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Abstract. The grid cells of the dorsocaudal medial entorhinal cortex
(dMEC) in rats show higher firing rates when the position of the animal
correlates with the vertices of regular triangular tessellations covering
the environment. Strong evidence indicates that these neurons are part
of a path integration system. This raises the question, how such a sys-
tem could be implemented in the brain. Here, we present a cyclically
connected artificial neural network based on a path integration mecha-
nism, implementing grid cells on a simulated mobile agent. Our results
show that the synaptic connectivity of the network, which can be rep-
resented by a twisted torus, allows the generation of regular triangular
grids across the environment. These tessellations share same spacing and
orientation, as neighboring grid cells in the dMEC. A simple gain and
bias mechanism allows to control the spacing and the orientation of the
grids, which suggests that these different characteristics can be generated
by a unique algorithm in the brain.
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1 Introduction

Found in the dorsocaudal medial entorhinal cortex (dMEC) of rats, grid cells [1,2]
show increased firing frequency when the animal visits regularly distributed
regions in an environment. It has been shown, using auto-correlative maps,
that these regions (so-called subfields) form regular triangular tessellations, or
grids [1]. It is possible to describe these tessellations, and, thus, the characteris-
tics of a grid cell, with only a few parameters: the orientation and the phase of the
grid, and the spacing (minimal inter-subfields distance, i.e. d in this study) and
the size of its subfields. Using these parameters, it was shown that grid cells are
topographically organized in the dMEC: first, neighboring cells share common
orientation and spacing. Second, the spacing of the grid increases isometrically
along the dorsoventral axis (in [1], d varies between 39 to 73 cm). Third, the
similitude of neighboring grid cells of different layers of the entorhinal cortex,
sharing common orientations and spacing, suggests that they are organized in
cortical columns [3].
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In spite of these observations, the role of grid cells is still poorly understood.
Briefly, it has been proposed that grid cells may be part of a generalized path
integration system [1,4], and could be the basis of a metric of spatial relation-
ships [5]. Many arguments verify this hypothesis. First, the grid cell activity
and its regular patterns persist after the deprivation of external landmarks (e.g.
in the dark [1]). Second, entorhinal lesions disrupt the return path of rats [6].
Third and fourth, suggesting also hard wired mechanisms, the grid structure
is expressed instantaneously in novel environments and the spacing parameter
seems to be universal (the grid spacing remains constant when increasing the size
of the arena) [1]. Fifth, the periodicity of the grid implies a covering of arbitrary
big environments. These arguments raise thus the question, how grid cells could
be incorporated into a path integration system.

The goal of this article is to describe an artificial neural network implementing
grid cells based on a path integration mechanism. In our model, the activity of
rate coded neurons is shifted by asymmetric synaptic connections. These con-
nections are modulated by the velocity of the animal, represented by a simulated
mobile agent exploring randomly a square arena. The neurons of the network
represent a population of neighboring grid cells of the dMEC, whose grids share
thus same orientation and spacing, but have different phases. A simple gain and
bias mechanism allows the control of the spacing and the orientation of the grid
(suggesting that exactly the same algorithm may be used to generate grid cells
along the dorsoventral locations of the dMEC). The synaptic connectivity of the
network is organized cyclically, and can be represented by a twisted torus. This
topology is shown to exactly generate the same regular triangular tessellations of
space as grid cells. Stability and robust activity is ensured by attractor dynamics
and normalization mechanisms.

2 Methods

2.1 Neurons

We construct a population of N neurons organized in a matrix covering the
repetitive rectangular structure of the subfields of grid cells (Fig. 1a). In order
to conserve the ratio between the height and the side of an equilateral triangle
(which is the core element of a regular triangular tessellation) and in order to
have the same density of cells along both x- and y-axes, the number of cells in
each row is approximately 2/

√
3 times bigger than the number of cells in each

column (Fig. 1b).

Activity and Stabilization. The neurons of the network are initialized with
a random activity uniformly distributed between 0 and 1/

√
N . The activity of

a cell i at time t + 1, i.e. Ai(t + 1) is defined using a linear transfer function
Bi(t + 1) given by

Bi(t + 1) = Ai(t) +
N∑

j=1

Aj(t)wji , (1)
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Fig. 1. (a) Repetitive rectangular structure (gray filled rectangle) of the subfields (gray
circles) of grid cells defining a regular triangular tessellation of space. (b) Matrix of
a population of 10×9 grid cells. Neighboring relationships between cells on the side of
the structure are represented by gray arrows. For instance, neurons at two opposite
vertical sides are neighbors.

where N is the number of cells in the network, wji is the synaptic weight con-
necting cell j to cell i, with i, j ∈ {1, 2, ..., N}. A floating average normalization
mechanism over the cells activity ensures the stability of the network. Thus,
Ai(t + 1) is defined by

Ai(t + 1) = Bi(t + 1) + τ

(
Bi(t + 1)

< Bj(t) >N
j=1

− Bi(t + 1)

)
, (2)

where the function < . >N
j=1 is the mean over the cells of the network, and the

parameter τ determines the stabilization strength. To implement this mechanism
locally, we use an additional cell (cell N + 1, which is not a grid cell), that
computes the sum of all activities of the grid cells. Normalized by N , the activity
of this external cell < Bj(t) >N

j=1 is transferred back to the cells of the network.
In order to prevent negative cell activities, we set Ai(t + 1) = 0 when Ai(t + 1)
is smaller than zero.

2.2 Synapses

The synapses of the network can be divided into two distinct populations. The
first population is formed by the synapses which are used to compute the mean
activity of the network and to stabilize the cells activity. They connect in both
directions all the cells of the network and the external cell N +1 (Fig. 2a). Their
synaptic weights are all constant and set to 1.

The second population is formed by the synapses implementing the attractor
dynamics of the network. These synapses connect each cell i to each cell j,
with i, j ∈ {1, 2, ..., N} . As we will see, their synaptic weights are computed
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as a Gaussian function of the distance between cells (exciting neighboring and
inhibiting distal cells (Fig. 2b and 2c)). They are furthermore modulated by the
input of the network (i.e. the speed of the mobile agent), which allows to shift
the activity packet of the grid cells when the mobile agent is moving.

Fig. 2. (a) First population of synaptic weights connecting in both directions all the
cells of the network with an external cell used to compute the mean activity. (b) Ex-
ample of synaptic weights of the second population, connecting the neuron ci to all
the cells of the network (including itself). The dark gray color represents a high synap-
tic weight (e.g. the connection from ci to itself) and a light gray color a low synaptic
weight. The topology of the network implies that cj and ck are neighbors. (c) Synaptic
weights of the cell ci along an horizontal axis (represented by the dashed line in (b)).
Their intensity, shift and width are parametrized respectively by I , T and σ, defining
excitatory and inhibitory connections.

Attractor Dynamics. The synaptic patterns connecting grid cells in the net-
work are defined by a Gaussian weight function. We have

wij = I exp
(

−|| ci − cj ||2tri

σ2

)
− T , (3)

where ci = (cix , ciy ) is the position of the cell i, defined respectively by cix =
(ix − 0.5)/Nx and by ciy =

√
3

2 (iy − 0.5)/Ny (with ix ∈ {1, 2, ..., Nx} and
iy ∈ {1, 2, ..., Ny}), and where Nx and Ny are the number of columns and rows
in the cells matrix (Fig. 1) and ix and iy the column and the row numbers of
cell i. I is the intensity parameter, defining the overall strength of the synapses,
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σ regulates the size of the Gaussian and T is the shift parameter determining
excitatory and inhibitory zones (Fig. 2c). The norm || . ||tri defines the induced
metric disttri(. , .) of the network. To obtain the repetitive rectangular structure
of the grid subfields, the cells at the border of the layer have to be neighbors
of the cells at the opposite border (as an example, the two grid cells j and k
on Fig. 2a should be neighbors). This can be seen as a torus topology. However,
this is not sufficient to form a triangular grid, since a simple torus would lead,
in our model, to a rectangular tessellation of space. The regular triangular tes-
sellation is generated by twisting the torus. This is represented in the definition
of the distance disttri(. , .) or the norm || . ||tri which permits to obtain regular
triangular tessellations:

disttri(ci, cj) := || c1 − c2 ||tri =
7

min
j=1

|| c1 − c2 + sj || , (4)

where

s1 := (0, 0) , (5)

s2 := (−.5,

√
3

2
) , (6)

s3 := (−.5, −
√

3
2

) , (7)

s4 := (.5,

√
3

2
) , (8)

s5 := (.5, −
√

3
2

) , (9)

s6 := (−1, 0) , (10)
s7 := (1, 0) , (11)

and where || . || is the Euclidean norm.

Modulation. The input of the network is the speed vector v := (vx, vy), which
represents the speed of the mobile agent. This input doesn’t depend on any
absolute information about location. The maximum velocity of the mobile agent
is given by the parameter vmax such as || v || is always smaller than vmax.

It is possible to increase or decrease the size and the spacing of the subfields,
as well as changing the orientation of the grid by changing only two parameters
in the model, i.e. the gain α ∈ IR+ and bias β ∈ [0, π/3]. The input of the
network is thus modulated and biased by the gain and the bias parameters, with

v �−→ α Rβv , (12)
where Rβ is the rotation matrix of angle β defined by

Rβ =
(

cos(β) − sin(β)
sin(β) cos(β)

)
. (13)

The activity pattern is stable when the mobile agent stays immobile. However,
when the agent moves, the synaptic connections of the network shift in the
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direction of the speed vector of the robot (Fig. 3). When expressing the synaptic
weight as a function of time, we have

wij(t + 1) = I exp
(

−|| ci − cj + α Rβ v(t) ||2tri

σ2

)
− T . (14)

Fig. 3. Modulation of the synaptic connections of cell i. (a) Before modulation, the
synaptic pattern of the cell i is centered around ci. (b) After modulation, the synaptic
pattern is shifted proportionally in the direction of the speed v of the mobile agent.

2.3 Mobile Agent and Environment

The experiments are performed using a simulated Khepera robot (K-Team, Yver-
don, Switzerland), which randomly explores a square arena. When approaching
a wall, a Braitenberg control algorithm [7] is activated to avoid collisions. The
size of the square arena is 1×1 meter, such as one arena side is approximately
18 times bigger than a robot diameter (.055 meter).

2.4 Parameters

The values of the parameters used in this study are given in table 1. These values
have to satisfy two criteria. First, they have to ensure the stability of the cells of
the network. This means for instance that the cells activity should not be growing
endlessly. Second, they must induce the attractor dynamics of the network, and

Table 1. Values of the parameters used in this study

Parameter Value Unit
N = 90 [cell]
Nx = 10 [cell]
Ny = 9 [cell]
τ = 0.8 [no unit]
I = 0.3 [no unit]
σ = 0.24 [meter]
T = 0.05 [no unit]

vmax = 0.0275 [meter/time step]
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therefore a single and stable activity packet should be continuously observed in
the cell population. These criteria have to be tested over a large number of time
steps. Since no objective or cost function is given in this study, no parameter
search for optimization is computed.

3 Results

To analyze the activity of the neurons of the network, we first computed their
mean activity maps, i.e. the mean activity of a cell as a function of the position
of the mobile agent (Fig. 4). These maps show the coherent and stable activity
of the multiple grid subfields. To determine if these subfields were organized in
a regular triangular tessellation, we fitted the mean activity maps to regular
triangular tessellations composed of Gaussian subfields. We computed the mean
square residuals over all the network cells, and found the value of 0.0028 +/-
0.0004 (mean +/- standard deviation (std.)). The mean square residuals for
each cell were always smaller than 0.005. These results strongly suggest that our
model generates regular triangular tessellating subfields. Note that in order to
get coherent results for this computation, we normalized the mean activity maps
such as the maximum and the minimum intensity of these maps were respectively
1 and 0. The stability of the network was assessed by running experiments over
an extended number of time steps (repetitively stable when tested over 1 million
time steps).

Gain and Bias. An interesting feature of the network is the possibility to
vary the spacing and the orientation of the grids by just varying the gain and
bias parameters. As shown in Figs. 4 and 5, higher gain values lead to denser
grids (and therefore smaller spacing between subfields) whereas higher bias val-
ues rotate the grids. We made a regression analysis to model and determined
the relationship between the gain and the bias parameters and respectively the
spacing and the orientation of the grids. For the gain, we found y = a+ b log2(x)
with a = −0.90 and b = −0.39, with mean least square residuals of 0.00016, and
where x and y are respectively gain and grid spacing. For the bias, we found
y = a + bx with a = 0.00 and b = 1.00, with mean least square residuals of
0.00004, and where x and y are respectively bias and grid orientation.

4 Discussion

In this article, we have presented a model of grid cells based on path a integration
mechanism, embedded on a simulated mobile agent. We have shown that the
neural activity of the network generates regular triangular tessellations of the
environment, as grid cells in the dMEC. In our model, the grids cells share
same orientation and spacing, as neighboring grid cells in the dMEC, and, as
suggested in [3], as grid cells in cortical columns of the dMEC. A simple gain
and bias mechanism on the input allows to vary, respectively in a log-linear and
a linear relationship, the spacing and the orientation of the grids. Our model
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Cell 14/90

Gain 0.05 Gain 0.06 Gain 0.07 Gain 0.08 Gain 0.09

Cell 61/90

a

Bias 0.00 [rad] Bias 0.22 [rad] Bias 0.44 [rad] Bias 0.66 [rad] Bias 0.88 [rad]

Cell 25/90

Bias 0.00 [rad] Bias 0.22 [rad] Bias 0.44 [rad] Bias 0.66 [rad] Bias 0.88 [rad]

Cell 74/90

b

Fig. 4. (a) Mean activity maps of two grid cells with different gain values (here, the
bias value is set to zero). Dark regions and light regions represent respectively high and
low mean activity. These maps were computed over 50000 time steps. The discretization
of the arena correspond to 40×40 bins. (b) Mean activity maps of two grid cells with
different bias values (here, the gain value is set to 0.11).

gives thus a concrete example of a cortical circuit which can implement in a
same algorithm grid cells with different spacings and orientations. In the dMEC,
the spacing of the grid isometrically increases along the dorsoventral axis, which
could thus suggest an exponential increase of the rat velocity gain along this
axis.

Many studies present the implementation of path integration mechanisms
based on attractor dynamics [8,9,10,11]. The idea to apply these methods for
grid cells was first presented in [1] and described further in [4]. It has been
implemented first in [12], as a symmetric locally connected neural network. Here,
it is the first time that an implementation of such a system is explicitly described
and implemented on a cyclically connected map. This synaptic architecture,
which can be represented by a twisted torus, is new, and was shown in this study
to be able to generate effectively grid cells with regular triangular tessellating
subfields. The advantages of such a system is that it allows to implement in a
relatively small population of cells a representation of space covering arbitrary
big environments. Moreover, because of this particular synaptic connectivity, all
the network cells have regular triangular tessellating subfields.

Our model of grid cells may be used as the proprioceptive element of a ro-
bust, modulatory and biologically based navigational system combining idio-
thetic (internal) and allocentric (external) sensory inputs. On the first hand, one
of the classical problem of path integration mechanisms is the accumulation of
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Fig. 5. (a) Spacing of the grid as a function of the gain parameter. (b) Orientation of
the grid as a function of the bias parameter.

proprioceptive errors over time. For instance, in our model, the mean activity
maps of grid cells would collapse if we would introduce noise in the speed input.
On the other hand, one of classical problem of allocentric systems is their inabil-
ity to disambiguate between two similar inputs. For instance, realistic models of
place cells [13,14] of the hippocampus, based on visual inputs (e.g. [15]) are not
able to distinguish between two visually similar places. A combination of these
two approaches would be useful to deal with their respective weaknesses. Allo-
centric place cells (e.g. based on vision) would be used to recalibrate the activity
of the grid cells in case of path integration errors, and, in turn, the activity of
grid cells could be used to generate place cells (using simple a simple Hebbian
mechanism as proposed in [4]), able to disambiguate between two visually simi-
lar places. The location of the dMEC, upstream the hippocampus, which is, in
turn, an afferent of the entorhinal cortex, provides an anatomical basis for such
a modulatory system.
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