, UNI-ETH Zurich, Switzerland
‡Department of Architecture and Technology of Computers, University of Seville, Spain

Abstract— This paper describes a high-speed USB2.0 Address-
Event Representation (AER) interface that allows simultaneous
monitoring and sequencing of precisely timed AER data. This
low-cost (<$100), two chip, bus powered interface can achieve
sustained AER event rates of 5 megaevents per second (Meps).
Several boards can be electrically synchronized, allowing simul-
taneous synchronized capture from multiple devices. It has three
AER ports, one for sequencing, one for monitoring and one for
passing through the monitored events. This paper also describes
the host software infrastructure that makes the board usable for a
heterogeneous mixture of AER devices and that allows recording
and playback of recorded data.

I. INTRODUCTION

The Address-Event-Representation (AER) is an asyn-
chronous protocol for transmitting spike-based information
between chips. AER encodes spike-based data as digital ad-
dresses, either of sending or receiving units. There is a growing
community of AER protocol users for neuromorphic applica-
tions in visual, auditory, and multineuron learning systems.
The goal of this community is to build multi-chip and multi-
layer hierarchically structured systems capable of performing
spike-based parallel processing in real time.

A number of previous generations of AER-computer in-
terfaces have been built and are in present use [2], [3], [4],
[5], but none of them had the convenience of high-speed bus-
powered USB combined with the synchronous monitoring of
AER traffic. For our CAVIAR project [6], [7] we assembled
a heterogeneous mixture of AER chips into a visual system,
and we needed a device that could record from all parts of
the system simultaneously, was simple to operate and use, was
easy and cheap to build, and could be reused in other contexts.
We also wanted a convenient device that could sequence
recorded or synthesized events into AER chips to allow their
characterization.

The functionality of the USBAERmini2 board was evolved
from the monitoring capability in [8] to include sequencing.
The number of jumpers is minimized by autodetection of
connected devices. Its use is very simple. For example, a user
connects a sending AER device to the monitor port and plugs
the board into a USB port on a computer. Then they are ready
to capture and time-stamp AER traffic from the AER device.
Fig. 1 shows two example setups.

Host PC

USBAERmini2

AER chip

 USB

Commands,
Events to
sequence

Monitored
events

AER
traffic

(a) Basic operation example: the USBAER-
mini2 is used to stimulate an AER chip and
to monitor its response.

Host PC

AER
Retina

USBAER
mini2

USBAER
mini2

(timing master)

AER
chip

USBAER
mini2

AER
chip

AER
events

AER
events

USB BusCommands

Monitored events

SyncSync

(b) Operation example: Several USBAERmini2s are used to syn-
chronously monitor a system [6], [7].

Fig. 1. Shows the functionality of the USBAERmini2 by two example setups.

II. THE HARDWARE

The board consists of two main components, the Cypress
FX2LP USB2.0 transceiver and a Xilinx Coolrunner 2 CPLD
with 256 macroblocks (XC2C256) (see Fig. 2). The board was
designed to be simple and cheap to manufacture. We recently
hand-assembled ten boards with two people in three days. The
components cost less than $100 per board, including the 2-
layer PCB.

The Cypress FX2LP is an USB2.0 transceiver with an
enhanced 8051 microcontroller and a flexible interface to its
4 kB of first-in first-out (FIFO) buffers, which are committed
automatically from or to the USB by the Cypress serial
interface engine (SIE). As in [5], we used the FX2LP in
its slave FIFO mode, which means that the device handles

CPLD

FX2LP

FIFO

FIFO

FIFO
Control

state machine

SequencerAddress Register

MonitorAddress Register

Counter

MonitorTimestamp Register

SequencerTimestamp Register

AER
Monitor

state machine

AER
Sequencer

state machine

AER Out Connector

R
E

Q

A
C

K

 R
ese t

Eve
nt

Req
ue

st

ACK: E
ve

nt
Rea

dy

Event stored in

register

Busy
T

im
es

ta
m

p
R

eg
is

te
r

Event
Counter

EarlyPacket
Timer

R
es

et

Increment,
Reset

+

AER IN Connector AER Pass-Through Connector

ACKA
C

K

R
EQ

REQ

8051
Micro-

controller

Commands

 SyncOutSynchronizing
state machine

 SyncIn

Increm
ent

Overflow

Overflow

A
dd

re
ss

 R
eg

is
te

r

Serial
Interface
Engine

USB
Connector

EEPROM
Comparator

FIFO control lines

Fig. 2. This figure shows an overview of the device. The CPLD implements four FSMs (bold boxes) to achieve to desired functionality. The AER bus consists
of 16 address lines, a request and an acknowledge line. Bold arrows stand either for address or timestamp buses. The CPLD and the FX2LP are connected
through several control lines and a 16 bit wide data bus (bold dashed) which is connected to the FX2LP FIFOs through a multiplexer. This multiplexer is
controlled by the FIFO control state machine. The sequencer inter-spike intervals that are read from the FIFO are added to the timestamp of the last event,
to get an absolute timestamp which can be compared to the timestamp counter.

all low level USB protocol in hardware. We used USB bulk
transfers. We used two FIFOs (one in each direction), which
are configured to be quad buffered and hold 128 events each.
To the CPLD the FX2LP appeared as a FIFO source or sink
of AER data.

The microcontroller controls the communication with the
host computer. This involves the setup of the USB commu-
nication and the interpretation of commands that are received
from the host to the control endpoint (like start capturing, stop
capturing, or zero timestamps).

The CPLD handshakes with AER sender and receiver and
records a 16-bit timestamp whenever an event is received.
Addresses and timestamps are written to or read from the
FIFOs in the FX2LP. This is done with four finite state
machines (FSM). There is an FSM responsible for monitoring,
one for sequencing, one for accessing the FX2LP FIFOs
and one for synchronizing to a timing master board. The
FSMs responsible for handshaking with the sender/receiver
are shown in Figs. 3 and 4. 92% of the CPLD macroblocks
are used.

The CPLD uses a 16 bit counter for the generation of
timestamps. These timestamps are unwrapped to 32 bits on the
host computer. The timestamp tick period can be controlled
from the host computer. Two timestamp modes can be used,
either a tick of one microsecond or a tick of one clock cycle,
which is 33 1

3ns. When the timestamp counter overflows, a
special “timestamp-wrapped” event is sent to the host to tell
it that the timestamp wrap counter has to be incremented.

We chose to send explicit timestamps for each event because
we were interested in precise event timing. [5] did not send
timestamps but instead used a special “heartbeat” address sent
as regular intervals. Their scheme uses less USB bandwidth
but requires interpolation to reconstruct timestamps.

Fig. 5 shows a photo of the USBAERmini2.

Special Features

An “early packet” circuit ensures a maximum inter-packet
interval of 10 ms. This feature is necessary for real time
visualization of applications with a low event rate and for
real-time control based on AER data. This circuit commands
the FX2LP to commit a FIFO buffer to the SIE when the early
packet timer expires, even if it is not full. The timer is reset
every time a packet is sent.

Electrical synchronization enables timestamp-synchronized
capture from multiple AER devices. A USBAERmini2 in
“slave” mode can be synchronized to a timing “master”, which
generally is another USBAERmini2. This synchronization is
implemented by a dedicated FSM and an input and output pin.
The slave devices timestamp counter can then be clocked by
the master.

As soon as the synchronization state machine detects a
timestamp master at the synchronization input (i.e. the sync
input goes high), it resets the timestamp, signals to the host by
sending a USB control transfer message, and changes to slave
mode. The host resets its timestamp wrap counter so that all
slaves have the same absolute timestamp as the master.

Fig. 5. Top and bottom side of the board.

Wait for
event

Write timestamp and
address to registers and
tell FIFO a new event

 has been received.
Activate request line on

pass-through.

Wait for pass-
through to

acknowledge
event.

Wait for pass-
through receiver

to release
acknowledge

Release pass-through
request line and

wait for sender to
release acknowledge.

Sender releases request line and
pass-through receiver already

released acknowledge.

Idle:
Monitor not

running

AER request line active
and FIFO not busy

anymore with last event.

Go active

Go idlePass-through receiver
releases acknowledge

Pass-through
acknowledges event

Sender releases request but
pass-through receiver

acknowledge is still active

Fig. 3. Simplified monitor state machine, showing only the part which is used
in pass-through mode, i.e. when the monitored events are passed to another
AER device. There are additional states for the device acting in terminal mode
(i.e. as in Fig. 1(a)). A pull-down resistor on the acknowledge line of the pass-
through port enables the detection of a receiving device. The state machine
is activated by an input to the CPLD and then waits for the request line to
be active.

III. SOFTWARE

The host-side software was designed for usability and flex-
ibility in interfacing to a variety of AER chips over a variety
of hardware interfaces. This host side of the interface has been
implemented entirely in Java (1.5 JVM). An object-oriented
software architecture consisting of about 200 classes allows for
capturing events from multiple hardware sources, rendering
events to the screen (as viewable frames or other represen-
tation, e.g. space-time) and recording and playing back AER
activity (Fig. 6). Using the Java Bindings for OpenGL (JOGL)
greatly increased graphics rendering performance. These Java
classes can be used directly from Matlab.

We used the Thesycon (www.thesycon.de) USB device
driver for Windows. It is reliable and has a convenient
Java interface. The USB host-side interface uses a high-
performance multi-threaded buffer-pool for both reading and
writing event packets. This infrastructure is provided as part

Wait until an
event is ready from
the FX2LP FIFOs

Write Event
(Address and
timestamp)
to registers

Wait for time to
sequence event

Activate request
line and wait for
receiver to ack-
nowledge event

Wait until receiver
releases acknowledge

from last event

EventReady

ActualTime>=Timestamp
and acknowledge line

 is inactive
Acknowledge line

is inactive

Idle:
Sequencer not

running

 Go idle

Receiver
acknowledges

event

ActualTime<
Timestamp

ActualTime>=Timestamp
and acknowledge line is
active (from last event)

Go
active

Fig. 4. Sequencer state machine. When this state machine goes active, it
signals the FIFO state machine a request for an event. The FIFO control
state machine will then read an event from the FX2LP FIFO. As soon as
this event is stored in the registers, its timestamp is compared to the counter,
to determine when to activate the request line. Interspike intervals of up to
216 − 1 timestamp ticks are possible.

of the Thesycon USB driver kit. The reader and writer threads
run asychronously from other threads, e.g the rendering thread.
Monitoring events means that a set of asynchronous reads
are launched using a pool of memory buffers. When these
reads complete because data is received from the device, a
handler is called and the events can immediately be processed
or written to another ”user” buffer that the rendering thread
can later access. After each buffer is processed, a new read is
launched on that buffer. This standard approach for decoupling
between device data and data processing was not previously
used in AER interfaces and it makes software development
much easier.

Each AER device (e.g. retina, cochlea, multineuron chip)
is specified as a subclass of a general AEChip class. This
subclass includes a method that maps raw AER addresses
to meaningful x,y,type information. Each device can have its
own set of rendering and event-processing methods. Multiple
devices can be viewed simultaneously and their data recorded

Fig. 6. Screen shot of host application playing synchronized recording
from 3 different AER chips [6], connected in series with the USBAERmini2
monitoring each chip’s output (Fig. 1(b)). Each chip uses a different rendering
method.

Meps

0

1

2

3

4

Number
of

buffers

2
4
8
16

Host buffer siz
e (kB)1 2 4 8 16 32

64
0.5

Fig. 7. Measured monitoring performance versus number and size of host
memory buffers.

and played back in synchrony (Fig. 6).

IV. PERFORMANCE

The peak limit on monitoring and sequencing performance
is set by the number of clock cycles used by the state machines
for a handshake cycle. The monitor state machine requires 5
clock cycles and the sequencer requires 8 clock cycles. The
CPLD clock frequency is 30 MHz, so the peak event rate
for monitoring is 6 million events per second (Meps) and for
sequencing is 3.75 Meps.

The measured performance depends on the number and size
of host memory buffers. For high frame-rate visualization at
low event rate the host buffer size can be set to the USB
transaction size of 512 bytes; for highest performance, the
buffers need to be at least 4 kB. Figure 7 shows the measured
event rate versus buffer size and number running on a 3 GHz
desktop PC for a single board. With a buffer size of 8 kB
and 4 buffers, an event rate of 5 Meps is achieved when
capturing events from one board, which is 83% of the limit
defined by handshake timing. USB2.0 high speed mode has
a data rate of 480 megabits per second (Mbps). Because
each event consists of four bytes, 5 Meps is equivalent to
160 Mbps. Monitoring with 2 or 3 interfaces simultaneously
on one computer using the same USB host controller achieves
a total rate of 6 Meps=192 Mbps, about half the basic data
bandwidth of USB2.0.

TABLE I
DEVICE SPECIFICATIONS

Interface 16 bit word-parallel AER

Protocol 4 phase handshake

Host interface USB2.0 High speed
128-event transactions

16 bit address, 16 bit timestamp

Timestamp 1 µs / 33 ns timestamp
(switchable)

Cost <$100

Min. packet rate 100 Hz

Power consumption 60 mA USB 5V while
monitoring and sequencing

peak: 6 Meps monitor
Bandwidth 3.75 Meps sequencer

sustained: 5 Meps monitor

V. CONCLUSION

The main achievement of this work is the development of
a simple, cheap, user-friendly USB-AER interface device for
monitoring and sequencing. The board was successfully used
to monitor and log 40000 neurons spread over four different
AER chips[7] and is presently in regular use in three different
labs. The complete design of this board along with software
(excluding device driver) will be open-sourced [9].

ACKNOWLEDGMENT

The authors thank J. Arthur and J. Wittig for initial guidance
in the use of the Cypress USB interface, A.M. Whatley for the
feedback on this paper and M. Gutiérrez, Á. Jiménez and R.
Moeckel for their help during the design of the PCB and the
assembling of the boards.

REFERENCES

[1] R. Berner, “Highspeed USB2.0 AER Interfaces,” Master’s thesis, Swiss
Federal Institute of Technology, Zurich, Switzerland and University of
Seville, Spain, 2006.

[2] V. Dante, P. D. Giudice, and A. M. Whatley, “PCI-AER – Hardware and
Software for Interfacing to Address-Event Based Neuromorphic Systems,”
The Neuromorphic Engineer, pp. 5–6, Mar. 2005.

[3] F. Gomez-Rodriguez, R. Paz, A. Linares-Barranco, M. Rivas, L. Miro,
S. Vicente, G. Jimenez, and A. Civit, “AER tools for communications and
debugging,” in IEEE International Symposium on Circuits and Systems,
2006, pp. 3253–3256.

[4] R. Paz-Vicente, A. Linares-Barranco, D. Cascado, M. Rodriguez,
G. Jimenez, A. Civit, and J. Sevillano, “PCI-AER interface for neuro-
inspired spiking systems,” in IEEE International Symposium on Circuits
and Systems, 2006, pp. 3161–3164.

[5] P. Merolla, J. Arthur, and J. Wittig, “The USB Revolution,” The Neuro-
morphic Engineer, pp. 10–11, Dec. 2005.

[6] CAVIAR project. [Online]. Available: http://www.imse.cnm.es/caviar
[7] R. Serrano-Gotarredona et al., “AER Building Blocks for Multi-Layer

Multi-Chip Neuromorphic Vision Systems,” in Advances in Neural Infor-
mation Processing Systems 18, 2005, pp. 1217–1224.

[8] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120dB 30mW
Asynchronous Vision Sensor that Responds to Relative Intensity Change,”
2006 IEEE ISSCC Digest of Technical Papers, pp. 508–509, 2006.

[9] AER tools. [Online]. Available: http://avlsi.ini.unizh.ch/aer

