
A VLSI spike-driven dynamic synapse which learns
only when necessary

Srinjoy Mitra, Stefano Fusi, and Giacomo Indiveri
Institute of Neuroinformatics

University of Zurich - ETH Zurich
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Email: [srinjoy|giacomo|fusi]@ini.phys.ethz.ch

Abstract— We describe an analog VLSI circuit implementing
spike-driven synaptic plasticity, embedded in a network of
integrate-and-fire neurons. This biologically inspired synapse is
highly effective in learning to classify complex stimuli in semi-
supervised fashion. The circuits presented are designed in sub-
threshold CMOS consuming extremely low power. The pulse-
based neural network communicates with the outside world using
the Address Event Representation in an asynchronous fashion.
We present measurements from a test chip, characterizing all
the modules of the circuit and show how they match well with
theoretical expectations. We finally demonstrate that the learning
mechanism of the synapse is fully functional by stimulating it with
Poisson distributed spike trains.

I. INTRODUCTION

Recent developments in asynchronous communication in-
frastructures based on the Address-Event Representation
(AER) [1], [2] enabled researchers to build large scale pulse-
based neural networks implemented as multi-chip VLSI sys-
tems. Within this context, several multi-neuron transceiver
chips have been proposed [3]–[5]. These types of neuromor-
phic chips comprise arrays of neurons and synapses imple-
mented with analog circuits and interfaced to asynchronous
digital circuits used to deliver input pulses to the network’s
synapses, and to transmit output spikes to the AER bus. One of
the most interesting features of these multi-chip neural systems
is their ability to implement spike-driven learning algorithms.
In this paper we present a VLSI synapse that implements a re-
cently proposed model of spike-driven synaptic learning which
has been successfully used to classify complex patterns in a
semi-supervised fashion [6]. The chip that hosts the synaptic
circuits proposed here, has been designed in parallel with a
device that has both similar and complementary features [4],
in an effort to build components for constructing large-scale
multi-chip systems capable of learning and classifying com-
plex spatio-temporal sequences in real-time.

II. LEARNING RULE AND SYNAPTIC MODEL

In these types of spike-based learning systems, during
training, the activity pattern to be classified is presented to
the neuron’s plastic synapses while a teaching signal steers
the post-synaptic activity in the direction of the desired output
pattern (i.e. the pattern representing the class to which the
input belongs). The activity of each post-synaptic neuron
is composed of an input generated component and of the
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Fig. 1. Floor-plan of the multi-neuron transceiver test chip. The test chip
contains 32 neurons and 8192 synapses. Each neuron receives input currents
from 240 plastic synapses and 16 non-plastic synapses.

teacher’s signal component. When both components agree,
the output neuron is driven either to its maximum or to its
minimum activity. These two firing regimes are interpreted
as an indication that the neuron would classify correctly the
pattern even in the absence of the teacher signal and that the
synapses should not be modified any further. The importance
of this stop-learning criterion is at least double: 1) it allows
to classify highly correlated patterns [7], and 2) it can greatly
reduce the average number of synaptic modifications during
the learning phase. The second point is particularly important
for bistable synapses (such as the one we propose), as they can
preserve memory of only the last synaptic modifications [8].

In order to guarantee convergence of this learning pro-
cess, the stop-learning condition must be complemented by
a mechanism which consolidates the synaptic modification
on long time scales in a randomly chosen small fraction of
synapses [7]. We implement this mechanism by using Poisson
distributed spike-trains as input signals. Upon the arrival of a
pre-synaptic spike, the synapse reads the post-synaptic mem-
brane potential and the synaptic weight is updated (the weight
goes up/down when the post-synaptic membrane potential
is high/low). During the intervals between two pre-synaptic
spikes the synaptic weight is slowly driven toward the closest
of two stable states corresponding to the minimal and the
maximal values of the synaptic efficacy. Long term potenti-
ation occurs when both the pre- and the post-synaptic mean
firing rates are high enough to drive the synaptic weight in the
band where it is attracted toward the high stable state. This
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Fig. 2. Schematic diagram of the plastic synapse circuit.

occurs with a certain probability because the intervals between
successive pre-synaptic spikes are random [8]. Analogously,
long term depression occurs probabilistically when the pre-
synaptic neuron has elevated firing rate and the post-synaptic
neuron has low activity. Reading the post-synaptic membrane
potential allows to encode the mean firing rates and at the same
time, preserves the fluctuations due to the stochasticity of the
intervals between pre-synaptic spikes. Moreover it allows to
make the synapse sensitive to higher order statistics of the pre
and post-synaptic activity (e.g. variability of the inter-spike
interval, synchronization, and exact temporal relation between
pre and post-synaptic spikes). However, as this mechanism
alone cannot encode mean frequencies on a wide range, to
stop learning when the post-synaptic frequency is too high or
too low, we introduced an extra element that integrates spikes
on a longer time scales.

III. CIRCUIT DESCRIPTION

The test chip comprising the circuits described in this paper
was fabricated using a standard 0.35µm CMOS technology,
and occupies an area of 122mm. It implements an array of 32
neurons and 8192 synapses (see Fig.1). Thanks to the AER
communication protocol, neural networks of arbitrary topology
can be implemented by simply re-routing output spikes to
input synapses of the same chip, or of other AER multi-neuron
chips.

Each neuron in the array is connected to 256 synaptic
circuits. There are 240 excitatory plastic synapses and 16 non-
plastic ones, 8 of which are excitatory and 8 inhibitory. The
weights of the non-plastic synapses are constant and can be set
via external voltage references. All synapses can be addressed
individually through the AER communication protocol. This
transceiver chip can receive AER spikes via the X and Y
decoders (see Fig.1) and it can transmit the activity of the
neurons to the outside world asynchronously using an an
arbitrated communication scheme.

The circuits implementing the integrate-and-fire neuron (la-
beled “soma” in Fig.1) have been described in [5]. Here we
focus on the plastic synapses and stop-learning module.

A. The Plastic Synapse

The schematic diagram of this circuit is shown in Fig.2.
The synapse is composed of four main blocks: a current-
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Fig. 3. Block diagram of the stop learning module. Two dual threshold
comparator circuits P and D enable weight updates based on the integrator
(bottom left) output VCa, and on the result of the comparison between Vmem
and Vmth.

mirror integrator (CMI), the NMDA comparator, the weight
update part, and the bi-stability circuit. The input signal is
represented by Vpre, which produces an active high pulse when
a pre-synaptic spike arrives. The width of the Vpre pulse can
be controlled by a pulse extender circuit (not shown) that
decouples the fast AER spikes from the analog synaptic circuit.

Each time a Vpre pulse is generated, the CMI subtracts a set
amount of charge, set by Vw, onto Csyn to produce an excitatory
post-synaptic current Isyn with biologically plausible dynamics.
A detailed analysis of this circuit has been recently presented
in [9]. The ’NMDA’ part of the synapse gates the charge that is
subtracted from Csyn by comparing the post-synaptic neuron’s
membrane potential Vmem to a fixed threshold Vnmda. This
circuit models the functionality of voltage-dependent NMDA
receptors in real synapses [10].

The ’weight update’ part receives signals from both pre
and post-synaptic neurons and updates the weight on each
pre-synaptic spike. If the Vpot signal is low during a pre-
synaptic spike (i.e when /Vpre is low), the node Vw receives a
charge packet whose magnitude depends on the bias Vup and
its potential increases accordingly. Similarly, if Vdep is high
during a pre-synaptic spike, the weight Vw decreases. In the
condition in which Vpot is high and Vdep is low, the weight
is not modified, irrespective of the state of the pre-synaptic
pulse.

The bi-stability circuit continuously and actively drives the
weight Vw toward the stable state Vhigh or Vlow, depending
whether Vw ≷ Vwth, at a rate set by Vs. The constant bias Vwth

represents the synaptic state transition threshold. The slew rate
of the bi-stability amplifier is typically set to be very low, such
that the drive toward one of the two stable states is slow. The
capacitance in the testability circuit has to be approximately
100fF. As the voltage Vw is always close to ground, we used
a p-type MOSCAP to implement the capacitor. The total area
occupied by the synapse (including the capacitor) is 6302µm.

B. Stop Learning Module

The stop learning module is composed of a standard com-
parator, a linear integrator, and two low-power dual threshold
comparators [11] (see Fig.3).

The amplifier in the left top corner of Fig.3 compares the
neuron’s membrane potential Vmem to the threshold Vmth and
produces a digital signal Vcmp used to enable or disable the
comparators P and D in the right part of the figure. The
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Fig. 4. Response of the neuron to both constant current injection and synaptic
stimulation for different values of Vw. Synaptic stimulation occurs between
0.5s and 1.5s

linear integrator, in the bottom left corner of Fig.3, integrates
the spikes from the neuron to generate the voltage VCa,
functionally equivalent to the calcium concentration in real
neurons. The integrated signal VCa is harnessed to stop learning
when the neuron responds correctly (i.e. when it fires at either
very high, or very low rates). When the teacher signal and
the current generated by the synaptic input disagree, the post-
synaptic neuron fire at intermediate frequencies, far from the
minimum and the maximum. In this condition VCa fluctuates
in an intermediate range, indicating that learning should occur.
Specifically, the dual threshold comparators P and D compare
the signal VCa to two threshold signals for defining when the
synapse should be allowed to increase its weight (comparator
P), or when it should be allowed to decrease it (comparator
D). If Vk1 < VCa < Vk3 and P is on, the signal Vpot switches
to its active low state and enables a positive weight update
of amplitude set by Vup (see Fig.2). If Vk1 < VCa < Vk2 and
D is on, Vdep switches to its active high state and enables a
negative weight update of amplitude set by Vdn.

Functionally, enabling positive or negative updates of synap-
tic weight depending on the state of the post-synaptic neuron’s
membrane potential is compatible with spike time dependent
plasticity (STDP) [8], [12].

IV. RESULTS

We characterized the different components of the plastic
synapse and stop-learning modules both as isolated circuits
and as full functional blocks. The data of Fig.4 shows the
membrane potential of the post-synaptic neuron in response
to a constant current superimposed to synaptic stimulation.
When the neuron receives only constant current input (from
0s to 0.5s, and from 1.5s on), it integrates, reaches the spiking
threshold, generates a spike (and an AER event) and is reset.
The integration is not perfectly linear due to the fact that
the circuit implements a leaky integrate-and-fire neuron with
spike-frequency adaptation properties [5]. During synaptic
stimulation (from 0.5s to 1.5s in Fig.4) the soma receives an
additional excitatory post-synaptic current (EPSC), as long as
Vmem is above the NMDA threshold, and the neuron’s firing
rate increases with increasing synaptic weight values Vw.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Time(s)

v w
(V

)

V
s
=70mV

V
s
=90mV

V
s
=110mV

Fig. 5. Synaptic weight dynamics, below and above the transition threshold
for different bi-stability slope settings. As long as the weight voltage lies
below the transition threshold (900mV in this experiment), the bi-stability
circuit drives Vw toward its low asymptote. As soon as the weight crosses the
transition threshold, the bistable circuit drives Vw to the high stable state.
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Fig. 6. State of the Vdep signal (solid line) as a function of the integrated
post-synaptic spiking activity VCa (dashed line). When VCa is within the right
range the Vdep signal switches between low and high values, depending on
the sign of (Vmem −Vmth).

To characterize the bi-stability and weight update parts of
the plastic synapse circuit, we set the signals Vpot and Vdep

to constant values. When both Vpot and Vdep are set low, the
weight-update part of the synapse increases the signal Vw with
every pre-synaptic spike. In Fig.5 we show the evolution of Vw

in response to a series of pre-synaptic spikes, and as a function
of different slew rates of the bi-stability circuit: as long as Vw

is below the synaptic state transition threshold Vwth, the bi-
stability circuit drives Vw back toward Vlow, but as soon as
Vw crosses Vwth the synaptic weight Vw is quickly brought to
the Vhigh stable state, given that both bi-stability and weight-
update circuits act in the same direction. In the bottom trace
of Fig.5 the slew rate is high enough to keep Vw below the
threshold.

In Fig.6 we plot data showing the time evolution of VCa

and of Vdep, as the mean firing rate of the post-synaptic
neuron decreases. When VCa falls within the right region (here
approximately between 0.2V and 1.1V), Vdep starts switching
between its low and high states, depending on the outcome of
the comparison between Vmem and Vmth. The behavior of the
Vpot signal is functionally equivalent, and hence not shown.

The up and down jump probabilities of Vw as well as its
transition probability depend on higher order statistics of the
pre and post-synaptic neuron frequency. In Fig.7, we show the
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Fig. 7. Post-synaptic membrane potential (top trace), synaptic weight (middle trace), and pre-synaptic spikes (bottom trace). Despite the fact that both pre-
and post-synaptic neurons have same mean firing rates (in the left and right panels), the weight undergoes no transitions (left case) or one transition (right
case), depending on the precise timing of the pre- and post-synaptic spikes.

results of a learning experiment where we tried to induce long-
term potentiation on the plastic synapse. The top trace of the
figure shows the post-synaptic neuron’s membrane potential
and the bottom trace shows the input pre-synaptic spikes. To
set the mean firing rate of the post-synaptic neuron to a specific
value (in order to bring VCa in the right regime) we stimulated
its non-plastic AER synapses with an artificial Poisson spike
train input. Even though both the experiments (a) and (b)
have equal mean pre-synaptic frequency and nearly equal
post-synaptic frequency, two completely different temporal
dynamics of Vw (middle trace) can be observed. The jumps
may or may not consolidate into a transition (middle trace
of Fig.7(b) and (a) respectively) depending on the specific
realization of the stochastic pre- and post-synaptic activity. The
transition probability increases with the degree of synchrony
of the pre and post-synaptic activity. At parity of mean firing
rates, the synaptic modification is consolidated only in a small
fraction of cases, which depends on the second and higher
order statistics of the pattern of activities [8].

V. CONCLUSION

We proposed a VLSI implementation of a spike based learn-
ing algorithm, mapped onto an AER network of integrate-and-
fire neurons. We presented experimental results characterizing
both the individual components and the full functional aspect
of the synaptic learning mechanism. The algorithm that our
implementation is based upon has successfully been used to
classify complex patterns [6]. Our results confirm that the
silicon model of synaptic plasticity is functionally equivalent
to the original algorithmic one. Therefore we plan to test spike-
driven learning at the network level and apply the chip to real-
world classification problems.
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