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Abstract—We show that the combination of short-
range excitatory interaction and Hebbian-like learn-
ing in integrate-and-fire networks constitutes a robust
self-organising clustering process. This process is
utilised for designing an unbiased data clustering al-
gorithm for which neither the number of clusters nor
their shapes need to be known. The usefulness and
the success of this novel algorithm is discussed on the
basis of toy-systems and real-world applications.

I. INTRODUCTION

In the last decades, an enormity of clustering algo-
rithms has been developed (e.g, [1]). On the one hand,
this reflects the need for analysis and structuring tech-
niques to process the ever growing amount of (mainly
digital) data. On the other hand, the interest in clus-
tering acknowledges the important role that the identi-
fication of classes plays for perception and cognition.
Clustering is an unsupervised classification approach.
Whereas supervised methods are trained on the basis
of a training set with known classification, clustering
methods have to find a reasonable classification on the
basis of a given data distribution only. Completely un-
biased methods do not even require prior knowledge
about the number of clusters, their shape or their struc-
ture [2]. Due to the absence of a supervisor, clustering
tasks are often associated with a self-organisation pro-
cess (e.g., self-organised maps SOM [3]). Typically,
clusters result from such a process by means of some
low-level or local mechanism. This mechanism can be
based on an unsupervised learning rule, as in the case
of SOM, or on local interaction rules that may lead to
clusters of “synchronised” elements [2], [4], [5].
Networks of simple integrate-and-fire neurons (IF, see
next section) with short-range excitation, and possi-
bly long-range inhibition, are an example of the lat-
ter. Fig. 1b demonstrates how groups of neurons in
an IF-network can immediately engage in synchroni-
sation. The synchronised groups correspond to the
spatial neuron clusters in the toy system of Fig. 1a.
This observation inspires the design of a clustering al-

gorithm. However, the results shown in Fig. 1b are
in some sense trivial as only the underlying network
connectivity is reflected. Fig. 1c shows that the graph
of short-range excitatory connections consists of three
large components. The excitation-dominated dynam-
ics quickly leads to synchronised firing within each
component, resulting in Fig. 1b. Therefore, in terms
of a clustering algorithm, besides reflecting the large
connectivity components, the neuronal dynamics does
not reveal any more insight into possible structures
of the data set (Fig. 1a). The components, however,
are the consequence of the special choice of the con-
nectivity parameters; in the given example, an inter-
neuron distance smaller than ��������� results in an
excitatory connection (strength 	 ��
 ). For differ-
ent, arbitrary, data sets, this parameter choice will not
necessarily yield any useful results. Hence the basic
question is: How to make the best choice of connec-
tivity parameters for a given data set?
In this contribution, we show that by combining the

dynamics with a local Hebbian-like learning rule, IF
networks are able to evolve their structure in a self-
organised way reflecting a useful choice of connectiv-
ity parameters. Hence the combination of local exci-
tatory interaction with unsupervised learning consti-
tutes a robust network self-organisation process that
can be used as a basis for unbiased clustering of arbi-
trary data sets.

II. CLUSTERING WITH IF NEURONS

A. IF equations

The neuron elements we consider are simple leaky
integrate-and-fire neurons whose membrane poten-
tials �� are described by��� ����� ��� �� ����� ��� � (1)

If ���� ��� reaches the threshold � , a spike is emitted and�� is reset to 0. The input current � �� ��� � �"!$#"%'&(� *) %
consists of a (time-independent) external current �+!,#"%
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Fig. 1. a) A 2-dimensional distribution of - .0/"1"2
points representing IF neurons. b) The spike activity
diagram reveals three clusters of synchronised neurons
and a group of non-synchronised neurons (background
points). c) The connectivity graph of excitatory con-
nections shows three large connectivity components.

and the contributions of the presynaptic neurons� *) %3�5476 	 6  498�: � �;�<� 86 �7= (2)

where � 86 is the emission time of the > th spike at neu-
ron ? and 	 6  is the synaptic efficacy.
The simplicity of the used IF model allows for an ex-
act integration.If the potentials at time � are given as�@�BA = ��C = �D�D�D� = �FE � , the time interval to the next spike is
given by G 8 ��HJILK 6NM G 6+O , whereG 6 � � �QP KSR � 6 � ����� �"!$#"% �� � � !$#"% � T � (3)

The resulting potentials for ?VU� > at time � & G 8 are� 6 ���"!,#"% � � 
 �XW9Y�Z �\[^]N_`ba ��� & � 6 � ���cW9Y�Z �\[^]N_`�a � & 	� 6 � �
As there is no transmission delay in this model, an
outgoing spike can provoke a whole bunch of simul-

taneous spikes at further sites. This gives the possi-
bility of quick synchronisation among tightly coupled
neurons, as observed in Fig 1b. One neuron, however,
can only fire once at a given time.

The internal parameters were chosen according to� � �edNfVg and � �h
jiNflk . The external current
was chosen as �j!,#"% � ��mn�Nflk .

B. Clustering

For the purpose of clustering, we translate a given
data set into an IF network, i.e., each data point is rep-
resented by an IF neuron. We define data clusters by
groups whose neurons are strongly coupled (mutually
maximal connection strength) and show synchronised
firing. The network’s task is to develop its structure,
starting with relatively weak connections and ending
with strong connectivity components that reflect the
natural data clusters. The initial network connectivity
is given by weak (symmetric) excitatory connections
between each neuron and its > nearest neighbours.
The initial connection strengths 	o 6 � 	 6  are given
by a decreasing function of the data point distance �  6 ,
reflecting the data structure, i.e.,	� 6 � 	 6  � W9YoZqpF� � C 6r C3s � (4)

The parameter r shall be related to the average dis-
tance between connected sites t� . E.g., for the choice> � 
"� , we take t�ou\v . The exact choice of r , in fact, is
of considerable importance as it strongly influences
the global dynamics. For very large r , all synap-
tic strengths are close to one and global synchroni-
sation occurs quickly (one connectivity component).
For smaller r , such as t��u\v , the synaptic connections
are weak and synchronisation can only be established
very slowly (Fig. 2a).

However, even for small r the potentials �' and � 6
of two connected neurons tend to be more correlated
if the connection 	w 6 is stronger. This can be used to
“breed” clusters by means of Hebbian-like learning.
In this paradigm, a synapse is strengthened if the firing
at the presynaptic and the postsynaptic neuron is more
or less coincident. As the synapses are symmetric, we
define the learning rule in the following way	� 6 � 	 6 'x HyILK M m 	� 6 = 
 O = if z|{ 6 � ��� �}
 = (5)

where z { 6 � ��� �~
 only if both of the two neurons �
and ? have emitted a spike within � ������=��$� . � defines
the width of the learning window and is chosen in rela-
tion to the interspike interval of independently spiking
neurons G � � �qP K � �j!,#"% � u � �"!,#"% � � � ��� �5do�L
���fVg .
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Fig. 2. Spike diagram a) without learning and b) with
learning.

If � is too small, learning is slow. For computational
reasons, � should be chosen as large as possible. How-
ever, if � is too large, learning is too fast quickly lead-
ing to global synchronisation. For the given parame-
ters, we chose � � G u\v ��m�fVg .

The effect of Hebbian learning for the toy system
can be observed in Fig. 2b. The neurons of a clus-
ter are completely synchronised after about 
"�n� G��m+�n��fVg . This is in stark contrast to the situation with-
out learning (Fig. 2a). In Fig. 3, the evolution of
the corresponding grid structure is illustrated. While
at the very beginning only a few strong connections
are present (the seed of the clusters), after m+�n��fVg the
network has developed three large connectivity com-
ponents, reflecting the three data clusters (Fig 1a).

C. Hierarchical clustering and inhibition

In a purely excitatory network (as used so far), the
learning rule (5) can always lead to global synchroni-
sation. This is because all synaptic connections will
potentially be strengthened after some time, albeit on
very different time scales, so that finally all weights
become strong enough to support global synchronisa-
tion. E.g. in our toy system, for � ����fVg global syn-
chronisation is practically reached after about � �n��fVg .

The different learning speed results in a merging
process - successively smaller clusters merge to larger
units. This resembles a hierarchical clustering mech-
anism where time plays the role of the resolution pa-
rameter. In comparison to simpler hierarchical meth-
ods, such as single linkage clustering (SLC) [1], the
obtained clustering solutions are more robust. Being
the consequence of local neural cooperation, cluster-
ing is not only based on information provided by the
single weights (as in the case of SLC). Particularly
clear cluster structures, such as the three clusters in

Fig. 1a, are easy to detect as they persist unmodi-
fied over a long time period. If desired, they can be
stabilised by establishing inhibitory connections be-
tween them (the establishing of the inhibitory con-
nections can only be described by a semi-local learn-
ing rule.). Such long-range inhibitory connections not
only make global synchronisation impossible and pre-
serve the stable clusters, they also lead to a phase shift
between the different synchronised clusters. Depend-
ing on the data analysis problem, hierarchical cluster-
ing or clustering with inhibition can be preferred.

D. Applications

(I) In the visual scene analysis toy example given
by Fig. 4, the task is to segregate the “natural “ ob-
jects (relatively homogeneous regions) from the in-
homogeneous background. The given grey-scaled
image is described by an intensity-encoding matrix� �@� =���� , where � and � are the pixel coordinates and� �@� =������ � � = 
 � is the pixel intensity. Due to the back-
ground inhomogeneity, the problem cannot necessar-
ily be solved by simple thresholding techniques as of-
ten used for segregation problems [6]. For a clustering
solution, the pixel neighbourhood grid is translated
into the grid structure of an IF network. I.e., each neu-
ron is connected to its direct neighbours (thus > � v ).
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Fig. 3. Structure of strong connections with �+�����(2���� at
time a) �'.�2��X� and b) � .<¡\2�2¢�£� .



Fig. 4. Visual scene toy example with -¤.¥/§¦�2 pixels.
“Natural” objects are identified with relatively homo-
geneous regions.
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Fig. 5. Result for Fig. 4: The structure of strong connec-
tions ( � ��� .(/ ) after learning ( � .<¡�2\2��X� ) reflects the
“natural” objects. The connection ends correspond to
the pixel centers.

The initial connection strengths 	o 6 are given by (5),
where �  6 �©¨ � �@� ��� � �D? � ¨ for neighbouring pixels �
and ? . In this case, r is t�ou m+� .

In principle, the problem could be tackled by means
of graph theory-based methods. In this approach, the
image is described as a weighted graph (e.g., as given
by the connection grid with 	o 6 ) and all connections
below a certain threshold strength are cut. The main
difficulty of this approach, however, is to find a rea-
sonable criterion for the threshold. In contrast, our
IF network approach does not require to fine-tune any
threshold parameter. The network shows a very robust
evolution towards a solution that reflects the most nat-
ural objects (Fig. 5). The obtained graph of strong
connections consists of two large components corre-
sponding to the two dark rectangular structures that
are easily recognised in Fig. 4.

(II) In a further test, we applied our algorithm (with> �¤
"� and rª� t��u\v , no inhibition) to the Iris data
set which is a famous benchmark for clustering algo-
rithms [1]. This data set consists of three classes with
50 elements each. We found that our algorithm can
perfectly identify one class (Iris-setosa). The remain-
ing two classes are correctly recognised up to about

10-15 misclassifications (early in the time hierarchy,
the number of detected clusters is larger than three,
but the clusters are pure, i.e, they contain only ele-
ments of the same class. Later, the number of clusters
is three -as expected- but one cluster is not pure any
more). The classification thus is not perfect, never-
theless, the performance is comparable to that of stan-
dard algorithms [1] that, however, typically rely on the
specification of prior parameters.

III. SUMMARY AND CONCLUSION

We presented a novel clustering method based on
self-organisation processes of integrate-and-fire net-
works. By combining the neural firing dynamics with
a Hebbian-like learning rule, the network is able to
evolve its structure in such a way that it represents the
“natural” clusters within a given data set. The impor-
tant advantage of our method is that it is completely
unbiased, i.e., it does not require the specification
of any parameters (number of clusters, cluster shape,
cluster size etc.). Rather, the self-organisation process
automatically leads to a suitable parameter choice. In
this respect, the method is superior to most standard
algorithms as it also shows a similar performance for
typical benchmark problems such as the Iris data set.
However, there is still some room for further improve-
ments by optimising the initial parameters or by mod-
ifying and optimising the learning rules for both ex-
citatory and inhibitory connections. For very large
data sets, the algorithm’s applicability might be lim-
ited due to its limited speed performance. Yet from
a conceptual standpoint, the algorithm seems an in-
teresting example of how structural self-organisation
could function in the brain - although our method is
not primarily based on biological plausibility.
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