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SUMMARY

Volitional behavior relies on the brain’s ability to
remap sensory flow to motor programs when-
ever demanded by a changed behavioral con-
text. To investigate the circuit basis of such
flexible behavior, we have developed a bio-
physically based decision-making network
model of spiking neurons for arbitrary sensori-
motor mapping. The model quantitatively re-
produces behavioral and prefrontal single-cell
data from an experiment in which monkeys
learn visuomotor associations that are reversed
unpredictably from time to time. We show that
when synaptic modifications occur on multiple
timescales, the model behavior becomes flexi-
ble only when needed: slow components of
learning usually dominate the decision process.
However, if behavioral contexts change fre-
quently enough, fast components of plasticity
take over, and the behavior exhibits a quick
forget-and-learn pattern. This model prediction
is confirmed by monkey data. Therefore, our
work reveals a scenario for conditional associa-
tive learning that is distinct from instant switch-
ing between sets of well-established sensori-
motor associations.

INTRODUCTION

In simple reflex, a stimulus automatically triggers a stereo-

typed motor response in a one-to-one fashion. By con-

trast, adaptive behavior critically depends on the brain’s

ability to flexibly choose an appropriate response which

can vary depending on the specific behavioral context.
For example, when we see a crosswalk and intend to

cross the road, we need to first look left in the US, and right

in the UK. The same visual stimulus (the crosswalk) should

lead to two different motor responses (look left or look

right) depending on the context. If we grew up in the US

and we travel to the UK for a trip, we can certainly learn

to associate with a crosswalk a different motor response.

Interestingly we can also retain our bias to look left, as a re-

sult of a lifetime practice, and when we go back to the US

we can immediately remember that bias. This ability indi-

cates that there are probably learning mechanisms oper-

ating on multiple timescales: fast components would allow

us to adapt quickly to new environments, while slow com-

ponents would retain the memory of our experiences on

longer timescales. The existence of multiple learning com-

ponents plays a fundamental role in the decision process

and in the learning strategy. In a stable environment, we

are requested to respond consistently to sensory stimuli

over long timescales and we need to ignore exceptions.

For example we do not want to modify the association

crosswalk-look left if we live in the US and for some tem-

porary work we need to look right. On the other hand, if we

move back and forth between the US and UK, we need to

adapt to new environments frequently and quickly.

We studied this kind of adaptive behavior by investigat-

ing a specific type of flexibility in a controlled laboratory

environment. In an oculomotor paradigm (Asaad et al.,

1998), monkeys were trained to associate visual stimuli

(pictures) with delayed saccadic movements (left or right)

(Figure 1A). The neural mechanism underlying learning has

been investigated by recording from prefrontal cortex.

Clinical (Petrides, 1985), lesion (Petrides, 1982; Passing-

ham, 1993; Murray et al., 2000), single-unit physiology

with behaving primates (Passingham, 1993; Chen and

Wise, 1995a, 1995b, 1996; White and Wise, 1999; Asaad

et al., 1998, 2000), and imaging (Boettiger et al., 2005)

studies have shown that the frontal lobes are critical for

learning context-dependent (‘‘conditional’’) visuomotor
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mapping in humans and nonhuman primates. In order to

study the process of learning, the rewarded associations

were changed at unpredictable times, and the monkeys

had to learn by trial and error a new set of rewarded re-

sponses to the same visual stimuli. In particular two visual

stimuli (A and B) were initially associated with Left and

Right saccadic responses (L and R), respectively. From

time to time the associations were reversed (from AL

and BR to AR and BL, and vice versa) without any warning

to the animal. When the associations were reversed, the

monkeys quickly forgot the old associations and then

learned the new ones. Interestingly, after a reversal, the

animals almost immediately reverted to a chance level

performance, followed by learning the new associations

Figure 1. Visuomotor Association Experiment

(A) Task protocol: the monkey learns to associate four stimuli either

with a left or right saccadic movement. The associations for two stimuli

are reversed at unpredictable times and without explicit cues. For the

other two stimuli (not shown), the associations are always the same

(i.e., nonreversing).

(B) The proportion of correct responses, averaged across all the

blocks, is plotted against the number of trials from the time of reversal.

Initially the monkey keeps responding according to the previously re-

warded associations and makes the greatest number of mistakes.

He forgets quickly (2 to 3 trials), whereupon performance rises to

chance level (50%). The new associations are learned slowly (15–20

trials).

The upper and lower bounds of the confidence interval are estimated

according to Equation 1 in the Experimental Procedures.
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in 15–20 trials on average (Figure 1B). This feature was

observed across seven monkeys trained on this paradigm

by different investigators (Asaad et al., 1998; Pasupathy

and Miller, 2005; A. Machon et al., 2006, Soc. Neurosci.,

abstract). Two other visual stimuli (C and D) were consis-

tently associated with a fixed motor response throughout

the experiment. These nonreversing stimuli were ran-

domly intermixed with the first two stimuli, A and B.

Motivated by this experiment, we have built a biologi-

cally plausible decision-making neural circuit model for

arbitrary sensorimotor mapping. The model is constructed

based on the observation that in the experiment of Asaad

et al. (1998) many recorded neurons in the prefrontal cor-

tex responded selectively to the planned motor response.

Moreover, the selectivity appeared progressively earlier

within each successive trial as the animal learns a correct

cue-response mapping, suggesting a role for these cells in

learning arbitrary visuomotor associations. These obser-

vations, and others (Chen and Wise, 1995a, 1995b,

1996), revealed neural correlates of oculomotor reversal

learning but are not sufficient for establishing synaptic

mechanisms that causally link the observed neural activity

and learning behavior. In the model that we propose, the

interplay between decision-making circuit dynamics and

reward-dependent synaptic plasticity quantitatively cap-

tures the process of learning and forgetting visuomotor

associations, both for the observed behavioral data and

the single-cell data recorded in prefrontal cortex in the

monkey experiment. Importantly, the model gives rise to

a surprising prediction, namely behavioral performance

is rapidly reset to chance level by a single error even after

the learning process has reached a steady state, which is

confirmed by analysis of monkey data.

Our neural circuit model has yielded insights into key

questions about flexible sensorimotor behavior such as

the following: what determines when we should be flexible

and when we should not? how flexible should we be in dif-

ferent situations? is there a general neural mechanism

underlying flexibility? We will show that the ability to de-

cide when to be flexible (i.e., quickly forget and relearn)

emerges naturally from the competition between learning

processes that operate on multiple timescales. The learn-

ing components that predominantly drive the decision

process are selected by the temporal statistics of the en-

vironment (how often do the associations change? is there

any bias?). Moreover, random behavior is often observed

in monkeys when the environment changes (Asaad et al.,

1998; Mansouri and Tanaka, 2002). We show that the

degree of randomness reflects the extent to which alterna-

tive associations are equally likely on a long timescale.

RESULTS

Experimental Observations to Build the Model

Our model is based on two experimental observations.

First, our analysis shows that the learning process is

roughly independent for each of the two stimuli (visual

cues A and B). Indeed, the proportion of correct
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responses to a stimulus immediately after a reversal is

largely unaffected by the prior presentation of the other re-

versed object. In other words, having seen one object to

be reversed does not greatly influence performance on

the other. Specifically, the proportion of correct responses

to a particular stimulus immediately after a reversal is

0.08 ± 0.08 when not preceded by presentations of the

other object. If the other reversed object had been pre-

sented, this proportion rises only slightly (0.19 ± 0.07 for

the first sessions and 0.25 ± 0.08 for the last sessions).

In what follows we will assume that the interference be-

tween the patterns is negligible and we will show that

a model based on this hypothesis can reproduce the be-

havioral data. Secondly, we focus on modeling neurons

that are inherently selective to planned saccadic direc-

tions, which constituted 29% of the recorded cells in pre-

frontal cortex. For example, such a cell would fire at a high

rate to a stimulus which signals a response in its preferred

direction (e.g., Left), and it would fire at a lower rate to all

those stimuli which signal a response in the nonpreferred

direction (Right). Thus, this cell keeps responding accord-

ing to the chosen motor response (left saccade) which

may be associated with stimulus A or B in different blocks

of trials. After a reversal, the time at which selectivity be-

comes apparent gradually moves backward (from the

end of the trial, to soon after stimulus presentation and

early in the delay period), as the monkey learned the

new associations. Based on this finding, we propose

a scenario in which cue-response associations are

learned through the synaptic plasticity of afferents from

sensory neurons to response-selective cells in a decision

circuit.

The Decision-Making Model Network

The core of the model is a decision-making network of in-

tegrate-and-fire neurons with realistic recurrent synaptic

excitation (mediated by AMPA and slow NMDA receptors)

and inhibition (mediated by GABAA receptors) as in Wang

(2002) (see Figure 2A for a schematic representation of the

network architecture). Two subpopulations of excitatory

neurons represent the direction selective neurons ob-

served in the experiment, which we assume contribute

to the selection of the monkey’s intended motor response.

In our model, when a visual stimulus is presented, the two

populations compete, and the winner (Left or Right) sig-

nals the decision of the model system. When the inputs

activated by a visual stimulus are the same for the two

neural populations, the network chooses randomly one

of the two saccadic movements with equal probability.

Any input imbalance would bias the decision. From direct

simulations of the spiking neural network model over

many trials, we computed the probability that one of

the two responses (e.g., Left) is chosen as a function of

gLeft � gRight, the difference in the total synaptic conduc-

tances of external inputs to the two neural populations

(Figure 2B). As the difference increases in favor of Left

population, the probability to choose Left increases, and

eventually the model’s behavior becomes deterministic.
Notice that the probability depends only on the difference

between the two synaptic conductances, and not on the

absolute value of the individual conductances (gLeft and

gRight). The ‘‘psychometric function’’ is well described by

a sigmoidal function (solid curve in Figure 2B). The net-

work behavior with two different gLeft, gRight values

(marked by C and D) is shown in Figures 2C and 2D for

14 individual trials, with the raster plots from a single

model cell selective to Left, and the Left population firing

rate. In the first case (C) gLeft is larger than gRight, and the

decision network chooses Left in about 90% of the trials.

In the second case (D) the input synapses are balanced

(gLeft = gRight), and the Left neural pool wins in half of the

trials. In each trial, a single stimulus triggers firing activities

in both the Left and Right cell populations. Initially they in-

crease together, until the recurrent synaptic input is strong

enough that the two neural population firing rates start to

diverge from each other. The recruited synaptic inhibition

leads to a winner-take-all competition, so that one popu-

lation wins and the other one loses. The time at which it is

possible to discriminate between the winner and the loser

is essentially the point of no return, at which the model

system has already made a decision. This time was esti-

mated by computing the latency to the half maximal

direction selectivity as follows. The direction selectivity

is defined as the relative difference in the firing rate

(rA � rB) / (rA + rB), similar to the selectivity index used in

the experiment (Asaad et al., 1998). Initially the network

is in a symmetrical spontaneous state so the selectivity

is zero. At the end of a simulated trial, the network has

made a decision and the activity is high for one motor re-

sponse and low for the other, so the direction selectivity is

maximal. There is an intermediate time at which the selec-

tivity is half of the final, maximal selectivity, which we

define as the latency to half maximum selectivity. In the

simulations it is clear that with a stronger bias (Figure 2C)

the decision occurs earlier, and thus the latency is shorter.

It is computationally costly to simulate the full spiking

neuron network model for learning process over hundreds

of trials. Since the network’s decision behavior is well

characterized by the choice probability as a sigmoid (soft-

max) function of the input difference (Figure 2B), we can

use the latter instead of direct simulations when learning

is considered. Hence, in any single trial, given gRight and

gLeft, the network’s choice is assumed to be random,

with a probability determined by the softmax criterion.

The outcome of the stochastic process used to generate

the network’s decision leads to synaptic changes accord-

ing to a reward-dependent Hebbian learning rule (see the

next section). The modified gRight and gLeft values are then

used to update the decision criterion for the next trial. This

procedure generates a variability from session to session

that is similar to the one observed in the experiment.

Learning Cue-Response Associations

Learning is modeled by synaptic plasticity from the stimu-

lus selective inputs to the two competing decision neural

populations (gLeft and gRight). For the sake of simplicity
Neuron 54, 319–333, April 19, 2007 ª2007 Elsevier Inc. 321
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Figure 2. The Decision-Making Network Behavior

(A) The architecture of the simulated decision-making neural network: the network includes two excitatory subpopulations selective to the intended

saccadic movements. The two populations compete through a group of inhibitory neurons. Visual stimuli activate the excitatory external inputs

indicated by the black arrows.

(B) Probability that Left wins over Right, as a function of the difference in the average external synaptic conductances. Different symbols correspond

to different gRight values (gRight is 4.8 nS plus the DgRight reported in the inset). The probability, computed by running full simulations of integrate-and-

fire neurons (200 trials for each data point), is well described by a sigmoidal function (black line). The total mean external conductance gLeft + gRight for

the points corresponding to DgRight = 0 (triangles) is 9.6 nS.

(C and D) Raster plots for a single model neuron selective for Left, in 14 different trials. Blue: trials in which Left wins. Magenta: trials in which Left loses

and Right is chosen. The parameters characterizing the statistics of the noisy input synaptic conductances are the same for all the trials shown in each

of the two panels. Different traces correspond to different realizations of the noisy inputs. (C) A larger synaptic input gLeft than gRight from the same

stimulus (bicycle) makes Left choice more probable. (D) With perfected balanced inputs Left is selected in half of the trials.
we will first describe this model with a single learning com-

ponent, its behavior and experimental predictions. As we

will show, this will naturally lead us to introduce learning

with multiple components (in particular on at least one

additional timescale), in order to account for robust and

flexible behavior. Given that in the experiment what the

monkey learns about one stimulus does not affect the re-

sponse to the other, we study separately the external input

conductances corresponding to different stimuli. In other

words, we focus on a single stimulus (e.g., picture A)

and consider which of the two responses is triggered by

it. We introduce learning rules for strengthening and weak-

ening the synaptic conductances from that input to the

two decision neural pools, depending on whether the
322 Neuron 54, 319–333, April 19, 2007 ª2007 Elsevier Inc.
triggered response is rewarded or not. Each of the two in-

put synaptic conductances is restricted to a fixed range,

reflecting the fact that synapses are bounded and the neu-

ral activity varies in a limited range. This restriction makes

the memory forgetful (Parisi, 1986; Amit and Fusi, 1994;

Fusi, 2002), i.e., the mnemonic trace of the past experi-

ences decays exponentially with their age and old visuo-

motor associations are forgotten. The learning algorithm

is schematically summarized in Figure 3A. When the se-

lected response corresponds to the correct association

(e.g., AL) and is rewarded, the external inputs to the win-

ning decision neurons are strengthened, whereas those

to the losing neurons are weakened. When the selected

response corresponds to the wrong association (AR),
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there is no reward and both external inputs to the two de-

cision cell populations are depressed quickly and brought

toward their minimal values which are assumed to be

equal for left and right. The updating rule in the absence

of reward is not uniquely determined by the data, and

other rules are possible (see Experimental Procedures).

Learning rate in nonrewarded trials must be much higher

(about 203) than that in rewarded trials, in order to repro-

duce the strong reset observed in the behaving monkey

after reversal. A simulation of the learning process is

shown in Figure 3B, where we calibrated the parameters

by fitting the model to the behavioral data (see below).

For each trial, given the synaptic inputs for a specific

cue, the response of the monkey is decided randomly

with the choice probability of Figure 2B. Then, the input

synaptic conductances are updated according to the

rules of Figure 3A; their time courses across several learn-

ing reversals are shown in Figure 3B (upper panel). The

corresponding probability of choosing one of the two sac-

cades (Left) is shown in the middle panel. The associations

are reversed every 60–70 trials. Before each reversal,

the performance is high, and the input synapse to the

population representing the correct choice is close to its

maximal value. After the first error following reversal,

both the inputs are reset to the minimal value and the

model starts responding randomly, with a performance

at chance level. The model usually spends a few trials in

such a situation, because each error resets again both

synaptic inputs. This is reflected by small fluctuations of

the synaptic inputs around zero (upper panel). As the

probability of correct responses surpasses a critical

threshold, resets due to mistakes become unlikely, and

the system learns slowly to have more confidence

and eventually responds correctly consistently (middle

panel). During this process, the time it takes to make

a decision, expressed as the latency to the half maximum

direction selectivity of neural activity in a trial, is initially

long (about 800 ms), and becomes considerably shorter

(300 ms) after the new associations are established (bot-

tom panel).

Model versus Experimental Data

Figure 4A shows the learning curve after reversal from our

model (solid line), superimposed with the monkey’s be-

havioral data (open circles) (see Experimental Procedures

for fitting the model parameters). In the model, after a

learning reversal the chance level performance results

from random decisions driven purely by noise (with gRight z
gLeft), with no bias for one motor response or another.

However, such behavioral data could have different inter-

pretations, since 50%-50% performance can be pro-

duced either by truly random choices or by a strongly

biased perseverant behavior of the monkey (e.g., if the

monkey responds always left to both stimuli after one mis-

take). We examined these possibilities by data analysis,

and our results show that the monkey’s behavior does

not exhibit a bias for one motor response or another,

consistent with our model (see Figure S1 in the Supple-
mental Data available with this article online). Moreover,

the learning curve in Figure 4A was obtained by averaging

across blocks of trials. Conceivably such a smooth learn-

ing curve could arise even if in single blocks the monkey’s

learning is not gradual but exhibits a sudden transition

from a poor to a high performance level, provided that

the transition time is random across blocks of trials. We

considered this possibility and found that the raw behav-

ioral data do not show obvious evidence for switch-like

Figure 3. Learning Rewarding Cue-Response Associations

(A) Learning scheme for the model when one stimulus is presented

(e.g., the bicycle) and Left neural population wins. If the association

(bicycle-Left) is correct, the response leads to reward. In such

a case the input to cells selective for Left is strengthened and the

one to those selective for Right is weakened. If the association is incor-

rect (bicycle-right) and no reward is delivered, then both synaptic in-

puts are depressed and quickly brought to their minimal values which

are assumed to be equal (symmetric configuration).

(B) Simulation of the learning process for several blocks of trials in

which the associations are reversed (each block has a random length

between 60 and 70 trials). (Top) Synaptic strengths of input from a given

stimulus to Left (blue) and to Right (red) neural pools are plotted as

a function of the trial number. (Middle) The corresponding probability

of choosing Left. (Bottom) The latency to the half maximum selectivity

that measures the speed of selecting a choice by decision neurons

within a trial.
Neuron 54, 319–333, April 19, 2007 ª2007 Elsevier Inc. 323
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Figure 4. The Model Reproduces Quanti-

tatively Salient Behavioral Observations

and Makes Predictions that Are Verified

by Analysis of Monkey Data

(A) Performance versus number of trials after

the reversal of the associations for the model

simulations (gray solid line) and for the experi-

mental data (black points).

(B) The performance in a trial after n correct

trials for the experimental data (with symbols)

and simulation (gray line without symbols).

(C) Every mistake resets the monkey’s per-

formance to chance level: the probability of

correct response in a trial following a single

error is plotted as a function of the number

of consecutive correct trials that precede the

mistake. The performance is close to chance

level, regardless of the length of the previous

sequence of consecutively correct trials. The

errors considered for the analysis can occur

at any time within a block, and not necessarily

immediately after reversal.

(D) Performance versus number of trials after

every error observed in the experiment (empty

circles) compared to the same performance

predicted by the model. The error bars for the

data points are negligible. The learning curve

after reversal is very similar, indicating that

the monkey relearns the associations in the

same way, whether the error was caused by

a reversal or by other reasons.

The upper and lower bounds of the confidence

interval are estimated according to Equation 1

in the Experimental Procedures.
abrupt transitions after reversal in individual blocks

(Figure S2), although statistically it is difficult to exclude

this possibility entirely. Our model assumption about

gradual learning after reversal appears to be compatible

with the monkey data.

We found that in order to replicate the fast reset to

chance level performance after association reversal, ob-

served in the monkey experiment (Figure 4A), in the model

both synapses gRight and gLeft must undergo strong de-

pression when a response choice is incorrect and yields

no reward. Although this seems natural intuitively, it gives

rise to a specific model prediction, namely that even after

learning has reached a steady state the behavioral perfor-

mance remains very sensitive to the occurrence of any

error. We have tested this conclusion quantitatively in sev-

eral ways. First, we checked that the performance steadily

improves with consecutive correct trials (Figure 4B). About

seven consecutive correct trials are sufficient to reach the

maximal performance, and only three consecutive correct

trials are enough to get to 80% performance (this is com-

patible with the behavior observed in Brasted and Wise

[2004]). On the other hand, the performance is reset to

chance level after a single error trial, regardless of the

number of consecutive correct trials that precede the

mistake (Figure 4C). This strong and unexpected model

prediction is thus confirmed by our analysis of the mon-

key’s data.
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Furthermore, in our model the learning rates are as-

sumed to be independent of the previous history and

hence every mistake caused by the wrong decision of

the model network should reset the performance (shown

in Figure 4C), independently from the fact that the error

is due to reversal or to some other reason. Thus, another

model prediction is that the performance curve following

every mistake (no matter when it occurs) should be similar

to the one obtained following the first error after reversal.

In Figure 4D we show that our prediction is confirmed by

additional data analysis. The performance after every mis-

take is plotted for the experiment (empty circles) and for

the model (solid line). The model and the data learning

curves match surprisingly well, indicating that our predic-

tion was correct.

We also considered the time course of the neural activity

in the decision network model during associative learning.

Following the first mistake after the reversal, the synaptic

inputs are reset to their minimum value and hence the de-

cision is slow (see Figure 2D). The time to the half of the

maximum selectivity is the longest. As learning proceeds,

biased synaptic inputs lead to faster firing dynamics in de-

cision neurons (see Figure 2C), so that the decision time is

progressively shortened. Using direct simulations of spik-

ing neuron network model, we found that our model was

able to reproduce the electrophysiological data of neural

latency to half maximum selectivity in the experiment of
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reversal learning (Figure 5), notably with the same model

parameters calibrated only by behavioral data.

Learning to Respond Probabilistically

To achieve random decision making after reversal re-

quires fine-tuning of model parameters, because the

choice probability is very sensitive to small differences

in the two inputs (see Figure 2B): the range over which

the decision behavior is stochastic is small compared

to the total synaptic conductances of external stimulation

(gLeft – gRight) / (gLeft + gRight) z 3%. Therefore any hetero-

geneity (e.g., random connectivity) can disrupt the mech-

anism underlying the stochasticity of choice behavior. Here

we suggest that this fine-tuning can be accomplished in

the nervous system by learning on a long timescale. The

idea is that, if we add a slower component of learning

(using a similar algorithm as for the fast component, see

Experimental Procedures, but with smaller learning rates),

the memory window within which experiences are kept in

memory can be extended to span several blocks of trials in

which the same stimulus is remembered to be associated

sometimes with one motor response, sometimes with the

other (Figure 6A). If the overall fraction of trials is the same

for each of the two responses to be correct, the integration

over blocks of trials of the slow components tends to

create a symmetric input configuration which makes the

two responses equally probable. This is shown in

Figure 6B where the slow components of plastic synapses

gLeft,Slow and gRight,Slow are initially different (in favor of

choosing Left) but become equal through learning across

several blocks of trials. At the same time, the fast synaptic

components allow the system to learn the correct associ-

ations within each block. Every mistake resets the fast

Figure 5. Latency to the Half Maximum Selectivity in Simula-

tions and in the Recorded Prefrontal Cells

The solid line represents the simulation results of the full network

model of spiking neurons and in the circles are the latencies of the

recorded prefrontal cells in the experiment. Both are plotted as a func-

tion of the number of correct trials from the reversal of associations.

The time is measured from the cue onset. The dashed line indicates

the presumed latency (100 ms) for a sensory signal to arrive to the

recorded neuron.
Figure 6. Learning to Decide Probabilistically in the Model

(A) The role of fast and slow components of learning. The memory trace

of past events (solid black line) decays exponentially with age (on the

horizontal axis). The memorized events are schematically indicated

by the visual stimulus and the corresponding rewarded response.

Most recent memories are vivid, while the old ones fade away. The

time constant of the exponential decay depends on the learning rate:

components with high learning rates (fast components) forget quickly

and typically remember only the associations within the last block of

trials, whereas low learning rates (slow components) can produce

memories that span more than one block (different blocks are sepa-

rated by vertical lines). Hence the fast components of one stimulus

(e.g., the balloon) are at any particular moment associated with only

one saccade (Left in this example). For the slow components, the

same stimulus is associated with both saccadic movements. For

example, the balloon is remembered to be associated with both Left

(in the present block) and Right (in the previous block).

(B) Balanced network realized by a two-component (fast and slow)

learning process. Dashed lines, the slow components (blue and red,

synaptic inputs to the Left and Right neural pools). Solid lines, the

fast components. The simulation starts with a situation in which the

difference in the slow components biases the response toward Left.

After a few blocks in which the associations are reversed, the slow

components balance each other. When the fast components are reset

(as after a reversal), the model responds according to the configuration

of the slow components which are now balanced, leading to a proba-

bilistic choice behavior.
Neuron 54, 319–333, April 19, 2007 ª2007 Elsevier Inc. 325
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components, bringing the system back to the balanced

configuration determined by the slow components. This

scenario is supported by the experimental observation

that, in the early stages of training, monkeys very often

adopt strong biases to respond in only one direction.

Only once their training is more advanced do they lose

these biases and do the two choices became equally

likely. The experiment has actually been designed to avoid

any bias in the response: left and right saccades in re-

sponse to one specific stimulus are rewarded in the

same proportion of trials across many blocks. Our model

with dual timescales of synaptic plasticity provides a can-

didate mechanism for the monkey’s slow learning through

the training process. In fact, with the slow learning compo-

nent, random behavior simply reflects the long-term sta-

tistics of the visuomotor associations across many blocks.

In the specific case of the experiment that we considered,

the reset to the chance level reflects the 50%-50% statis-

tics of rewarding left and right saccades for all the stimuli

whose associations are reversed. The ability of encoding

this balanced probability of reward does not depend on

the specific learning parameters. Moreover, any built-in

bias in the network can be compensated for by the long-

timescale learning mechanism. For example, if the num-

ber of afferents to the neurons selective for Left is larger

than the number of afferents to the Right neural pool, the

network would tend to have a marked preference for

choosing Left, after an error-driven reset of the fast synap-

tic components. Because Left is chosen excessively even

in blocks of trials when the correct and rewarded response

is Right, the learning process leads to a gradual depres-

sion of gLeft,Slow and potentiation of gRight,Slow (Figure 7).

Eventually, the slow synaptic components would com-

pensate for the bias in such a way that the synaptic inputs

to the two populations become nearly equal. Therefore,

after a reset of the fast synaptic components the network

restores to random behavior with a performance at

chance level (Figure 7).

In general the slow components approximately encode

the reward history, i.e., the probability that a particular

motor response is rewarded on a long timescale (Figures

8A–8D). We found that in our model the overall probability

of choosing a motor response matches the probability of

rewards for that choice, when averaged across blocks of

trials (Figure 8D). For example, if the blocks in which Left

is rewarded in response to stimulus A are longer than

the blocks in which Right is rewarded, then the slow com-

ponents will bias the response in favor of Left. After a mis-

take, the probability of choosing left would be higher than

the probability of choosing right (Figure 8B). If the associ-

ations are never reversed, then a single mistake should not

lead to random behavior because the slow components

will consistently bias only one motor response. This model

prediction is confirmed by analyzing the experimental data

(Asaad et al., 1998) for the two stimuli whose associations

were never reversed (Figure 8E). The effect is striking: for

the nonreversing stimuli one error does not compromise

the performance of the monkey. The next time the same
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cue is presented again, the monkey responds almost

always correctly, in contrast to what happens for the re-

versing stimuli, for which a single mistake leads to chance

level performance.

Figure 7. Learning to Behave Randomly without Fine-Tuning

(A) Simulation of a network that has a preference for Left (e.g., because

of a larger number of afferents to neurons selective for Left than those

selective for Right). (Top) Fast and slow components of the synaptic in-

puts as a function of the number of trials. (Bottom) The corresponding

probability of choosing Left. The color code is the same as in Figure 6.

The strength of all the slow and fast components of input synaptic con-

ductances is initially balanced, but the network chooses Left all the

time because of the bias caused by heterogeneities. After a few blocks

in which the two responses have exhibited an equal reward history, the

slow component of the input to the Right neural pool (dashed red) be-

comes gradually larger than that to the Left neural pool (dashed blue).

Eventually the probability of choosing Left undergoes all association

reversals, and any single mistake resetting the fast components would

bring back a balanced configuration (data not shown). A small asym-

metry still remains after learning (the speed of learning is slightly higher

for the response Left) because the bias toward left is strong (the bias-

ing parameter b = 1.6, see Experimental Procedures).

(B) The probability of choosing left versus the bias toward Left (b = 1

corresponds to no bias) is plotted before (gray) and after (black) learn-

ing. The black curve is much closer to the chance level (dashed line)

(encoding the statistics of reward across different blocks) than the

gray curve.
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Figure 8. The Slow Learning Components Encode Reward History over Long Timescales
(A–C) Simulations of the learning dynamics of fast and slow components as described in Figure 6 for three different reward statistics.

(A) The stimulus that we consider is always associated with Left, on long and short timescales (Left has probability 1 of being rewarded). This is the

situation for the stimuli whose associations are never reversed. Both the fast and slow components strongly bias Left, no matter what is the initial

condition. In this situation, single errors which reset the fast components would not lead to chance level performance, because the slow components

would still bias the choice for Left.

(B) The blocks in which the stimulus is associated with Left are longer than the blocks in which it is associated with Right (Left has probability 0.75 of

being rewarded when many blocks are considered). The probability of choosing Left (black solid line) reflects this statistics, and it is shifted above the

chance level (the simulation shows the behavior after a large number of trials, when the slow components are at equilibrium). When the fast compo-

nents reset immediately after a reversal, the decision network chooses Left with probability 0.75 (instead of 0.5).

(C) Balanced statistics: Left and Right are equally probable correct associations across many blocks of trials. Any mistake should lead to random

behavior, and the two saccades would be equally likely. This is what happens in the experiment for the stimuli whose associations are reversed.

(D) Summary of model behavior for different reward histories. The probability of choosing Left (averaged across many blocks of trials) matches the

probability of Left being rewarded for a particular stimulus.

(E) Behavioral data: the performance after a sequence of n correct trials followed by one error is plotted against n for the stimuli whose associations

are reversed (black, same data as in Figure 4C) and for the stimuli that are always consistently associated with one saccade (gray). Data points are

shown only when the instances (number of trials) are more than 20.

(F) Same as (E), but restricted to the first blocks of each session (only stimuli whose associations are reversed are included). Although the statistics is

poorer, the reset effect is evident also in this case when the stimuli are novel. See the Supplemental Data for more details.

The upper and lower bounds of the confidence interval are estimated according to Equation 1 in the Experimental Procedures.
Neuron 54, 319–333, April 19, 2007 ª2007 Elsevier Inc. 327
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DISCUSSION

A Neural Circuit Model of Arbitrary Sensorimotor

Mapping

In summary, we proposed a spiking neuron network model

endowed with reward-dependent plasticity for learning ar-

bitrary sensorimotor associations. Unlike more abstract

‘‘cognitive-type’’ models, such biophysically based mod-

eling is necessary for mechanistically explaining the

observed behavior in terms of the underlying cellular and

synaptic events. Our plasticity rule for the stimulus-

dependent synaptic conductances is consistent with ex-

isting reinforcement models (Sutton and Barto, 1998;

Williams, 1992). The stochastic Hebbian learning rule

was introduced in Amit and Fusi (1994) and Fusi (2002),

in which each synapse is binary and it is potentiated or de-

pressed with some probability. We showed that, with the

addition of reward dependence (see also Soltani and

Wang [2006]), this learning rule in a decision circuit is

suitable for describing flexible sensorimotor learning. We

would like to emphasize that this model not only repro-

duced previously reported experimental data but more

importantly has yielded the unexpected prediction of fast

resetting to random performance by single errors even af-

ter the learning process has reached a steady state. We

have put this model prediction to test in multiple ways,

and each time it was confirmed by data analysis of the

monkey experiment (Figure 4). The results from model

simulations and behavioral data analyses reported here

collectively suggest a novel and specific scenario for con-

ditional associative learning, in contrast to a different sce-

nario in which the system does not learn after reversal but

switches between prewired neural representations de-

pending on different contexts (Deco and Rolls, 2003,

2005; Salinas, 2004).

How to Be Flexible: When and by How Much

When the environment changes we often need to modify

our behavior and respond in a different way to some stim-

uli. When we move between two or more environments,

we can flexibly adapt either by erasing the old sensorimo-

tor associations and by learning the new ones, or by

switching to a previously memorized set of sensorimotor

associations which guarantee reward in the new environ-

ment. In our work we studied the first type of flexibility,

which is also a widely observed behavior in monkey ex-

periments, and it is certainly the initial behavior also in

the case in which the animal eventually adopts a switching

strategy (see below for more about the second strategy).

The processes of forgetting and learning occur at a certain

rate, which can be modulated based on the past experi-

ence to adapt more rapidly to new environments when

we know that the environment changes. Normally we do

not want to modify our set of visuomotor associations

too rapidly, because in a stable environment, exceptions

should be ignored. However, if the environment changes

often enough, it becomes rewarding to forget quickly.

Our work suggests that flexible sensorimotor mapping
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can be conceptualized in terms of synaptic plasticity of

sensory inputs to a decision network responsible for ac-

tion selection. In our model and in the observed monkey

behavior, the old associations are quickly forgotten to

make room for the new ones only for those stimuli whose

associations are reversed from time to time. Interestingly,

for these stimuli, the old associations are practically reset

after every single error. Instead, for those stimuli which

require a consistent response over long timescales, no

fast reset is observed. So the behavior of the monkey re-

flects the statistics of the sensorimotor associations on

multiple timescales. Indeed, for the stimuli whose associ-

ations are reversed, the rewarded responses are consis-

tent for tens of trials (i.e., the duration of the blocks in

which the responses are not reversed), whereas for the

other stimuli the rewarded responses are consistent

across thousands of trials in the entire experiment.

What Is the Neural Mechanism Underlying

Flexibility?

The flexible behavior described in the previous section

emerges naturally by introducing learning on multiple

timescales: for those stimuli whose associations are re-

versed, the slow components which bias the response re-

flect the statistics across many different blocks, and they

are balanced because the two motor responses, left and

right, are rewarded in an equal number of cases. When

the slow synaptic components are not biased, they essen-

tially do not play any role in the competition between the

two decisions corresponding to the two motor responses,

left and right, and the fast components can dominate. The

reset after one mistake is an expression of a fast process,

and it is predicted to be observed only when the slow

components are balanced. In the case in which there is

a preference for either left or right on long timescales,

then the model predicted that there should be no reset,

because both the fast and slow components are biased

toward one response. Such a prediction has been verified

in the behavioral data. The same model, with the same

parameters, reproduces both the reset behavior of the

balanced case of reversing stimuli and the no-reset

behavior of nonreversing stimuli. What determines the dif-

ference between the two behaviors is only the statistics of

the visuomotor associations on multiple timescales.

Notice that our decision-making model based on the

competition between two populations of neurons repre-

senting the two motor responses provides a simple way

of selecting the dominant bias: the final response depends

on the difference between the synaptic inputs to the two

populations, so balanced components like the slow ones

for the reversing stimuli do not contribute at all to the com-

petition between the neural populations encoding the

alternative motor responses. It is worth noting that, al-

though we focused on a task with two possible responses,

our model can be readily generalized to situations with

a larger repertoire of motor outputs, such as associations

between multiple sensory stimuli with four saccadic

movements (Chen and Wise, 1995a, 1995b, 1996).
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Forget-and-Learn versus Instant Switch

The switch strategy is intuitively appealing and appears

commonplace in human behaviors. However, evidence

is scarce that monkeys can learn new conditional sensori-

motor associations and then reverse them instanta-

neously. As mentioned earlier, instead of switching, rapid

resetting and slower relearning have been consistently ob-

served in seven monkeys in our experiment (Asaad et al.,

1998; Pasupathy and Miller, 2005; A. Machon et al., 2006,

Soc. Neurosci., abstract). A possible explanation lies in

the fact that there were nonreversing stimuli that were ran-

domly intermixed with the two reversing stimuli (A and B),

hence it was not obvious for monkeys to adopt the strat-

egy of simply switching from one cue-response mapping

to another after each reversal. However, fast reset and

slower relearning have also been observed in other exper-

iments. In a similar visuomotor experiment, Chen and

Wise (1995a) focused on acquisition of novel conditional

associations but occasionally tested reversals. They

reported that after a reversal, ‘‘The monkeys usually re-

peated the response learned in the preceding block of tri-

als, then switched to a trial-and-error strategy, and even-

tually learnt the altered instructional significance of the

stimulus.’’ In another experiment in which cue-response-

reward contingencies were changed from one block of tri-

als to another, after a reversal monkeys reattained high

performance in 10–20 trials (Figure 2B in Matsumoto

et al. [2003]). These observations are consistent with our

model.

This is not to say that, depending on the task type and

design, or how long the animals are trained, animals can-

not adopt the switch strategy. For instance, simpler rever-

sal learning of cue-reward contingencies can be very fast,

within a few trials (Kennerley et al., 2006). Also, switching

between behavioral contexts has been observed when

explicit cues were used to signal which rule was currently

in effect (Wallis et al., 2001). In arbitrary sensorimotor

mapping tasks, switch strategy is more likely if all stimuli

are remapped at the same time. This, however, is not

a typical situation in real life. In our experiment, by design

we used nonreversing stimuli which were randomly inter-

mixed with the two reversing stimuli (A and B), hence it

was not obvious for monkeys to adopt the switching strat-

egy. Instead, monkeys showed a behavioral pattern of

learning, forgetting, and relearning, not instant reversals.

This allowed us to observe multiple episodes of associa-

tive learning during each recording session. It is conceiv-

able that, after a longer training period, monkeys could

eventually show the switch strategy. If so, at that stage,

the behavior would in a sense become more stereotyped,

not suitable for studying the dynamical process of flexible

associative learning.

Yu and Dayan (2005) argued that switching strategy is

desirable only when errors are most likely to be caused

by unpredictable change of cue-response contingencies

(unexpected uncertainty), not by unreliability of cue-

response relationship within a block of trials (expected

uncertainty). They hypothesized the existence of two
neuromodulator systems, related to acetylcholine and

norepinephrine, that signal expected and unexpected un-

certainty, respectively. In our experiment, cue-response

contingencies change in an unpredictable way (reversals

occur at random times), generating unexpected uncer-

tainty. The animal can become aware of this type of uncer-

tainty only if it can retain memory across blocks of trials in

which the contingencies are different, and hence slow

learning components are needed both in our model and

in the Yu-Dayan model and they play a similar role. On

the other hand, in the experiment we modeled there is

no obvious expected uncertainty as the correct response

is always unambiguous.

Interestingly, in the experiment that we analyzed, most

of the errors lead to a fast reset of the associations. How-

ever, in order to fit the model to the data, we needed to as-

sume that in a small fraction of cases, 7%, no synaptic

modification followed the erroneous response (see the

Experimental Procedures for more details). The simplest

explanation of these exceptions would probably be that

synapses are not updated when no reward is expected

in this small fraction of trials, for reasons that are unknown.

For instance, in such a trial the monkey could be dis-

tracted or simply tired and hence aware that it was going

to make a mistake and did not expect to get a reward. This

view is consistent with the fact that the errors not leading

to a reset occurred seemingly at random times. An alter-

native explanation might be related to some form of inter-

nal estimate of expected uncertainty: the monkey knew

that a correct response was very likely to lead to a reward,

but it might not be completely certain because sometimes

it made mistakes for reasons that seemed not to be under

control but due to some external unpredictability. If so,

one would expect that with an increased expected uncer-

tainty, the fraction of erroneous responses not leading to

a reset would be higher. Such a behavior would make

the system more robust to expected uncertainty. Manipu-

lation of expected uncertainty in sensorimotor mapping

tasks in future work would shed insights into this issue.

Note that whereas Yu and Dayan (2005) used a Bayesian

inference approach to understand the relation of two neu-

romodulators to expected and unexpected uncertainty,

our model consists of a biophysically based circuit of spik-

ing neurons which allowed us to capture both behavioral

and single-unit physiological data quantitatively and to

probe mechanistic questions about synaptic plasticity un-

derlying flexible associative learning. Moreover, our model

can be extended to exhibit a switching strategy, based on

the idea that alternative contexts are represented inter-

nally as coexisting and competing attractor states (E. Curti

et al., 2006, Soc. Neurosci., abstract). This interesting

topic is beyond the scope of the present article and will

be pursued elsewhere.

Random Behavior for Equally Probable Alternatives

The introduction of an additional, slow learning compo-

nent enabled the model to display chance level stochastic

decisions robustly, in spite of cellular heterogeneities that
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tend to bias systematically the network’s choice behavior.

Random choice behavior after reversal requires the syn-

aptic inputs to the two decision neural pools to be

balanced, so that they are perfectly symmetrical. Such

a symmetry in principle can be achieved in a neural system

in a few ways. One possibility is through homeostatic

regulation (Turrigiano, 1999), which effectively renders

a network homogeneous in spite of cellular or synaptic

heterogeneities (Renart et al., 2003). Here we suggested

that slow synaptic plasticity provides a natural mechanism

that harnesses the feedback from the external world.

Furthermore, slow learning induces adaptive synaptic

changes that reflect the statistics of the real world. Indeed,

we showed that, across many blocks of trials, if the two

response options are rewarded with a certain relative

proportion of time, then the model’s choice probability

matches the reward probability when the fast learning

components are reset (i.e., after every mistake). In other

words, response choices that are determined by the

slow learning components are selected in a proportion

that matches the relative reinforcement obtained on these

choices, and thus the model behaves according to the so

called ‘‘matching law’’ (Herrnstein, 1997; Sugrue et al.,

2004; Corrado et al., 2006; Soltani and Wang, 2006;

Loewenstein and Seung, 2006). Matching behavior has

been typically studied using foraging-type tasks; to our

knowledge it has not been reported for conditional asso-

ciative learning and thus represents a prediction of our

model. In the experiment of Asaad et al. (1998), across trial

blocks, the reward fraction for the two possible responses

is 0.5 for a reversing stimulus and 1 (or 0) for a nonreversing

stimulus. It would be interesting in future experiments to

manipulate this reward fraction over a continuous range,

e.g., by using different lengths of trial blocks in which

the two responses are alternatively rewarded. Our model

predicts that the monkey’s performance after reversal

depends in a graded manner on the long-term reward

fraction of motor responses to a sensory stimulus, ac-

cording to the matching law. Therefore, the reward history

can be profitably used to guide the decision-making

process. If confirmed, this would constitute strong

evidence in support of the hypothesized slow learning

process.

More generally, we expect that the learning rates are not

fixed but depend on the task design. This is because tem-

poral statistics determines the relative distribution of the

different learning components and hence the effective

learning and forgetting rates. For example, in our model,

the forgetting rate is much higher for reversing stimuli

than for nonreversing stimuli, simply as a consequence

of their different reward statistics. These considerations

change dramatically the perspective of studying learning

in psychophysics and in other experiments: learning

models cannot ignore what happens on other timescales

because at any timescale we choose to study the phe-

nomenon the learning rates are affected by the statistics

on all the other timescales. Here we studied the simple

case of two learning rates. However, a continuous distri-
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bution of timescales would produce similar results and it

is probably desirable when the relevant timescales for

the task are not known a priori. An alternative explanation,

fully compatible with our model, is to assume that the

synapses might change their inherent learning rate, as in

a recently proposed cascade model (Fusi et al., 2005).

Memory performances are higher with modifiable learning

rates than with a static distribution of learning rates

because each synapse changes adaptively the rules by

which it is modified (metalearning) (Schweighofer and

Doya, 2003; Soltani et al., 2006). Moreover, the dynamic

learning rates of the cascade model give rise to power

law forgetting curves observed in many experiments

(see, e.g., Wixted and Ebbesen [1997]).

Large-Scale Circuit Basis of Flexible Sensorimotor

Mapping

In order to explore synaptic mechanisms and for the sake

of simplicity, we have chosen to consider a biophysically

realistic microcircuit model of decision making, e.g., in

prefrontal cortex. However, learning flexible sensorimotor

mapping is likely to involve a large brain network. In partic-

ular, the basal ganglia appears to play a major role, as

shown by behavioral (Murray et al., 2000), physiological

(Pasupathy and Miller, 2005), and imaging (Tanaka et al.,

2004; Boettiger et al., 2005) studies. The medial temporal

structures are also important, presumably because of

their role in long-term memory (Murray et al., 2000; Wirth

et al., 2003). This raises the question as to the respective

roles of different brain regions in conditional sensorimotor

learning. It was recently reported that in the same condi-

tional sensorimotor association task, after a reversal,

caudate cells show selectivity to the intended motor re-

sponse earlier than prefrontal cells, suggesting that basal

ganglia could be involved in the selection of the choice,

especially in the early learning phases after reversal, while

prefrontal cortex encodes the correct motor response

when the correct associations are established (Pasupathy

and Miller, 2005). Previous fMRI (Tanaka et al., 2004) and

modeling (Daw et al., 2005) studies suggest that basal

ganglia and prefrontal cortex are engaged in signaling

rewards at different (short versus long) timescales; it

remains unclear whether this view is consistent with the

electrophysiological data of Pasupathy and Miller (2005)

in conditional learning tasks.

In our model the fast components of learning are prac-

tically reset after one mistake, and the slow components

dominate the selection of the motor response. The fast

components might be responsible for the choice selection

in prefrontal cortex while the slow components might con-

trol the choice operated by the circuit in the basal ganglia.

After one mistake, the fast components of prefrontal cor-

tex might be reset and the basal ganglia might take cont-

rol and generate stereotyped responses in a specific task

(left and right responses with the probability of reward

observed over many blocks). It remains to be elucidated

in future work whether this view is compatible with the

data of Brasted and Wise (2004).
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The cortico-striatal pathway is known to exhibit synap-

tic plasticity that is strongly modulated by dopamine

signals (Reynolds et al., 2001; Reynolds and Wickens,

2002); there is also evidence that dopamine influences

long-term synaptic plasticity in prefrontal neurons (Otani

et al., 2003; Huang et al., 2004). It would be interesting

to see whether either of these synaptic pathways display

plasticity at disparate timescales. Future research on

these critical issues will help to elucidate the cellular and

circuit mechanisms of conditional associative learning.

EXPERIMENTAL PROCEDURES

Analysis of Behavioral and Neural Data

The details of the experimental protocol and the recording techniques

can be found in Asaad et al. (1998). The performance P, at any time

point in a trial sequence (e.g., kth trial after reversal, k = 1, 2,.), is es-

timated for each visual stimulus separately as the number of correct

trials over the total number of trials in which a particular stimulus is

presented. The total number of trials includes also the incorrect trials

in which the monkey does not respect the protocol (e.g., when it

breaks the fixation during the delay). The probability of correct re-

sponse P is plotted with a confidence interval of 68%, given by Meyer

(1965):

Pup;down =
Pn + 1=2 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1� PÞn + 1=4

p

n + 1
(1)

where n is the total number of trials. The performance of Figures 1B

and 4A is the performance across blocks of trials in which the associ-

ations were consistent as a function of the number of trials from rever-

sal averaged over all stimuli. The performances of Figures 4B, 4C, and

8E represent the proportion of cases in which the monkey responds

correctly following a specific sequence of correct and incorrect trials.

In particular the performance of Figure 4B is the proportion of correct

trials after a sequence of at least one error, followed by n consecutive

correct trials. Figures 4C and 8E show the performance that follows

a sequence of at least one error, n consecutive correct trials, and

then one error again. In both Figures 4B, 4C, and 8E, the sequences

are identified by considering only the trials in which a particular stimu-

lus is presented.

Decision Neural Network Model

The architecture and all the parameters of the network of 2000 inte-

grate-and-fire neurons (1600 excitatory and 400 inhibitory) are identi-

cal to the one proposed in previous work (Wang, 2002; Brunel and

Wang, 2001). Briefly, two neural pools are selective to the saccadic

directions Left and Right. Within each pool, there are strong recurrent

excitatory connections between pyramidal cells, which underlie slow

ramping activity during stimulus presentation. The two neural pools

compete with each other through shared feedback inhibition by

GABAergic interneurons (see Figure 2). Synaptic connections are

modeled as realistic AMPA, NMDA, and GABA A receptor-mediated

currents. In addition to the recurrent synaptic currents, all neurons

receive an external input of the AMPA type, at 2400 Hz (2400 presyn-

aptic neurons firing at 1 Hz). The external spikes are generated with

a Poisson statistics. During the visual stimulation, a fraction xe = 0:01

of the external inputs to the excitatory neurons, and a fraction

xi = 0:33xe of the external inputs to the inhibitory neurons is driven to

7.9 Hz for 500 ms, 100 ms after the stimulus onset to mimic the latency

of stimulus-induced neural signals observed in prefrontal cortex.

Following the stimulus, the same fraction of cells fires at 4.6 Hz until

the end of the trial. The latency to the half maximum selectivity is

defined as in Asaad et al. (1998), for both the neural experimental

data and the simulations.
Learning Dynamics

In order to modulate the external input and generate a bias for one re-

sponse, the external synapses to the excitatory decision neurons are

assumed to be plastic and with two possible synaptic conductances:

2 nS when the synapse is depressed, and 3.6 nS when it is potentiated.

Because we assume that the associations are learned independently

for each stimulus, we can focus on the synaptic inputs from a single

stimulus to the two decision neural pools. The dynamic variables

that describe the learning process are the fractions of stimulus-

specific synapses (i.e., a fraction xe of the total excitatory synapses)

in the potentiated state, denoted by cy , where y = L;R indicates the

target population (Left or Right). We dropped the index that would

denote the visual stimulus as the two stimuli will always be considered

separately. Following each stimulus presentation and a chosen re-

sponse, there is a reward if the association is correct, and no reward

otherwise. At the end of each trial, the c variables corresponding to

the presented cue are updated according to

cy/cy + q+

�
r; ny

��
1� cy

�
� q�

�
r; ny

�
cy ; (2)

where q + ðr; nyÞ is the rate of potentiation and it is a function of whether

the choice y results in a reward or not (r = R or NR) and of the activity of

the target neural population ny . ny has essentially only two values,

corresponding to the two possible decisions of the system. We denote

these values by H (=high activity) and S (=spontaneous activity). q� is

the rate of depression. Notice that all c variables are in the range [0,1].

Analysis of Learning

When the stimulus is presented, the probability of choosing one of the

two saccades (e.g., Left) has the following form:

PL =
1

1 + e�ðcL�cRÞ=s
: (3)

Figure 2 shows that this sigmoidal function with s = 0:05 actually

matches the probability of choosing left estimated by simulating the

full network of integrate-and-fire neurons.

For each pair cL; cR we can also determine the average latency to the

half maximum selectivity by simulating the full network for 100 trials.

The average is estimated only over correct trials. This latency ex-

pressed in ms is well fitted by the following function:

TðcL; cRÞ= 180 + 555e�ðcL�cRÞ=sT; (4)

where sT = 0:074 nS. This approximation is good when cR is close to 0,

which is certainly true for most of the trials of the learning process that

we intend to describe (see below).

The learning process can be described as an iterative dynamics that

gives rise to a trajectory in the space of cL and cR. For each pair cL; cR;

the probability of choosing left PL is determined by Equation 3. Given

this probability, the proportion of cases in which the simulated network

gets reward can be estimated, and then it can be used to move to the

next point of the space cL; cR by using Equation 2.

We now make a few preliminary considerations to reduce the inde-

pendent variables that describe the learning process. Many combina-

tions of cL; cR modifications are equivalent in terms of behavior. For

example, reducing the input to Right or increasing the input to Left

has the same effect on PL; which depends only on the difference be-

tween cL and cR. We assume that when a target population wins

and there is reward, q+ ðR;HÞ= qR
+ is the only independent learning

rate and q�ðR;HÞ is set arbitrarily to zero. Analogously, q�ðR;SÞ= qR
�

and q + ðR;SÞ= 0. For the no reward cases, in order to reproduce the

experimentally observed resetting to chance level performance, we

clearly need to symmetrize the inputs to the two target populations

as quickly as possible. This means that the synaptic changes must

bring both cL and cR rapidly to the same equilibrium distribution

cL;R = 1=ð1 + q�ðNR;H or SÞ=q+ ðNR;H or SÞÞ. This distribution repre-

sents a sort of a baseline, on top of which the associations are learned.

We can reproduce the experimental data with any baseline, so we set it
Neuron 54, 319–333, April 19, 2007 ª2007 Elsevier Inc. 331
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arbitrarily to zero by making the assumption q+ ðNR;H or SÞ= 0 and

q�ðNR;H or SÞ= qNR
� . Notice that the data can be reproduced also

with other updating rules. For example, if we assume that after learning

c = 1 for the correct association and c = 0 for the incorrect one (which is

what we get for our updating rule in the presence of reward), then we

can also have q�ðNR;HÞ= qNR
� and q�ðNR;SÞ= 0 for the no reward

case. This updating rule also brings about a configuration in which

the inputs to the two target populations are symmetric, and hence it

is compatible with the data. The simulations of Figure 3B are done

as follows: (1) cL and cR are initialized to 0; (2) the probability PL is com-

puted as given by Equation 3 and the latency to the half maximum se-

lectivity is computed according to Equation 4; (3) Left population is

chosen randomly to be the winner (nL = H; nR = S) with probability QL;

(4) depending on the rule in effect, reward is received or not; and (5)

the cL and cR are updated according to Equation 2. Points 2–5 are re-

peated for every trial and cL, cR, and PLare plotted as a function of the

number of trials. The simulations in Figures 6B, 7A, and 8A–8C are

done in the same way, but the whole procedure is repeated 100 times

starting from the same initial condition, every time with a different seed

for the random process of point 3. The average cL, cR, and PL are plot-

ted as a function of the number of trials from the beginning of the sim-

ulation. The average latency to half maximum selectivity is plotted as

a function of the number of correct trials from reversal in Figure 5.

The details about the mean field analysis are reported in the Supple-

mental Data.

Fast and Slow Components of Learning

The total plastic input is assumed to be made of fast (cf
L; c

f
R) and slow

(cs
L;c

s
R) components. The fast components are the ones previously in-

troduced. The slow components have the same dynamics as the fast

components (see Equation 2), but with smaller learning rates. More-

over, when the choice yields no reward, the input synapses onto the

losing neural population (with low firing rates) are potentiated with

a learning rate q+ ðNR;SÞ= rNR
+ , hence representing a type of anti-

Hebbian learning for the slow component (r denotes a learning rate

of a slow component, whereas q indicates a learning rate of a fast com-

ponent). They affect the probability of choosing Left as follows:

PL =
1

1 + e�ððpscs
L

+ pf c
f
L
Þ�ðpscs

R
+ pf c

f
R
ÞÞ=s
;

where ps and pf are the fractions of slow and fast components, respec-

tively (in the simulations, ps = 0:4, pf = 0:6). In the Supplemental Data,

we prove that slow components are balanced when the motor re-

sponses are equally rewarded for a wide range of learning parameters.

Fitting the Model to the Behavioral Data

For each set of the learning parameters qR
+;q

R
�; and qNR

� g
�

we compute

the performance of the monkey for the three curves in Figures 4A–4C.

The parameter space is explored with a Monte Carlo that minimizes the

c2 distance between the neural data and the model points. The confi-

dence intervals of the c2 are estimated as described in Equation 1. The

model would always converge to a maximal performance of 100% cor-

rect trials. However, monkeys always make mistakes, even after learn-

ing (the performance curve saturates at a level below 100%), which are

probably due to a number of possible reasons. The mechanisms re-

sponsible for these errors are not modeled here, but in order to repro-

duce the experimental data we need to take them into account. We do

it by introducing a randomly chosen fraction of trials, ferr , in which the

decision of the monkey is controlled by an unspecified mechanism. We

assume that in these trials the synapses of our network are not up-

dated. The choice probability used to compare to the monkey data

is then PL0 = PLð1� 2ferrÞ+ ferr where PL is the performance of our de-

cision-making network ðPL˛½0;1 Þ� . ferr is unknown, and it is determined

by the Monte Carlo. The parameters for the best fit are as follows:

qR
+ = 0:021, qR

� = 0:073, qNR
� = 0:96, and ferr = 0:071. With these param-

eter values, the comparison between the model and the behavioral
332 Neuron 54, 319–333, April 19, 2007 ª2007 Elsevier Inc.
data (59 data points) is shown in Figures 4A–4C, with P>0:36 in a

c2 test.

Compensation of a Bias Due to Heterogeneity

The bias b is introduced as

PL =
1

1 + e�ðbðpscs
L

+ pf c
f
L
Þ�ðpscs

R
+ pf c

f
R
ÞÞ=s

where b represents some kind of fixed heterogeneity that does not

change during learning. cs
R and cs

L can, however, compensate this

bias to produce balanced inputs to Left and Right when the two

responses are rewarded with the same probability.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/54/2/319/DC1/.
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