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Abstract Recent experiments on behaving monkeys have
shown that learning a visual categorization task makes the
neurons in infero-temporal cortex (ITC) more selective to
the task-relevant features of the stimuli (Sigala and Logothe-
tis in Nature 415:318–320, 2002). We hypothesize that such a
selectivity modulation emerges from the interaction between
ITC and other cortical area, presumably the prefrontal cor-
tex (PFC), where the previously learned stimulus categories
are encoded. We propose a biologically inspired model of
excitatory and inhibitory spiking neurons with plastic syn-
apses, modified according to a reward based Hebbian learning
rule, to explain the experimental results and test the validity
of our hypothesis. We assume that the ITC neurons, receiv-
ing feature selective inputs, form stronger connections with
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the category specific neurons to which they are consistently
associated in rewarded trials. After learning, the top-down
influence of PFC neurons enhances the selectivity of the ITC
neurons encoding the behaviorally relevant features of the
stimuli, as observed in the experiments. We conclude that
the perceptual representation in visual areas like ITC can be
strongly affected by the interaction with other areas which
are devoted to higher cognitive functions.

1 Introduction

Perceptual learning represents an important cognitive process
that involves structural and functional modifications of the
brain following sensorial experience, which leads to improve-
ments in performance with training or practice (Goldstone
1998). Different studies show that neurons from higher stages
of visual processing become tuned to some particular patterns
of the input. These changes in the response properties of cor-
tical neurons, that are supposed to be mediated by higher
cognitive top-down inputs and attention, are associated with
perceptual learning (Fine and Jacobs 2002).

Infero-temporal Cortex (ITC) and pre-frontal cortex (PFC)
are two interconnected cortical areas thought to be involved
in visual tasks, such as visual recognition, categorization and
memory, although the contribution of each of these two areas
for visual processing is not fully understood. In this context,
recent studies have suggested that PFC is mainly associated
with cognitive processing (such as categorization), while ITC
is more associated with feature processing, (Freedman et al.
2003). In a recently performed neurophysiological experi-
ment on behaving monkeys, Sigala and Logothetis have stud-
ied how the representation of visual stimuli in ITC is affected
by their behavioral relevance, measuring the activity level of
single infero-temporal cortical neurons during a visual cat-
egorization task (Sigala and Logothetis 2002). Their results
show an enhancement in neuronal tuning for the values of the
diagnostic features (Fig. 1b, top panel) as compared to the
responses to the non-diagnostic features (Fig. 1b, lower panel).
Further studies suggest that top-down signals from PFC could
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partially determine ITC neuronal responses (Freedman et al.
2003; Tomita et al. 1999).

Taking into account all these findings on perceptual learn-
ing, higher visual processing and the tuning of ITC neu-
rons after learning a visual categorization task (as reported
by Sigala and Logothetis 2002), we hypothesize that the
enhancement of selectivity to the diagnostic features in ITC
(see Fig. 1b) might emerge, in the behavioral context, through
a higher level cognitive feedback originating from category
encoding neurons, possibly residing in the PFC.

In order to test our hypothesis and account for the experi-
mental results, we propose a neurodynamical computational
model in the framework of biased competition and coopera-
tion. By biased competition we assume that multiple
activated populations of neurons engage in competitive inter-
actions that are biased by external interactions in favor of
specific groups of neurons highlighting the attended or task-
relevant stimuli or stimulus-features. Neurodynamical mod-
els developed within the conceptual framework of the
Biased Competition Hypothesis (Moran and Desimone 1985;
Chelazzi et al. 1993; Desimone and Duncan 1995; Chelazzi
1998; Reynolds and Desimone 1999) have been proved to
successfully account for different aspects of visual attention
(Rolls and Deco 2002; Corchs et al. 2003) and working mem-
ory context dependent tasks (Deco and Rolls 2003; Deco
et al. 2004). Cooperation, on the other hand, promotes the
co-activation of neuronal populations that represent stimuli
or features associated with each other (Szabo et al. 2004;
Almeida et al. 2004). For these models, competition is imple-
mented through weak excitatory lateral connectivity and is
mediated through the global inhibitory signal and coopera-
tion is implemented through stronger than average excitatory
lateral interactions.

The proposed biologically inspired two-layer model of
excitatory and inhibitory spiking neurons simulates two small
interconnected areas in the brain comprizing the visual
responsive units from ITC and the category encoding units
from PFC. Preliminary work (Szabo et al. 2005) explored
network’s behavior using the simple meanfield formulation
and showed that the two-layer architecture can account for
the referred tuning effect for a specific structure of the in-
terlayer connectivity. For an already trained network, the
connections between the ITC neurons and PFC category
encoding neurons are structured in such a way that the bot-
tom up input from the populations in ITC coding for relevant
features activates the corresponding category neurons. Once
active, these neurons, by top-down influence, bias the activ-
ity of the ITC neurons so that their representation becomes
tuned for the behaviorally relevant features. In this work, the
model is extended to include a learning scenario that reli-
ably produces the correct associations. The network learns
to attend: learning to categorize correctly enhances the rep-
resentation of behaviorally relevant information in the sense
that during learning, the model gradually ‘attends’ only to
the relevant features which in turn improves the performance
of categorizing correctly. The attentional signals that modu-
late the ITC representations are thus given by the top-down
information coming from PFC.

The network is trained using a reward-based Hebbian
learning algorithm which is compatible with a learning pre-
scription that quantitatively reproduces the behavior of the
recorded cortical activity of monkeys trained to learn
visuo-motor associations in a continuously changing envi-
ronment (Asaad et al. 1998; Fusi et al. 2005). We show that
the adopted learning prescription robustly converges to a sta-
ble fixed point of the learning dynamics where the tuning
effect is correctly reproduced.

2 Methods

2.1 The network model

We use a recurrent network of excitatory and inhibitory neu-
rons that was introduced in earlier works (for example see
Amit and Brunel 1997a; Brunel and Wang 2001), and that
has been extended and successfully applied to explain sev-
eral experimental paradigms (Szabo et al. 2004; Deco and
Rolls 2003; Deco et al. 2004). We assume that a proper level
of description at the neuronal level is captured by the spiking
and synaptic currents dynamics of one-compartment inte-
grate-and-fire neuron models. The details of the mathemat-
ical formulation are summarized in previous works (Brunel
and Wang 2001; Szabo et al. 2004), and are provided in the
supplementary material for the convenience of the reader.
Following the results of Freedman et al. (2003) we struc-
tured the model as a two layer network: first layer modeling
a small part of ITC where visual features are represented and
the other modeling a small PFC region where according to
their results, the categories should be represented. The ITC
model layer, consisting of 1,000 spiking neurons, receives
external information about the presented stimulus features
and interacts with the PFC model layer, consisting of 650
spiking neurons, where the learned categories are encoded.
The parameters for each layer are chosen the same as the
ones opted for in previous works (Brunel and Wang 2001).

Both layers are organized into a discrete non-overlapping
set of populations, as depicted in Fig. 2. Populations are de-
fined as groups of excitatory or inhibitory neurons sharing the
same inputs and connectivities. The specific populations have
a specific function in the present task. In addition there are
one ‘Non-specific’ population which groups all other excit-
atory neurons in the modeled brain area not involved in the
present tasks and one ‘Inhibitory’ population grouping the
local inhibitory neurons in the modeled brain area. The lat-
ter population regulates the overall activity and implements
competition in the network by spreading a global inhibition
signal.

In the Sigala and Logothetis experiment, the monkeys
learned to categorize a set of images (schematic face and
fish stimuli) into two categories, each associated with one
lever (the left lever or the right lever) that the monkeys had
to pull when the corresponding stimulus was presented. The
stimuli were characterized by several features, each varying
in a discrete small set of values as shown in Fig. 1a. Only
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Fig. 1 a Stimuli and stimulus space for the visual categorization task (Sigala and Logothetis 2002). The stimuli have four varying features: ‘Eye
height’, ‘Eye separation’, ‘Nose length’ and ‘Mouth height’, and can be linearly separated in two categories along two of the four dimensions:
‘Eye height’ and ‘Eye separation’. b Experimental results adapted from Sigala and Logothetis (2002). Shown are the average spiking rates of
all recorded ITC visually responsive neurons (a total of 96 units). For each neuron, the responses were sorted by the presented stimulus feature
values and averaged over many trials. The resulting average activity levels reflect the feature values which excite a given neuron most and least,
respectively. The population average activation trace was calculated by grouping these average activity levels according to their best (black lines)
and worst (gray lines) responses to the levels of diagnostic feature ‘Eye height’ (top panel) and non-diagnostic feature ‘Nose length’ (bottom
panel)

Fig. 2 Schematic representation of the two-layer model architecture.
The weights between the two layer’s specific populations (dashed lines)
are modified during learning. For further details see text

two of the features, referred to as diagnostic, were informa-
tive for solving the categorization task. The two categories
could be linearly separated along the two diagnostic features
in the stimulus space, as depicted in Fig. 1a. The other two
features, referred to as non-diagnostic, gave no information

about the stimulus associated category and were irrelevant for
the task. In our minimal model, we assume that the presented
stimuli are characterized by only two features, ‘Eye height’
and ‘Nose length’, each with two discrete values, and that the
two categories are determined exclusively only by one fea-
ture: the diagnostic feature ‘Eye height’. Thus there are four
specific populations in the ITC layer, denoted according to
the specific input that they receive: one population receives
input when the stimulus is characterized by the ‘Eye height’
feature being in the first state (‘high eyes’ population, or D1),
one when the ‘Eye height’ feature is in the second state (‘low
eyes’ population, or D2), one when the ‘Nose length’ feature
is in the first state (‘long nose’ population, or O1) and one
when the ‘Nose length’ feature is in the second state (‘short
nose’ population, or O2). They encode the same type of stim-
ulus and are differentiated only by their specific preferences
to the stimuli feature values.

The neural activity of the PFC model layer is designed
to reflect the category to which the presented stimulus cor-
responds. Thus, the specific populations in this layer encode
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the two learned categories associated in the behavioral task
with the motor actions of pulling one of the two levers: left
lever (‘Left’ population, or C1) and right lever (‘Right’ pop-
ulation, or C2). Each category is defined through the set of
stimuli associated with one required action. The stimuli with
the diagnostic feature in the first state, ‘high eyes’, belong to
category 1 and the ones with diagnostic feature in the second
state, ‘low eyes’, belong to category 2, irrespective of the
value of the non-diagnostic feature ‘Nose length’.

Each individual population is affected by a spontaneous
background excitatory input from outside the module along
with the recurrent activity inside the module. The neurons in
the four specific populations from the ITC layer additionally
receive external inputs encoding stimulus specific informa-
tion. They are assumed to originate from lower areas which
process the visual scene such as to provide these signals. We
assume that along the visual pathway, all the perceived stim-
ulus features are processed and encoded in the same way, so
that the ‘bottom-up’ signals coming to the ITC layer encod-
ing the presented stimulus feature values on average have
the same strength. When stimulating an ITC population, the
rate of the background external input to the neurons of this
population is increased by a fixed value of 150 Hz.

We modulate the conductance values for the synapses
between pairs of neurons by connection weights, which can
deviate from their default value 1. The structure and func-
tion of the network is achieved by differentially modulating
these weights within and between populations of neurons.
The labeling of the weights is defined in Fig. 2. Structurally,
the network is fully connected within layers by excitatory
and inhibitory synapses. Between the two layers, only the
specific neurons are fully connected by excitatory synapses.

In our approach we assume, for simplicity, that the intra-
layer connections are already formed, e.g., by earlier self
organization mechanisms, thus we fix their strengths as fol-
lows. Cooperation is implemented in the ITC model layer
by setting all interconnecting and recurrent weights for the
specific neurons equal to the default value w1=1. This might
arise from possible correlations between these neurons, which
are all responsive to face stimuli. Second, we assume that the
two categories associated to the two actions ‘pull right lever’
and ‘pull left lever’, are already encoded in the PFC model
layer, in the sense that the monkey is already trained that pull-
ing one or the other lever, but not both, might bring him some
reward. The populations encoding for these two categories
are likely to have anti-correlated activity in this behavioral
context, resulting in weaker than average connections be-
tween them, denoting competition in this layer. We choose
the extreme case w−2=0 where there is no direct excitatory
connection between the two category populations in the ITC.
Within one category population, we set all connections to
the default value w+2=1. The weights from and to the non-
specific neurons were computed such that the average of all
excitatory connection weights to each specific neuron is 1
(see Brunel and Wang 2001), resulting in the value wn=0.93
for both layers. All the connections from and to the inhibi-
tory populations as well as the recurrent connections for the

non-specific and inhibitory populations in both layers are set
to the default value w=1.

The connections between the ITC and PFC are modeled as
plastic synapses. Their absolute strengths, which we choose
as free parameters, are learned using the reward-based Heb-
bian learning algorithm presented in the next section.

We will characterize network’s different modes of opera-
tion corresponding to different parameter regimes by explor-
ing the connecting weights between the two layers. Although
explicit simulations of the network dynamics accurately cap-
ture the temporal dynamics and any order of the spike sta-
tistics, they are computationally expensive and not easy to
use for systematic parameter explorations. Therefore we use
mean-field models, which represent a well-established means
for efficiently analyzing the approximate network behavior
(Amit and Brunel 1997b; Stetter 2002; Del Giudice et al.
2003), at least for the stationary conditions (i.e., after the
dynamical transients), in order to systematically explore
parameter regimes of qualitatively different network response.
For this, we use a recent derivation by Brunel and Wang
(Brunel and Wang 2001), which is consistent with the type of
conductance-based neuron networks we simulate (also pro-
vided in the supplementary material).

2.2 Learning mechanism

Our goal for the learning procedure is to enable the network
capability of associating a set of stimuli, characterized by
different combinations of the feature values, with a certain
category, in a biologically plausible manner. The relevance
to behavior of different features of the presented stimuli is
determined through the consequences – receiving reward or
not – of the selected action. The monkey learns to associate
specific values of the diagnostic features with the correspond-
ing category by evaluating the received reward. To model
this learning strategy, we construct a reward-based Hebbian
learning prescription that modifies, after each trial, the syn-
aptic efficacies between the ITC and PFC layers according
to the resulting network activities and reward signal using a
simple regulatory mechanism. We show in the result section
that this learning prescription robustly modifies the network
free parameters to reach a configuration where the desired
association is correctly performed.

On the network level, assuming that the monkey learns
to categorize correctly using a trial-and-error strategy, the
reward based model of learning, as in reinforcement learning
models (Sutton and Barto 1998), is the biologically plausible
choice from the well established learning strategies in the
artificial neural networks field.

On the single synapse level, we consider a biologically
inspired Hebbian learning scheme, as described in Fig. 3.
Follwing reward, a synapse is potentiated if the presynaptic
and post-synaptic neurons are simultaneously active;
depressed if the presynaptic neuron is active but the post-syn-
aptic neuron is inactive; and not modified otherwise. After
non-reward, the synapse is depressed if both the presynaptic
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Fig. 3 Modified Hebbian learning scheme applied for reward (a) and
non-reward (b) cases. The filled blobs represent ‘active’ neurons and the
empty blobs represent ‘inactive’ neurons. The potentiated synapses are
represented by bold lines and the depressed synapses by dotted lines.
The connections that are not marked are the ones not modified

and post-synaptic neurons are simultaneously active and not
modified otherwise.

We describe the learning dynamics through a “synap-
tic mean field” approximation, which captures, for computa-
tional convenience, the average synaptic dynamics between
two given populations. For the hidden single-synapse dynam-
ics, each synapse is binary (one ‘potentiated’ and one
‘depressed’ state) and undergoes stochastic transitions be-
tween the two available states depending on the pre- and
post-synaptic neural activity (Fusi et al. 2000; Fusi 2002;
Amit and Fusi 1994). At the mean-field level adopted here,
all the synapses connecting neurons belonging to the same
pair of pre- and post-synaptic populations are forced to have
the same weight; the latter is updated by first computing the
fraction of synapses that would get potentiated or depressed
on the basis of the estimated firing rate distributions, as de-
tailed in the next section; then computing the resulting aver-
age weight and, finally, assigning that value as the common
new weight for all the synapses of the group, after additional
normalization. In order for this to be a good description of
what would result from the detailed synaptic dynamics, the
non-trivial distribution of firing rates inside each neural pop-
ulation plays an important role; this is one reason why we
deemed important to keep the detailed spiking dynamics of
neurons in the face of the more abstract description of learn-
ing.

During learning, the network configuration changes with
the modification of the interlayer synaptic weights from an
initial, chosen configuration to a final, learned, configuration.
The stimuli are presented to the network in a random order.
We first reset all network internal variables and then simulate
the spike dynamics for 500 ms of spontaneous activity fol-
lowed by 800 ms under specific input encoding the presented
stimulus. The simulation uses the present network configu-
ration, given by the synaptic weight variables. For the period
of time when the stimulus is presented to the network, the
first 300 ms are regarded as transient time, and only the last
500 ms are used to acquire the time-averaged spiking rates of
each simulated neuron. These are used to calculate the pop-
ulation firing distributions, the reward variable and finally
the synaptic modifications as presented in more detail in the
following subsection. The simulation runs until convergence
to a stable configuration is reached.

For the typical average firing rates in our simulations,
the 500 ms time window used to estimate single neuron rates
implies non-negligible fluctuations in the estimated values.
As a consequence, despite the full synaptic connectivity and
the common value of the synaptic efficacies for each synap-
tic population, a wide distribution of estimated firing rates
in each neuron population arises for the trial. This brings
non-trivial consequences in the mean-field learning dynam-
ics, in that superimposing tails of the rate distributions for
different pairs of populations can induce unwanted potentia-
tions or depressions, thereby pushing the learning trajectory
to wrong directions. We decided to keep this feature to show
the robustness of the model to the finite-size effects of vari-
ous kinds that would affect the dynamics in a less constrained
and more realistic setting.

2.3 Implementation of the learning algorithm

We first calculate the fraction of active neurons, na
i in each

population i , by comparing the previously computed time-
averaged spiking rate of each neuron inside this population
with a chosen threshold: above 8 Hz for the ITC model layer
and 14 Hz for the PFC model layer a neuron is considered
to be active. When the population encoding the correct cate-
gory has more than half neurons active and also there are more
than twice neurons active in this population than in the other
category population, the trial is assigned a reward, otherwise
no reward is given. Next, for each ITC–PFC pair of spe-
cific populations, the fraction of synapses to be potentiated,
N p, and to be depressed, N d, as the result of this stimulus
presentation are evaluated.

Consider a presynaptic population with npre neurons and
na

pre active neurons and a post-synaptic population with n post

neurons and na
post active neurons. In case of reward, all

synapses between pairs of active neurons are potentiated and
all synapses from an active neuron to an inactive neuron are
depressed (as described in Fig. 3a). Thus the fraction of syn-
apses to be potentiated and depressed in the reward case are
given by:

N p
pre−post = na

pre · na
post

npre · npost
. (1)

N d
pre−post = na

pre · (npost − na
post)

npre · npost
. (2)

In case of non-reward, all synapses between pairs of ac-
tive neurons are depressed and there are no synapses poten-
tiated (as described in Fig. 3b), thus we have:

N p
pre−post = 0. (3)

N d
pre−post = na

pre · na
post

npre · npost
. (4)

For the adopted mean-field approximation, the corre-
sponding learning scheme is designed to use information
from the firing distributions of the populations, embodied
in the N p and N d variables. Considering the variable Ci j
as being the fraction of potentiated synapses from a specific
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population i in one layer to a specific population j in the
other layer, we update its value after each trial as follows:

Ci j (t + 1) = Ci j (t) + (1 − Ci j (t))N p
i j q+

−Ci j (t)N d
i j q−, (5)

where i and j generally denote the pre- and post-synap-
tic population, respectively, for both feed-forward and feed-
back synaptic connections, thus (i; j) or ( j; i) ∈ ({D1, D2,
O1, O2}, {C1, C2}); q+ and q− are the transition probabili-
ties for potentiation and depression, respectively; [1−Ci j (t)]
and Ci j (t) are the fractions of depressed and potentiated syn-
apses, respectively; and t is the trial number. The same Eq. (5)
applies both in the reward and non-reward case but different
learning rates can be used. Throughout this work, we used
the values qreward+ =qreward− =0.01 and qnon−reward− =0.05. We
chose the learning rate in the non-reward case to be greater
than the learning rate in the reward case. The difference is
mostly motivated by previous experimental studies on the
learning and forgetting rates of a monkey performing a vi-
suo-motor task (Asaad et al. 1998; Fusi et al. 2005). In these
studies, non rewarded trials led to a quick reset of the pre-
viously memorized associations, and learning the new ones
required 20–30 trials. In order to reproduce this behavior the
modifications in the case of no reward had to be significantly
larger than in the case of reward.

The modified average synaptic weight between the ITC
and PFC layers, can then be determined for each pair (i j)
ITC–PFC of specific populations:

wi j = w+Ci j + w−(1 − Ci j ), (6)

where w+ and w− are the values corresponding to the con-
nection strength between two populations when all synapses
are potentiated or depressed, respectively. Different values
can be used for the feed-forward and feedback connections
in the network.

As remarked above, the wide firing rates distributions
can provoke unwanted drifts in the learning history of some
synaptic populations. One of the most dangerous among such
effects, is that the non-diagnostic weights, which should fluc-
tuate around their initial value in the ideal case, start to
increase and spoil the learning process. Such cases might
occur, in particular, when coherent effects on non-diagnos-
tic, weights accumulate, as it happens for unusual sequences
of stimuli belonging to the same category. Several regulatory
mechanisms might, in principle, help to keep under control,
the effects of fluctuations in the synaptic dynamics (Miller
1994; Stetter et al. 1994, 1998). The solution we adopt here,
is to keep the sum of the synaptic weights to each neuron
constant.

We therefore apply a subtractive normalization of the total
afferent synaptic connectivity – calculated over all presynap-
tic inputs coming to each given post-synaptic neuron (Miller
1994). We normalize the average synaptic weight for all
connections between the pre-synaptic population i and post-
synaptic population j as follows:

wnorm
i j (t) = wi j (t)

− 1

N

(
N∑

k=1

wk j (t) −
N∑

k=1

wk j (t − 1)

)
, (7)

where N is the number of pre-synaptic populations connected
to the post-synaptic population j . We recompute the values
for the Ci j variables based on the new wi j values after nor-
malization in order to keep valid the equality in Eq. (7). For
the next stimulus presentation during the learning process,
the synapses between each two ITC–PFC populations are set
to the calculated average value wi j .

In the next section, we report our choice of parameters and
the simulation results for the network and learning dynamics.

2.4 Parameter choices

To ensure network’s stability for all points in the learning
process, we have to choose the connection weights between
the two layers as being not too small so that there is infor-
mation exchange between the two modeled areas and not too
high so that the network does not evolve into an amplification
regime where neurons lose their selectivity. Also the biolog-
ical constraint of achieving realistic neuronal activities for
the modeled neurons needs to be considered (see Szabo et al.
2005).

In the simulations presented here, and for the feed-for-
ward synapses connecting two populations from ITC to PFC,
we choose the values wff+=0.8 and wff−=0 for the strengths
in the potentiated and depressed states, respectively. For the
synapses in the feedback direction we choose the correspond-
ing strengths wfb+=0.4 and wfb−=0. The feed-forward con-
nections are chosen double in strength on average than the
feedback connections. The above choice is inspired by the
idea that between cortical areas, feed-forward projections
have a strong driving role, while feedback projections have
a weaker modulatory role.

We start learning from an unbiased initial network config-
uration, by choosing all connections between the two model
layers equal to the average synaptic strength: wff

i j=(wff+ +
wff−)/2 = 0.4 and wfb

j i = (w
f b
+ + w

f b
− )/2 = 0.2 with

(i; j) ∈ ({D1, D2, O1, O2}, {C1, C2}). Thus the initial net-
work configuration corresponds to half of the synapses
being potentiated between each pair ITC–PFC of specific
populations.

3 Results

We start by outlining the general description of the learn-
ing process, followed by a more detailed description of our
results. In the untrained system, all weights between ITC and
PFC have equal strengths. When a stimulus is presented to the
ITC layer of the untrained network, one of the populations in
the category layer will, by chance, receive a stronger input,
mediated through network’s fluctuations. These fluctuations,
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Fig. 4 Dynamics of the PFC model layer for the initial network configuration, when all the connecting weights between the two layers are set to
be equal to (w+ + w−)/2. Driven by the fluctuations, one of the two category populations is active irrespective of the stimulus presented to the
network. The first two graphs show average spiking rates over 50 trials for specific and inhibitory neurons in the model PFC layer. The responses
of the specific populations were grouped based on their activity level: the higher responses were averaged into the active category response (black
lines) and the lower responses were averaged into the inactive category response (dark gray lines). Population averages are depicted in (a) and
spike raster plots of five neurons for each population in (b). The light gray lines represent the averaged activity over all 50 trials of the inhibitory
neurons. The right most graph (c) plots the PFC layer dynamics in the phase space

which are a finite-size effect, are another needed dynamic
element of the model that requires the explicit description of
neural dynamics at the spiking level.

Because there is strong competition between the cate-
gory populations, mediated through the recurrent connec-
tivity inside the category layer, the category being driven
slightly stronger will win this competition and thus will be
more strongly activated (Fig. 4). If this category happens to
be the correct one, the network is rewarded. Synaptic pop-
ulations that contributed most to this category’s input, are
hence potentiated, the ones that were driving the wrong cate-
gory are weakened. As a consequence, the next presentation
of that stimulus will be more likely to activate the correct
category in the future. If the chosen category was wrong,
the system is not rewarded, and the synaptic populations that
were driving the wrong category are weakened. As a con-
sequence, this category is less likely to be activated by that
stimulus in the future. By repeated stimuli presentations, the
ITC populations representing the diagnostic features will be
consistently associated with the correct output population.
In contrast, the ITC populations representing non-diagnostic
features will be associated with each output population with
the same probability. Consequently, the network will learn to
perform better and better the categorization task.

We will report in the following sample learning histories
of simulated networks that successfully develop both a for-
ward ITC → PFC synaptic structure, able to support correct
classification, and a backward PFC → ITC synaptic structure
producing a task-dependent modulation of ITC response. To
this end, we will show both the time course of the average
synaptic efficacies for the populations of interest, and the
manifestation of the plastic synaptic rearrangement in the
ITC and PFC neural activities during the task, providing evi-
dence of a qualitative agreement with the findings of Sigala
and Logothetis.

Before illustrating how learning proceeds in the system,
we start showing the properties of the initial network, which

should exhibit the capability to decide stochastically with
50% probability in response to a stimulation. Figure 4 presents
the activities of the specific and inhibitory neurons in PFC
model area, averaged over 50 trials, for the initial network
configuration. The strong competition between the popu-
lations encoding for the two categories and the stochastic
fluctuations present in the network, ensure that even in the
beginning of the learning process, when both categories are
identically connected with the ITC layer, one of them ran-
domly wins the competition. Hence, even the untrained
network always reaches a clear decision.

Figure 5 presents average network activities (over 50
consecutive trials) in three moments of the learning pro-
cess: at the beginning of learning, at an intermediate point
(after 200 trials) and after the convergence of the synaptic
parameters (after 1,500 trials). The plots in the first row were
obtained by performing the same calculations as for the exper-
imental data (Fig. 1b). For each specific neuron in the ITC
model layer, the spiking rates for all 50 consecutive trials
were grouped based on the presented stimulus values and
were averaged. Each specific neuron has a different response
level to the two values of each feature. The highest responses
for the diagnostic feature of all specific neurons in ITC model
area were averaged producing the ‘best Diagnostic’ response.
The lowest responses for the diagnostic feature of all specific
neurons in ITC model area were averaged to generate the
‘worst Diagnostic’ response. Similar calculations were done
for the non-diagnostic feature.

These average activities over all ITC specific neurons are
presented for three points in time in Fig. 5 top row. In the
beginning of learning, there is no bias in the input to the PFC
layer, the ‘Left’ (C1) and ‘Right’ (C2) populations are acti-
vated randomly with the same probability (Fig. 5a, bottom).
Thus there is no difference between the tuning of the diag-
nostic and non-diagnostic features (Fig. 5a, top). As learning
progresses and the synaptic weights evolve, the network now
correctly solves the categorization task (Fig. 5b, bottom). At
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Fig. 5 Simulation results for a spiking network averaged over 50 successive trials for three points in the learning process: a in the beginning
of learning; b an intermediate point during learning (after 200 steps); c after the weights converged to a stable configuration (1,500 steps). The
top row shows the average spiking rates of stimulus responsive neurons, grouped according to their best and worst responses to the levels of
diagnostic and non-diagnostic features. The middle and bottom rows show the average spiking rates of the specific populations in the ITC layer
(D1, D2, O1, O2) and the PFC layer (C1, C2), respectively, for the trials where the presented stimulus was characterized by: high eyes and long
nose (external input to the populations D1 and O1) among the 50 successive trials

the same time, we notice the beginning of the tuning process
that will be enhanced in time (Fig. 5b, top). After conver-
gence, the selectivity for the level of the diagnostic feature is
enhanced, as compared to the non-diagnostic feature (Fig. 5c,
top). The activities for the best and worst diagnostic feature
values are more separated than those for the best and worst
non-diagnostic feature values. This result is in good qualita-
tive agreement with the experimental results, (Fig. 1b), that
reflect the ITC activity after the monkeys had learned to cat-
egorize the stimuli.

The middle and bottom rows in Fig. 5 show the average
spiking rates of the specific populations in the two layers
for the selected trials among the 50 successive trials where
the presented stimulus was characterized by ‘low eyes’ and
‘long nose’ (populations D1 and O1 stimulated). Since there
is no structure in the model ITC layer, the enhancement of
selectivity emerges due to the top-down input from the PFC
layer, which encodes the previously learned stimulus
categories. The right-most column, Fig. 5c, corresponding to
the point in the learning process where the weights converged
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Fig. 6 Evolution of the average synaptic weight between the populations in the process of learning for a feed-forward and b feedback connections,
starting from equal connectivity between the two layers

to a stable configuration. From the time when the stimulus is
presented to the network (time = 0 ms in Fig. 5), the selectiv-
ity of the category specific populations (Fig. 5c, bottom row)
emerges through the competition biased by feed-forward in-
puts (ITC → PFC) from the specific populations of the ITC
layer. Through the feedback modulatory inputs (PFC→ ITC),
this selectivity is transmitted afterwards to the feature-spe-
cific populations in ITC (Fig. 5c, middle). It can be seen that
in the first 100 ms after the stimulus onset the D1 and O1
(stimulated) or D2 and O2 (non-stimulated) populations do
not differ in activity. Hence there is no diagnostic tuning.
Only after the correct category population acquires activity,
does the diagnostic tuning build up.

The evolution of the synaptic weights between the two
layers is presented in Fig. 6. For both feed-forward (Fig. 6a)
and feedback connections (Figure 6b) the links between the
diagnostic features and the visual object categories are selec-
tively modified. Weights between a diagnostic feature pop-
ulation and the correct category population are increased,
those with the wrong category population are weakened. The
connections between non-diagnostic feature populations and
category populations remain around the starting point, corre-
sponding to a value for C around 0.5. This case corresponds
to the network learning the task from scratch. This initial
condition is referred to as ‘unbiased’ learning history.

Figure 7 shows learning trajectories for two other initial
network configurations. In Fig. 7a, the network is previously
tuned for the ‘Nose length’ which is non-diagnostic in our
task protocol. In Fig. 7b, the network is previously tuned
for both ‘Eye height’ and ‘Nose length’, thus both features
were previously diagnostic, and also the ‘Eye height’ was
differently associated to the two categories. Both cases cor-
respond to a modification in the task protocol. The results
show that the connection weights with the diagnostic feature
are selectively modified in the direction of increasing the
synaptic strength with the corresponding category popula-

tion and decreasing the synaptic strength with the other cate-
gory population. The connection weights transmitting signals
from the non-diagnostic feature converge to the average syn-
aptic strength between the two layers corresponding to the
unbiased situation of equal connectivity with both category
populations. Because here the network needs to react to a
task switch, the corresponding initial conditions are called
‘biased’.

For the three runs whose learning trajectories are pre-
sented in Figs. 6 and 7, we define and calculate quantities
describing key feature of the network performace along the
learning process. The results are presented in Fig. 8. We use
the time-averaged activities over the last 500 ms of stimula-
tion for each model neuron to calculate, in the same manner
as described for the results in Fig. 5a, the best and worse
responses for the diagnostic and non-diagnostic features of
all specific neurons in the ITC model layer. The evolution dur-
ing learning of these responses are presented in Fig. 8, top
row. From these results, the tuning of the two features ‘Eye
height’ (diagnostic) and ‘Nose length’ (non-diagnostic), is
evidenced through a ‘feature selectivity index’ calculated as
the difference between the best and worst activities for the
corresponding feature divided by their sum. The time evo-
lution of the tuning for both features is presented in Fig. 8,
middle row.

The classification performance during learning, depicted
in Fig. 8, bottom row, was estimated through a ‘category
selectivity index’ calculated as the difference between the
average activities of the population encoding the presented
category and the population encoding for the other category,
divided by their sum. It can be seen that for the run where the
network was initially unbiased, the selectivity of the diag-
nostic feature starts building over time, whereas the selec-
tivity for the non-diagnostic feature remains constant at a
low value (Fig. 8a, middle row). In the case of a switch in
the behavioral task, where the network was previously tuned
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Fig. 7 Learning trajectories for the average synaptic weight between the populations in the two layers, starting from two other initial points
corresponding to a switch in the behavioral task. In the first case, the diagnostic feature becomes non-diagnostic and the non-diagnostic feature
becomes diagnostic (a). In the second case, both features were important for categorization before the task switch (b). The weights for both
feed-forward (a1, b1) and feedback connections (a2, b2) are presented

for the ‘Nose length’ feature, the selectivity for the non-
diagnostic feature (‘Nose length’ in our task protocol) de-
creases while the selectivity for the diagnostic feature (‘Eye
height’ in our task protocol) builds up (Fig. 8b, middle row).
In the last run, the network was previously tuned for both
features and also the ‘Eye height’ feature was differently
associated to the two categories. As can be seen from Fig.
8c, middle row, the tuning of the diagnostic feature initially
goes down, as for the present task protocol, the feature was
previously erroneously associated to the two categories.
After 500 stimulus presentations, the tuning of the diagnostic
feature starts building up in accord to the chosen task proto-
col. Also the tuning of the non-diagnostic feature goes down,
as it becomes irrelevant for behavior. From the bottom row
in Fig. 8 we remark that the network performance in classifi-

cation reaches a high value after 300 stimulus presentations,
for the case when the network was initially unbiased, after
600 stimulus presentations, in the case of a modification in
the behavioral task of only one variable (non-diagnostic pre-
viously tuned) and after 1,000 stimulus presentations, in the
case of a modification in the behavioral task of two vari-
ables (non-diagnostic initially tuned and diagnostic errone-
ously tuned). In the latter case, the diagnostic features of the
task to be learned at present actually were diagnostic before
as well, but with the opposite mapping to the categories. This
is reflected by a negative category selectivity index (the net-
work is worse than guessing) in the initial phase of learning.
It is remarkable that even this severe re-orientation towards
a completely new task is robustly achieved by the learning
network.
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Fig. 8 Task performance evolution during learning for the three learning histories of Figs. 6 and 7: a learning from scratch (Fig. 6) and b, c
learning after task switches (Fig. 7). The top row shows the time evolution of the best and worst responses for the diagnostic and non-diagnostic
features of all specific neurons in the ITC model area. The middle row shows the time evolution of the two feature tuning values. The bottom row
shows the classification performance during learning. For details see text

As can be seen in Figs. 6 and 7, some weights change
in a similar manner. We conclude that we do not need all
16 free parameters (all feed-forward and feedback synaptic
populations between the two layers’ specific populations) to
describe network’s behavior and reduce the parameter space
to the important dimensions only. We define four effective
weights: wd , wi , wo1 and wo2. wd relates to the average
connection weight between ‘high eyes’ and ‘Left’ and ‘low
eyes’ and ‘Right’, which for our task protocol corresponds
to the connections between the diagnostic feature values and
the corresponding categories. wi relates to the average con-
nection weight between ‘high eyes’ and ‘Right’ and ‘low
eyes’ and ‘Left’, corresponding to the connections between

the diagnostic feature values and the non-corresponding cat-
egories. Similarly wo1 and wo2 are defined for the connec-
tions of the ‘Nose length’ feature with the two categories.
Because the feed-forward weights are on average twice as
big as the feedback ones, we weighted the feedback connec-
tion strengths with a factor of 2. This simplifies the repre-
sentation by making a simple correspondence between the
effective weights and the feed-forward or feedback ones.

wd = 1

4
(wD1−C1 + wD2−C2 + 2 · wC1−D1 + 2 · wC2−D2).

wi = 1

4
(wD1−C2 + wD2−C1 + 2 · wC2−D1 + 2 · wC1−D2).
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wo1 = 1

4
(wO1−C1 + wO2−C2 + 2 · wC1−O1 + 2 · wC2−O2).

wo2 = 1

4
(wO1−C2 + wO2−C1 + 2 · wC2−O1 + 2 · wC1−O2).

The network shows robustness to the starting point in
the parameter space. All three learning trajectories converge
to the same final network configuration as shown in Fig. 9
black lines. The two axes reflect the tuning of the two features
‘Eye height’ and ‘Nose length’ expressed through the vari-
ables wd −wi , denoting ‘Eye height’ tuning, and wo1 −wo2,
denoting ‘Nose length’ tuning, calculated using the formulae
above. The zero values correspond to equal connectivity of
the feature values to the two categories, which is equivalent
to no tuning for that feature. High values correspond to differ-
ent connectivities between the two values of the feature with
the two categories, which is equivalent to feature tuning. All
traces converge to the area where there is no selectivity for
the ‘Nose length’ feature and high selectivity for the ‘Eye
height’ diagnostic feature.

To characterize different modes of operation of the net-
work, we explore the effective parameters describing the
excitatory weight setting between the model cortical layers.
We use a mean-field approximation, fully consistent with the
spiking neuron model used, that allows an exhaustive anal-
ysis of the regimes as a function of the parameter space.
Each point in the parameter space, described by the chosen
effective weights, was simulated for all four possible stimu-
lus presentations. In order to determine the network’s oper-
ational modes, the resulting mean firing rates of all specific
populations were evaluated by calculating three suggestive
parameters, as described below. From the activity of the four
specific populations in the ITC layer, two parameters that
measured the ‘Eye height’ Tuning and Diagnostic Tuning
were calculated.

‘Eye height’ Tuning measures, for a specified set of
effective weights, the selectivity for the ‘Eye height’ fea-
ture through a selectivity index calculated as the difference
between the mean firing rates for the best ‘Eye height’ feature
value and worst ‘Eye height’ feature value, divided by their
sum. Note that the best and worst values are calculated in the
same way as for the results presented in Figs. 5 and 8, with
the only difference that the population average activities are
used instead of single neuron activities.

Diagnostic Tuning measures the difference between the
selectivity index for the diagnostic feature (which in our case
corresponds to ‘Eye height’ tuning) and the selectivity index
for the non-diagnostic feature (which in our case corresponds
to ‘Nose length’ tuning). The ‘Eye height’ and ‘Nose length’
tuning were also calculated for the single neuron activities,
as presented in Fig. 8 middle-row.

From the activity of the two category populations in PFC,
another parameter correct categorization was calculated as
the difference between the mean firing rates of the popula-
tion encoding the correct category of the presented stimulus
and the population encoding the other category, divided by
their sum. This parameter was also calculated for the sin-
gle neuron activities, as presented in Fig. 8 bottom-row. It

Fig. 9 Evolution of ‘Eye height’ and ‘Nose length’ tuning during learn-
ing, for three different initial network configurations. They all converge
to the same final network configuration corresponding to high selectivity
of the diagnostic feature ‘Eye height’ and low selectivity for the non-
diagnostic feature ‘Nose length’ (bottom right corner of the graph). We
characterize network’s performance through an extensive exploration
of network’s effective parameters using a mean-field formulation. The
network performed correctly the task in the light gray area, presented
‘Eye height’ tuning in the medium gray area and showed Diagnostic
tuning in the dark gray area. For details see text

measures the level of association of the presented stimulus
and corresponding category.

For each of these parameters, we chose a threshold that
marked the limit where the requirements of having the respec-
tive selectivity or categorization are still satisfied, as shown
in Fig. 8 middle and bottom rows by the horizontal dotted
lines. The network was defined to show ‘Eye height’ Tuning
when the Best ‘Eye height’ value response is twice or greater
than the Worst ‘Eye height’ value response. We say that the
network shows Diagnostic Tuning when the selectivity for
the diagnostic feature is twice or greater than the selectivity
for the non-diagnostic feature. Also a correct categorization
corresponds to an activation of the correct category more
than twice greater than the activation of the other category.
In Fig. 9, we plotted the areas where these three performance
criteria were satisfied. We notice that the learning trajectories
converge to the area in the explored parameter space where
all three conditions were fulfilled (the darkest gray area in
the graph).

4 Discussion

Considering the challenging task of explaining the neural
substrate of perceptual learning, we present in this work,
a biologically inspired two layer network model of spik-
ing neurons that accounts for the enhancement of ITC neu-
rons’ selectivity to stimulus features which are relevant for
a learned visual categorization task (Sigala and Logothetis
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2002). An alternative “attentional-gated reinforcement learn-
ing” paradigm was recently introduced for the Sigala and Lo-
gothetis perceptual learning task (Roelfsema and Van Ooyen
2005). We are not excluding the possibility, suggested by
these authors, that the selective tuning of ITC neurons could
arise from learning the feedforward connections coming to
ITC from lower visual processing areas. For learning cate-
gory tuning, some information must get back from a place in
the brain where categories are represented to the site where
learning occurs. In a feed-forward model, this can be done in
the form of a generic attentional feedback that modulates the
learning of the feedforward synaptic weights, as shown by
Roelfsema and Van Ooyen (2005). Here we consider a recur-
rent network in which the activities of the category encod-
ing neurons directly affect the ITC neuronal activities, and
we proved that this top-down bias can explain the ITC tun-
ing effect. An experimental scenario that could distinguish
between the two network predictions is PFC cooling. After
learning the categorization task, the influence of the top-down
signals from the category encoding neurons could be mea-
sured: in case of a feedforward learning scenario, the effect
would reside with the same strength, while in the case of a
recurrent network, the effect is predicted to decrease or even
vanish.

The experimental measurements in ITC (Sigala and Lo-
gothetis 2002) showed that, after training, the neuronal selec-
tivity to the diagnostic features was enhanced as compared
to the selectivity to the other, non-diagnostic, features (Fig.
1b). Hence the ITC activity not only encodes the presence
and properties of visual stimuli but it is also tuned to their
behavioral relevance. Different studies of perceptual learning
and visual encoding suggest that the tuning of sensory neu-
rons can be mediated by top-down information and that PFC
can be associated with categorization processing (Freedman
et al. 2003). In the present work, we hypothesize and test the
assumption that the enhancement of selectivity to the behav-
ioral relevant features in ITC might be determined by the
higher level cognitive feedback from category encoding neu-
rons residing in PFC and we demonstrate a learning scenario
which produces such selective enhancement.

A key new feature of the proposed computational model
is that the attentional biases needed to produce the compe-
tition inside the network are internally generated using the
recurrent signals produced inside the network. As a stimulus
is presented to the network, the sensory inputs (coming from
lower visual processing areas) activate the neurons in the ITC
model layer and are propagated through feed-forward con-
nections to the PFC model layer. This bottom-up input from
ITC biases the competition between the category encoding
populations. The winning category expresses the monkey’s
decision (as in Wang 2002) and influences through feedback
connections, the activity of the neurons in the ITC model
layer such that, after a successful learning, they become selec-
tive for the behaviorally relevant features. Thus, in contrast
to previous work (Szabo et al. 2004), the attentional biases
needed to guide the competition in the PFC layer are pro-
duced autonomously in the model.

By construction, having identical inputs from the lower
sensory areas encoding for the presented diagnostic and non-
diagnostic feature values and no structure in the connec-
tivity of ITC specific model neurons, a single layer model
(only ITC) would induce identical tuning for the diagnostic
and non-diagnostic features. The selective tuning of the ITC
model area emerges then only through top-down modulatory
signals from the PFC model area where the learned catego-
ries are encoded. A side effect of the identical inputs to the
ITC model neurons, as can be seen from the results in Fig. 5,
is that our model shows some selectivity also for the non-
diagnostic feature as compared to the experimental results
that show almost no selectivity for the different values of the
non-diagnostic feature (Fig. 1b).

The network is trained using a biologically inspired
reward-based Hebbian algorithm, that robustly ensures con-
vergence for different initial network configurations (as shown
by Figs. 7, 8). Reinforcement learning algorithms were pre-
viously shown to efficiently solve input–output mappings as
in the trial-and-error interactions of the operant condition-
ing experiments (Williams 1992; Seung 2003). In extension
to their models, we combine the concepts of reinforcement
learning in connectionist and spiking networks with the bio-
logically inspired concept of Hebbian learning. Our simple
model is constructed with a small number of excitatory and
inhibitory neurons for each cortical area. The finite size effect
creating random fluctuations in the population firing rates, en-
ables the spontaneous transition, in the beginning of learning
when the two categories are equally connected to the ITC
specific populations, of one category to win the competition.
Increasing the network size reduces the probability of these
spontaneous transitions.

Based on our simulation results, we find that the described
effect could result from reward-based Hebbian learning that
robustly modifies the connections between the feature encod-
ing layer (ITC) and the category encoding layer (PFC) to a
setting where the neurons activated by the level of a fea-
ture determinant for categorization are strongly connected to
the associated category and weakly connected to the other
category, and the neurons which receive input specific for
a task-irrelevant feature, are connected to the category neu-
rons with an average weight, not significantly changed during
training. This structure of the interlayer connectivity seems
to be a stable fixed-point of this learning dynamics and is
able to reproduce the experimental data, by achieving a high
selectivity of the ITC neurons for the diagnostic feature and
low selectivity for the non-diagnostic feature.

The modeling approach taken in the present work could
be used to generate some experimentally testable predictions,
of which we name the following. Learning to provide the
correct categorization, by modification of the ITC → PFC
synapses, occurs before the selective modulation of the ITC
responses. We infer this from the results presented in Fig. 5:
for an intermediate point in the learning process (between
time steps 100 and 300 in Fig. 8a), the network categorizes
correctly but the responses in ITC are not yet tuned to the
behaviorally relevant features. Also the other two cases of
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contextual task change show that the ITC tuning occurs after
correct categorization is achieved (Fig. 8b, c). The reward-
based learning strategy modifies the weights in the recurrent
network in a consistent way to achieve correct categoriza-
tion. As the network starts to categorize correctly, a second-
ary effect starts to build up: the tuning of the ITC neuronal
responses. Such a scenario would be consistent with the pre-
diction that the tuning effect is an epiphenomenon of the
primary synaptic process that allows to achieve the correct
categorization. An observation here is that the plastic reor-
ganization of the interlayer connections occurs in the same
time for feedforward and feedback synapses, as can be seen
in Figs. 6 and 7, this is due to the identical conditions adopted
for the learning algorithm. The correct categorization occurs
faster not because the synaptic modifications occur faster
for the feedforward connections, but because the structural
differences between the two layers. Implementing competi-
tion, the PFC model layer needs only a small bias to drive its
activity. In the ITC model layer implementing cooperation,
a more consistent bias is needed to modulate its activity.

Another interesting experimental scenario is suggested
by the analysis presented in Figs. 7 and 8, where different
initial conditions corresponding to switches in the behav-
ioral task, are chosen: in one case exchanging the role of
the diagnostic feature and in the other case switching from
both features being diagnostic to only one being so. We can
infer that the number of stimuli presentations needed until
convergence to the final learned network configuration, i.e.,
the time needed by the network to learn the new associa-
tion, increases with the number of modifications made in the
task protocol. Figure 8 shows that for convergence in the
case of unbiased starting configuration, around 500 trials are
needed (Fig. 8a); in the case of a simple change where the
non-diagnostic feature was previously associated to the two
categories, around 900 trials are needed (Fig. 8b); and for a
more complex change, where in addition to the change in the
latter experiment, the diagnostic feature was also differently
associated to the two categories, and around 1,300 trials are
needed (Fig. 8c).

A natural extension of the above exercise is a task-switch-
ing scenario, in which the animal has to infer the correct rule
from a changing context [analysis of the constraints on learn-
ing in a task-reversal scenario has recently been performed
(Fusi et al. 2005)]. The experimental counterpart of such an
extension would be most challenging and interesting for mod-
eling.
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