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Abstract

We describe and demonstrate the key features of a neu-

romorphic, analog VLSI chip (termed F-LANN) hosting 128

integrate-and-fire (IF) neurons with spike-frequency adap-

tation, and 16 384 plastic bistable synapses implementing

a self-regulated form of Hebbian, spike-driven, stochastic

plasticity. We were successfully able to test and verify the

basic operation of the chip as well as its main new fea-

ture, namely the synaptic configurability. This configura-

bility enables us to configure each individual synapse as

either excitatory or inhibitory and to receive either recur-

rent input from an on-chip neuron or AER (Address Event

Representation)-based input from an off-chip neuron. It’s

also possible to set the initial state of each synapse as po-

tentiated or depressed, and the state of each synapse can be

read and stored on a computer. The main aim of this chip

is to be able to efficiently perform associative learning ex-

periments on a large number of synapses. In the future we

would like to connect up multiple F-LANN chips together to

be able to perform associative learning of natural stimulus

sets.

1. Introduction

The pioneering work of C. Mead [18] has introduced

the term “neuromorphic engineering” for a growing fam-

ily of analog, sub-threshold circuits, which implement

the accepted equivalent circuits of biological neurons and

synapses in VLSI technology. The ultimate aim of neu-

romorphic engineering is to mimic the capabilities of bio-

logical perception and information processing with a com-

pact and energy-efficient platform. It is widely believed

that this goal necessitates from the outset some mechanisms
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of “learning” that enables neuromorphic devices to adapt

(or re-configure) themselves while interacting with an en-

vironment. Emulating the example of biological neurons

and synapses, our neuromorphic devices attain an ability for

“learning” by incorporating “Hebbian-like” mechanisms of

synaptic plasticity. In the “Hebbian” scenario we adopt, the

efficacy of a synapse is enhanced (i.e., its impact on the

post-synaptic neuron is increased), when both the pre- and

post-synaptic neurons are simultaneously highly active on

a suitable time-scale, and reduced if the pre-synaptic neu-

ron is active while the post-synaptic is not. Whether “Heb-

bian” learning is based on average firing rates or on individ-

ual spikes (“spike-time-dependent plasticity”, or STDP) is a

matter of continuing debate and a choice that strongly influ-

ences alternative designs of neuromorphic synapse circuits.

The synaptic dynamics described here are spike-driven and

implement a rate-based Hebbian learning, though it is com-

patible with some aspects of STDP.

The fact that a plausible synaptic device may assume

only a limited number of alternative “states” has profound

consequences for the memory capacity of a neural network.

Specifically, when synaptic efficacy is bounded and changes

in discrete steps, any deterministic learning rule (e.g., a

“Hebbian” rule) can be shown to yield highly unfavorable

scaling laws for memory capacity [1, 10]. The intuitive rea-

son is that newly encoded memories rapidly erase earlier

memories (“palimpsest property”). Perhaps surprisingly, far

more favorable scaling laws may be attained with a stochas-

tic learning rule, in which the Hebbian prescription renders

synapses merely eligible for a state change but the probabil-

ity of an actual change remains low. Thus, the problem of

the inherently low memory capacity of biologically plausi-

ble synapses yields to a “stochastic” solution. Note, how-

ever, that this solution necessitates independent sources of

“noise” at each individual synapse. Presumably not coinci-

dentally, the necessary “noise” may be provided by the ir-

regularity of the pre- and post-synaptic spike trains (as long

as the network remains in an asynchronous activity regime).
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In short, the theoretical analysis of learning with biolog-

ically plausible synapses appears to provide a compelling

computational argument for implementing neurons as spik-

ing elements.

Associative learning in networks of spiking IF neurons

with stochastic synapses has been studied both in simula-

tion and [2, 10, 13] and in neuromorphic realizations [9, 11].

However, these first efforts were limited to artificially sim-

plistic stimulus sets (e.g., strictly non-overlapping neural

representations). To extend associative learning to more re-

alistic stimulus sets, a further modification of the synap-

tic rule has been proposed, informally known as “stop-

learning” [6]. In this modification, synaptic changes are

additionally conditioned on average post-synaptic activity

being neither too high nor too low: synapses targeting too-

active neurons are not further strengthened and synapses

targeting too-inactive neurons are not further weakened.

This additional condition becomes crucial when partially

overlapping patterns of activity are to be distinguished, as it

prevents excessive potentiation of synapses in the overlap-

ping parts, which would otherwise spoil the network’s abil-

ity to distinguish these patterns. The suitability of this learn-

ing strategy was demonstrated in a Perceptron-like network

for linearly separable patterns [20]. Extensions of the “stop-

learning” strategy to spiking networks with recurrent con-

nectivity are currently being pursued by several groups. We

implemented a preliminary version of the “stop-learning”

synapse in a previous chip [3]; the present network im-

plementation, besides improving on several synaptic de-

sign issues, will offer a wider range of collective dynam-

ics through a more flexibly reconfigurable architecture. A

synaptic design inspired by the same “stop-learning” prin-

ciples was proposed in [19].

Section 2 provides an overview of the chip architecture

and Section 3 describes synapse circuits. Section 4 details

the ability to configure individual synapses and shows some

of our obtained results.

2. Chip architecture and main features

We describe a VLSI chip implementing a reconfig-

urable network of 128 integrate-and-fire neurons with

spike-frequency adaptation and 16 384 (128×128) bi-

stable, stochastic synapses implementing a Hebbian rule

with “stop-learning” (see Fig. 1). The chip has a total

area of 68.9 mm2 with each synapse and neuron occupy-

ing 3,200 µm2 and 2,400 µm2 respectively. A standard

0.35µm CMOS technology process from austriamicrosys-

tems (AMS) was used.

The synaptic matrix is configurable in such a way to sup-

port either all-to-all recurrent connectivity, or exclusively

external (AER-based) connectivity, or any combination of

both. In addition, the initial state of efficacy and the excita-

tory or inhibitory nature of synapses may be set individually

for each synapse. The synaptic matrix is arranged in four

identical 64×64 sub-matrices. As every signal entering a

sub-matrix is properly buffered, these sub-matrices could in

the future serve as building blocks for considerably larger

chips. The chip is compliant with the AER asynchronous

communication protocol widely used in the neuromorphic

engineering community. Specifically, AER-based commu-

nication is handled through the PCI-AER board [7, 8] which

allows four chips to be connected together (e.g., to imple-

ment a recurrent network of 512 neurons with a uniform

25% connectivity).
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Figure 1. F-LANN chip architecture.

The neuron circuit, which implements an IF neuron with

a constant leakage term and a lower bound for the mem-

brane potential V (t), was introduced in [18] and studied

theoretically in [12]. An additional dynamic variable asso-

ciated with the neuron reflects its recent average activity and

is termed ICa(t), following [6]. The variable ICa, which

is incremented by each spike and decays exponentially be-

tween spikes, is implemented by a log-domain, exponential

decay circuit. We use for V and ICa dynamics the low-

power circuits described in [15, 16].

The dendritic tree of each neuron is composed of 128

synapses. Each synapse accepts as input, spikes from either

internal or external neurons. In the latter case the spikes

come in the form of AER events which are addressed to the

correct synapses by the X-Y decoder. Excitatory synapses

are plastic, inhibitory are fixed.

Even if in principle, recurrent connectivity can also be

achieved by looping through the AER, the ability to recon-

figure synapses as either recurrent or AER-based allows ad-

equate flexibility to optimally balance AER bandwidth re-

quirements and complexity of design.
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Another XY-decoder allows synapses to be indepen-

dently addressed and configured. In addition, dedicated

hardware circuits have been added to directly set and read

the internal state of selected synapses.

The AER input block, responsible for the communica-

tion handshaking, was designed for a multi-chip system. To

avoid a single incorrect AER transaction blocking the AER

bus, the latter is released without waiting for an acknowl-

edgment from the target synapse. To this end, a transparent

latch array stores the AER address as soon as it enters the

bus. Similarly, an internal neuron contributing a spike to

the AER bus does not wait for an external acknowledgment

but resets immediately. Although this approach introduces

a small possibility that some AER events are lost, it ensures

that AER delays do not disrupt internal network activity.

All spikes generated within the chip are arbitered for ac-

cess to the AER bus.

3. Synapse and Calcium Circuit
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Figure 2. Synapse circuit main blocks.

Fig. 2 and Fig. 3 illustrate the synaptic circuit and the

comparator system needed to implement the model de-

scribed in [6] and briefly motivated in the introduction. Fol-

lowing the arrival of a pre-synaptic spike, X jumps upward

or downward, depending on the following conditions on the

post-synaptic state: X(t) → X(t) + a if V (t) > θp and

ITH1 < ICa < ITH3; X(t) → X(t) − b if V (t) ≤ θp and

ITH1 < ICa < ITH2 where a and b are the tunable ampli-

tudes of the jumps. In the absence of pre-synaptic spikes,

if X(t) > θX (X(t) < θX ) X relaxes towards the up-

per (lower) barrier and the efficacy of the bistable synapse

is set as ‘potentiated’ (‘depressed’). The synaptic efficacy

changes only when X(t) crosses θX .

The Bistability sub-circuit (see Fig. 2) is a wide output-

range transconductance amplifier with positive feedback: it

attracts X(t) towards the upper or lower stable value de-

pending on the comparison with the threshold θX , which

also determines, through the Clipping block (a two-stage

open-loop comparator), the efficacy value (J_ – ‘depressed’

or J_ + DJ – ‘potentiated’). The UP and DOWN sig-

nals on the left, coming from the Calcium block, exclu-

sively enable the branches of the Hebbian circuit and inject

or subtract a current regulated by vu and vd. The Dendritic

branch is triggered by the pre-synaptic spike and generates

the up/down jump in the post-synaptic V (t) according to the

configuration bit Conf which sets the synapse as excitatory

or inhibitory.

+

-

Calcium current mode comparators

Vdd

WTA

i1 i2o2o1

ICa(t)

Vdd

VTH3

ILTP(t)

Vdd

WTA

i1 i2o2o1

ICa(t)

Vdd Vdd

VTH2

ITH3 ITH2

Vdd

Vdd Vdd

ILTD(t)

Vdd

WTA

i1 i2o2o1

ICa(t)

Vdd

VTH1

ITH1

Vdd

Vbias Ibias

I/V CONVERTER

ILTP(t) ILTD(t)

DOWN

UP

ENLTP(t) ENLTD(t)

Voltage comparator Output conversion 

ENLTP(t)

ENLTD(t)

VCa(t)

VCa(t)

VCa(t)

V(t)

θp

Figure 3. Comparators system.

The “stop-learning" mechanism relies on the “calcium"

variable of the post-synaptic neuron. This variable, repre-

sented by the current ICa(t), is incremented by each post-

synaptic spike and decays exponentially between spikes.

Accordingly, its value integrates the post-synaptic spiking

activity in the recent past. Together with suitable thresh-

olds, it determines which synaptic changes will be allowed

to occur. For example, it can prevent an upward jump of

X(t) when the post-synaptic neuron is already very active,

thus lowering the probability of synaptic potentiation.

The synapse accepts AER events (the ‘AND’ of XAER

and YAER signals in Fig. 2) or recurrent spikes nSpikerec,

depending on the configuration bit Sel. The event triggers

the pulse extender circuit which generates a pulse spike

with a duration determined by an external bias voltage Pls.

In typical conditions an AER event lasts around 200ns while

the recurrent spike only 10-20ns. This circuit equalizes the

recursive and AER pulse durations extending them to a few

microseconds. This makes sure that the Hebbian circuit (see

Fig. 2) is enabled for the same amount of time irrespective

of whether the impinging spike was generated recursively

or through the AER bus. This “long” interval of time al-
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lows, together with parameters vu and vd a fine tuning of the

amount of charge injected or subtracted from the synaptic

capacitor Csyn, giving rise to the jumps in X . The same in-

terval of time determines the duration of the induced synap-

tic current on the post-synaptic neuron.

Vdd

Vdd

τ

width

pls

thr

Vdd

VCa(t)

ICa
CCa

Mout

Figure 4. Diff-pair log-domain calcium circuit. The

Mout MOSFET is part of the circuit shown in figure

3.

The circuit which generates the calcium variable ICa,

(see Fig. 4) is a diff-pair integrator (DPI) implementing a

log-domain filter. The output of this module, described in

[4, 5], is a current which increases suddenly upon the ar-

rival of impinging spikes and exponentially decays between

two spikes. For constant average firing of the neuron, the

average ICa current level is proportional to the firing rate.

The Mout MOSFET is part of the WTA comparators system

reported in Fig. 3.

ICa is compared to three thresholds ITH1, ITH2, and

ITH3 in the module in Fig. 3 to generate the two signals UP

and DOWN shared among all synapses belonging to the

same dendritic tree. The comparison is performed by three

current-mode winner-take-all circuits (WTA) [14, 17]. In

parallel, the instantaneous voltage value of the post-synaptic

neuron potential V (t) is compared to a threshold θP (see

Fig. 3). Depending on the outcome of these comparisons,

the current-comparator produces either an output current

ILTP = Ibias enabling an upward jump for X(t), a current

ILTD = Ibias enabling a downward jump, or no output cur-

rent at all (ILTP = ILTD = 0). Two corresponding volt-

ages UP and DOWN are produced by current-conveyors

and broadcasted along the neuron’s dendritic tree. This sys-

tem of comparators implements the inequalities above for

the dynamics of X(t).

Fig. 5 illustrates the effect of the Calcium circuit on

X(t). Thresholds were set to have ITH3 > ITH1 = ITH2

(which for the corresponding voltages applied to the gates

of the p-MOSFETs implies VTH3 < VTH1 = VTH2 –

see dashed lines in the figure). The synapse is initially set

depressed. The post-synaptic neuron is excited by a train

of AER spikes (via a different synapse) with increasing

frequency (corresponding upward jumps are visible in the

Vpost. As long as ITH1 = ITH2 > ICa (VTH1 = VTH2 <

VCa), i.e. the post-synaptic neuron activity is low, neither

up nor down transitions of X are allowed, and X(t) stays

fixed at its lower value, until ICa crosses ITH1 = ITH2,

when upward jumps of X become allowed. Upon crossing

θX , the slope of the current attracting X towards the upper

value is activated (this is when the synaptic efficacy gets

potentiated – not shown). X undergoes upward jumps until

ITH3 < ICa (VTH3 > VCa), and upward jumps are forbid-

den. At this point X is driven towards its upper value and

stays there.

When ITH3 < ICa < ITH2 only downward jumps are

allowed and X(t) is driven towards its lower bound. When

ICa > ITH2 X(t) jumps are forbidden. In Fig. 5 we report

the voltages VTH2 and VTH3 applied to the gates of the p-

MOSFETs which control ITH2 and ITH3.

VTH3

V = VTH1 TH2

qX

Vpost

X Vpre

Vca

Figure 5. Illustrative example of the ‘stop-learning’

mechanism (see text). Top to bottom: the post-

synaptic neuron potential, the voltage VCa con-

trolling the calcium variable, the internal synaptic

variable X , and the pre-synaptic neuron potential.

The voltage values corresponding to the thresh-

olds ITH1, ITH2 and ITH3 are indicated by the

horizontal lines, together with the threshold θX .

4. Synapse Configuration

The dashed regions in Fig. 2 highlight the main new

features introduced with respect to the previous C-LANN

chip [3]. A 4-bit bus (b2, b1, b0, nWR) is used to con-

trol the configuration and initialization of all the individual
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Figure 6. A potentiated synapse is set to the de-

pressed state. Top to bottom: Vpost, X , Vpre, con-

figuration digital signal.

Figure 7. An excitatory synapse is set to be in-

hibitory. Top to bottom: Vpost, Vpre, configuration

digital signal.

synapses. The selection of the synapses is done with the

help of the row-column selection lines Xconf , Yconf .

The state of the selected synapse is available at the out-

put of a tri-state buffer. The SISE (Synapse Initialization

and Setting Element) is the digital control element which

contains the memory (2 bits) for the configuration and reads

the state of the synapse. The control signal nWR performs

both the loading of b0 and b1 in the respective FF (Flip-

Flop) and the initialization phase of the synapse. Bit b0
loaded in the first FF produces the Sel signal which con-

figures the synapse as either recurrent or AER, through the

Figure 8. A recurrent synapse is set to be AER.

Top to bottom: Vpost, AERpre, Vpre, configuration

digital signal.

MUX visible in the Pulse extender block in Fig. 2. Bit b1
loaded in the second FF produces the Conf signal which

sets the synapse as excitatory or inhibitory through the den-

dritic branch. Bit b2 is a global signal over the synaptic

array, and it decides whether the selected synapse is forced

toward a potentiated or depressed state when nWR is en-

abled through the initialization circuit. The pulse extender

element regulates the duration of the spike, controlled by

the voltage Pls and triggered by the incoming spike, either

AER or recurrent.

It is possible to continuously monitor the synaptic state

without affecting the chip dynamics.

Decoders are used to access the synapses to configure

them as excitatory or inhibitory, and recursive or AER.

Other decoders are also used when addressing the synapses

in case of AER spiking activity. 7-to-128 bit decoders were

implemented to address the 128×128 synaptic matrix, using

standard cells from austriamicrosystems (AMS) and auto-

matic place-and-route tools supplied by CADENCE. These

cells should lower noise and reduce ground bounce and

voltage drops.

In Fig. 6, Fig. 7, and Fig. 8 we illustrate the relevant

aspects of synaptic configuration. Fig. 6 shows the post-

synaptic manifestation of a potentiated synapse being set

as depressed (larger to smaller jumps induced in the post-

synaptic potential).

Fig. 7 shows the effect of changing the synapse from be-

ing excitatory to inhibitory (upward to downward jumps in

the post-synaptic potential).

Fig. 8 shows a recurrent synapse being set as AER (post-

synaptic jumps are first locked to the recurrently transmitted

spikes, then become locked to the AER spikes).
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5. Conclusions

We report here an analog VLSI chip (termed F-LANN)

for a neuromorphic network for associative learning. Neu-

romorphic neurons and synapses feature adaptive and self-

regulating properties designed for the associative learning

of complex and partly correlated patterns. Although the F-

LANN incorporates 128 neurons and 16 384 synapses, sig-

nificantly greater numbers of neurons and synapses will be

needed for associative learning with natural stimulus sets.

An attractive route to larger networks is to link multiple

VLSI chips via an AER-based communication infrastruc-

ture. For this reason, the F-LANN implements an AER-

compliant chip design in which each neuron features an

AER segment on its dendritic tree, which stands ready to

accept spikes from external sources. The external source

may either be another VLSI chip or a software simulation.

To achieve maximal flexibility in setting a connection ar-

chitecture, each synapse can be individually configured to

be either recurrent or AER-based, either excitatory or in-

hibitory, and of either high or low initial efficacy. In ad-

dition, selected synapses may be read and set without im-

peding spike traffic on the AER bus. In summary, the F-

LANN represents a critical step toward flexible multi-chip

systems that perform associative learning of natural stimu-

lus sets with biologically plausible components.
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