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Abstract— The growing interest in pulse-mode processing by
neural networks is encouraging the development of hardware
implementations of massively parallel, distributed networks of
Integrate-and-Fire (I&F) neurons. We have developed a reconfig-
urable multi-chip neuronal system for modeling feature selectivity
and applied it to oriented visual stimuli. Our system comprises
a temporally differentiating imager and a VLSI competitive
network of neurons which use an asynchronous Address Event
Representation (AER) for communication. Here we describe the
overall system, and present experimental data demonstrating the
effect of recurrent connectivity on the pulse-based orientation
selectivity.

I. INTRODUCTION

Neuromorphic systems are composed of mixed ana-
log/digital VLSI devices that emulate biological systems for
sensory processing. We propose a neuromorphic system that
reproduces a specific functionality of neocortical processing
modules: the processing of visual input by the neuronal circuits
of the mammalian visual cortex. Despite significant differences
in function across the various cortical areas, the pattern of
neuronal connections within each area is remarkably similar.
This regular structure suggests that the cortex may use a
common core processing circuit, or canonical microcircuit,
that can be tuned to perform specific tasks [1]. The canonical
microcircuit, and its later extensions, emphasize the role of
first order recurrent connections between cortical neurons.
These recurrent connections between thresholded neurons sup-
port cooperative-competitive processing, in which networks
of neurons participate collectively in the generation of an
appropriate interpretation of their sensory input. The output
of a given neuron depends dynamically on the activity of
all neurons in the network. As a result, these networks are
able to perform complicated non-linear operations, such as the
winner-take-all function. The computational abilities arising
from competition are especially useful for feature extraction
and pattern classification problems. We are interested in cap-
turing the principle of cooperative-competitive processing in a
general purpose module that could be used to build complex
VLSI perceptive systems.

In this paper we present a specific application, in which
a VLSI recurrent network of spiking neurons, interfaced to
a vision sensor, is used to implement orientation selectivity.
Several theoretical recurrent models have been proposed to
explain the origin of orientation selectivity in primary visual

cortex and as a means to understand cortical circuitry and
cortical computation (for a review see [2]). The pattern of
connectivity described in these feed–back models is reflected
in the local recurrent connections of our VLSI network of
spiking neurons: similar orientation cooperate through lateral
excitation and different orientations compete through global
inhibition.

Several hardware models of orientation selectivity have been
proposed in the past [3]–[7]. Our approach differs from those
of [3], [5] in that our system decouples the sensing stage
from the computational stage. In this way the computational
stage can be more modular and more easily expanded. Also,
our computation depends on the collective dynamics of a
population of neurons, rather than the explicit implementation
of a complex function for the receptive field, such as edge
enhancement by high-pass filtering [4], or Gabor functions [3],
[7]. Our approach is flexible, because it depends only on the
connection pattern among many similar processing elements,
the neurons. Thus, the computational part of the system is
not explicitly designed for orientation selectivity. Instead, it
models a more generic cortical module that can be applied to
the detection of other features, and to other sensory modalities
(e.g. audition).

The system we developed is an evolution of the one
proposed by Liu et al. [6] in which neurons tuned to the
same retinal position but different orientations are on the
same chip. It differs from that of Liu et al. because it uses
recurrent excitation in addition to recurrent inhibition and
it models several orientation selective neurons generating a
more realistic network in which neurons with similar preferred
orientation cooperate, and neurons tuned to different orienta-
tions compete. As in [3], [4], [7] we use the Address Event
Representation (AER) scheme for the communication between
our neuromorphic VLSI chips.

II. THE ORIENTATION SELECTIVITY SYSTEM COMPONENTS

The system consists of two neuromorphic VLSI chips, a
PCI-AER board [8] and supporting hardware (see Fig. 1). The
neuromorphic chips are an address-event temporally differen-
tiating imager (TMPDIFF chip) and a recurrent competitive
network of integrate-and-fire neurons and dynamic synapses
(IFWTA chip). The PCI-AER board is a custom device which
provides a communication bridge between the AER and the
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Fig. 1. AER vision system setup. The PCI-AER board routes output events
of the TMPDIFF chip in response to visual stimuli to the IFWTA chip and
monitors the activity of both chips. The PC controls the LCD screen for
stimulus presentation, the PCI-AER board and the DAC board.

PCI bus of a host computer. It supports a real-time routing,
programmable connectivity, and monitoring and stimulation
of address events. Each PCI-AER board can host up to four
sender and four receiver chips, and multiple PCI-AER boards
can be shared on the PCI bus. The supporting hardware
comprises a custom Digital to Analog Converter (DAC) board
[9] for setting the analog biases of the neuromorphic chips, an
LCD screen for presenting visual stimuli, and a workstation
for hosting and controlling the PCI-AER board, programming
the DAC board and controlling the LCD screen.

Even though the system described here comprises only two
chips, it is can be easily extended to include multiple instances
of the same IFWTA chip, or of analogous AER chips, using
more ports of the PCI-AER board, or more PCI-AER boards.

A. The TMPDIFF chip

The TMPDIFF chip implements the sensing stage of our
system. The chip produces asynchronous address-events in
response to temporal changes in brightness. The stream of
events encodes contrast changes rather than absolute illumina-
tion intensities. The retinal computation is optimized to deliver
relevant information and to discard redundancy using high
temporal and low spatial resolution, similar to the biological
magnocellular pathway. As the TMPDIFF chip responds only
to temporal changes in log intensity, static scenes produce no
output. Image motion produces spike events that represent rel-
ative changes in image intensity. This operation in continuous
form is represented mathematically by the following temporal
relation on the pixel illumination I:

d

dt
log I =

dI/dt

I
(1)

This temporal derivative is self-normalized. By this normal-
ization, the derivative encodes relative contrasts rather than
absolute illumination differences. Contrasts are determined by
differences in reflectance of objects independent of overall
scene illumination. The events generated by TMPDIFF are
changes in Eq. 1 that exceed a threshold and are ON or
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Fig. 2. Chip architecture. Squares represent excitatory (E) and inhibitory (I)
synapses, trapezoids represent I&F neurons. The I&F neurons can transmit
their spikes off-chip and/or to locally connected synapses (see text for details).

OFF type depending on the sign of the change since the
last event. Pixel output consists of the stream of ON and
OFF events. The imager, more thoroughly described in [10],
[11], consists of an array of 32x32 pixels, a y-arbiter, an x-
arbiter and a common address bus with two encoders [12].
An event occurring in a pixel is communicated to the outside
of the chip as an 11-bit address that encodes the pixel X-Y
location and the polarity (ON or OFF) of the event. Events
are processed asynchronously in order of their arrival time. In
case of colliding events the latter are queued. The imager is a
real-time device, which means that an event is communicated
within 100ns of its occurrence. The AER communication
system is particularly well suited for this application because
it dedicates the full communication bandwidth to the active
pixels of the imager and preserves timing information.

B. The IFWTA chip

The architecture of the IFWTA chip is shown in Fig. 2. It is
a two-dimensional array containing a row of 32 Integrate-and-
Fire (I&F) neurons, each connected to a column of afferent
synaptic circuits. Each column contains 14 AER excitatory
synapses, 2 AER inhibitory synapses and 6 locally connected
(hard-wired) synapses. When an address-event is received, the
synapse with the corresponding row and column address is
stimulated. If the address-events routed to the neuron integrate
to the neuron’s voltage threshold for spiking, then that neuron
generates an address-event which is transmitted off-chip. The
AER input synapses can be used to implement arbitrary
network architectures, by (re)mapping address-events via the
PCI-AER board.

Synapses with local hard-wired connectivity are used to
realize a competitive soft winner-take-all (WTA) network
with nearest neighbor and second nearest neighbor recurrent
interactions (see Fig. 2 and Fig. 3): 31 neurons of the array
send their spikes to 31 local excitatory synapses on the global
inhibitory neuron; the inhibitory neuron, in turn, stimulates the
local inhibitory synapses of the 31 excitatory neurons; each
excitatory neuron stimulates its first and second neighbors
on both sides using two sets of locally connected synapses.
The first and second neighbor connections of the neurons at
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Fig. 3. Schematic representation of the connectivity pattern implemented
by the internal hard-wired connections (closed boundary condition). Empty
circles represent excitatory neurons and the filled circle represents the global
inhibitory neuron. Solid/dashed lines represent excitatory/inhibitory connec-
tions. Connections with arrowheads are monodirectional, all the others are
bidirectional.

the edges of the array are connected to pads. This allows
us to leave the network open, or implement closed boundary
conditions (to form a ring of neurons [13]), using off-chip
jumpers.

All of the synapses on the chip can be switched off by
appropriately setting the external bias voltages that control
their synaptic weights. This allows us to inactivate either the
local or the AER synaptic connections, or to use them in some
arbitrary combination. A detailed description of the IFWTA
chip was presented in [14].

III. ORIENTATION SELECTIVITY EXPERIMENTS

Orientation selectivity is achieved by appropriately map-
ping feed-forward connections from the TMPDIFF pixels to
the IFWTA chip neurons (via the PCI-AER board), and by
activating the local recurrent connections on the IFWTA chip.
The feed-forward mapping is set so that each IFWTA neuron
is excited by all the pixels of the TMPDIFF chip belonging to
a central bar with a specific orientation. We implemented 31
sets of mapping tables that map 31 differently oriented bars
onto the 31 excitatory neurons of the IFWTA chip.

In our experiments we displayed to the TMPDIFF chip
flashing oriented white bars on a dark background using
an LCD display. The activity of the TMPDIFF chip was
monitored by the PCI-AER board and transmitted (via the
PCI-AER board mapping tables) to the IFWTA chip. We
time-stamped and logged both the TMPDIFF and IFWTA
address-events for data analysis. To characterize the system we
collected the system’s activity in response to oriented flashing
bars with 30 different orientations. Each flashing bar was
displayed for approximately 40 seconds, flashing at a rate of
about 3Hz. The monitoring of the address-event data lasted for
25 seconds, starting 5 seconds after stimulus onset. Figure 4
shows the integrated response of the TMPDIFF chip to the 30
orientations as grayscale images.

We repeated the same experiment for two different condi-
tions, in terms of the local connectivity of the IFWTA chip.
In the first condition the biases of the IFWTA chip were set
to implement a purely feed-forward model: local recurrent
synapses were inactive and the neurons’ input was completely
determined by the activity of the retinal pixels. Subsequently,

Fig. 4. Integrated response of the silicon retina to oriented flashing bars. Gray
levels represent the average pixel activity (ON events) over the monitoring
period.

we activated the recurrent connectivity to implement the feed-
back model maintaining all other parameters unchanged. Three
sets of local synapses were used: first neighbor excitatory
to excitatory synapses to simulate the mutually excitatory
connections among cells with similar preferred orientation,
inhibitory and excitatory synapses connecting the global in-
hibitory neuron to the excitatory neurons and vice versa to
simulate the mutual inhibition among cells with different
preferred orientation.

Orientation tuning curves (i.e. graphs of neural response vs
stimulus orientation) are typically measured in experiments
related to the characterization of orientation selectivity in
visual cortical neurons. We applied the same analysis to our
data: the recorded activity of the IFWTA neurons was used to
compute the mean firing rate of each neuron in response to
the stimuli and tuning curves were obtained by plotting these
data for each neuron as a function of orientation (see Fig. 5).

The TMPDIFF central pixels are mapped to all neurons,
therefore each IFWTA neuron is also receiving input events
when its non-preferred orientation is presented to the retina.
The effect of this “base line” input is clearly visible in the
feed-forward model, where the activity of the IFWTA neurons
simply reflect the input from the retina. In this case, the
frequencies in the tuning curves are greater than zero for
all orientation and a maximum is observed at the preferred
orientation. In the feed-back model the “base line” activity
is suppressed and the activity in response to the preferred
orientation is amplified.

We fitted the tuning curves to quantitatively estimate the
effect of recurrent connectivity on the response of the orienta-
tion selective neurons. We used a von Mises function as fitting
function [15], defined as

M(θ) = Aek[cos2(θ−φ)−1] (2)

where A is the value of the function at the preferred orientation
φ, and k is a width parameter, from which the half-width at
half-height θ0.5 may be calculated (in radians) as:

θ0.5 = 0.5arccos[(ln0.5 + k)/k]; k > −0.5ln0.5 (3)

The von Mises function approximates a Gaussian in shape
over a biologically likely range of values of k. A least-
squares fitting of the data to the von Mises function was
used to estimate the parameters of the tuning curve of each
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Fig. 5. Tuning curves for the feed-forward (dashed line) and the feed-back
(solid line) model of orientation selectivity. The mean frequency (Hz) of each
neuron is plotted as a function of stimulus orientation. The top left graph
shows the activity of the inhibitory neuron, the other graphs show the activity
of the excitatory neurons (a bar representing the retinal pixels mapped to the
neuron, i.e. its preferred orientation, is shown in each plot).

Feed-forward Model Feed-back Model

Mean STD Mean STD

A (Hz) 10 2 19 4

θ0.5 (degrees) 21 2 19 2

Baseline activity (Hz) 1.7 0.6 0.07 0.11

Preferred orientation

error (degrees) 3 2 3 2

TABLE I

MEAN AND STANDARD DEVIATION (STD) OVER THE POPULATION OF 31

ORIENTATION SELECTIVE NEURONS.

selective oriented neuron. The R-square value (the square of
the correlation between the measured values and the values
predicted by the fit) provides a measure of the goodness of
the fit; it can take on any value between 0 and 1, with a value
closer to 1 indicating a better fit. The mean R-square across
all fits is 0.982 and its standard deviation is 9 × 10−3: on
average the fits explain 98% of the total variation in the data.
The mean parameter values estimated from the fits are listed
in Tab. I. This table confirms in a quantitative way what can
be observed qualitatively in Fig.5: the network in the feed-
back configuration amplifies (with respect to the feed-forward
configuration) the activity of the neurons at the preferred
orientation. On average the peak activity in the feed-back
network is twice the peak activity in the feed-forward network.
Sharpening of the tuning curves is also observed: on average
the ratio between the half-width at half-height for the two
configurations is 0.9 (feed-back over feed-forward).

IV. CONCLUSION

We have described a real-time multi-chip system consisting
of a retina and a general AER competitive network composed
of spiking neurons (the IFWTA chip) that can be used to
implement in real time computational models of orientation

tuning based on recurrent connectivity patterns. The VLSI
neurons can detect the orientation of a visual stimulus, and
have a response tuning similar to that observed in the mam-
malian visual cortex. The system is able to implement arbitrary
mappings of spikes from the neuromorphic sensors to the
IFWTA chip neurons, and strengths of the local recurrent
connections on the IFWTA chip can also be modulated.
This flexibility will allow us to explore further the range
of collective processing possible in these circuits, and apply
them to other tasks of feature detection in vision, and other
modalities.

ACKNOWLEDGMENT

This work was supported by the ALAVLSI (IST-2001-
38099), CAVIAR (IST-2001-34124), and DAISY (FP6-2005-
015803) EU grants, and by the ETH TH 0-20174-04 grant. We
thank P. Del Giudice and V. Dante (ISS), for original design of
the PCI-AER board and A. Whatley, G. Dietrich, S. Zahnd,
M. Oster, F. Roth, and C. Girardin (INI), for help with the
hardware setup and data analysis.

REFERENCES

[1] R. J. Douglas and K. A. C. Martin, “Neural circuits of the neocortex,”
Annual Review of Neuroscience, vol. 27, pp. 419–51, 2004.

[2] D. Ferster and K. D. Miller, “Neural mechanisms of orientation selec-
tivity in the visual cortex,” Annu. Rev. Neurosci., vol. 23, pp. 441–71,
2000.

[3] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,
“AER imager filtering architecture for vision–processing systems,” IEEE
Transaction on Circuits and Systems – I, vol. 46, pp. 1064–71, 1999.

[4] P. Venier, A. Mortara, X. Arreguit, and E. A. Vittoz, “An integrated
cortical layer for orientation enhancement,” IEEE Journal of Solid–State
Circuits, vol. 32, no. 2, pp. 177–86, 1997.

[5] G. Cauwenberghs and J. Waskiewicz, “Focal–plane analog VLSI cellular
implementation of the boundary contour system,” IEEE Transaction on
Circuits and Systems – I, vol. 46, no. 2, pp. 1064–71, 1999.

[6] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, T. Burg, and R. Dou-
glas, “Orientation-selective aVLSI spiking neurons,” Neural Networks,
vol. 14, no. 6/7, pp. 629–643, 2001, special Issue on Spiking Neurons
in Neuroscience and Technology.

[7] T. Y. W. Choi, P. A. Merolla, J. V. Arthur, K. A. Boahen, and B. E.
Shi, “Neuromorphic implementation of orientation hypercolumns,” IEEE
Transactions on Circuits and Systems I, vol. 52, no. 6, pp. 1049–60,
2005.

[8] V. Dante, P. Del Giudice, and A. M. Whatley, “PCI-AER – hardware and
software for interfacing to address-event based neuromorphic systems,”
in The Neuromorphic Engineer, 2005, vol. 2, no. 1, pp. 5–6.

[9] M. Oster, “Tuning aVLSI chips with a mouse click,” The Neuromorphic
Engineer, vol. 2, no. 1, p. 9, 2005.

[10] J. Kramer, “An integrated optical transient sensor,” IEEE Trans. on
Circuits and Systems II, vol. 49, no. 9, pp. 612–628, Sep 2002.

[11] P. Lichtsteiner, T. Delbruck, and J. Kramer, “Improved ON/OFF tem-
poraly differentiating address-event imager,” in 11th IEEE International
Conference on Electronics, Circuits and Systems. IEEE, December
2004, pp. 211–214.

[12] K. Boahen, “Communicating neuronal ensembles between neuromor-
phic chips,” in Neuromorphic Systems Engineering, T. S. Lande, Ed.
Norwell, MA: Kluwer Academic, 1998, pp. 229–259.

[13] R. Hahnloser, R. Sarpeshkar, M. Mahowald, R. J. Douglas, and S. Seung,
“Digital selection and analog amplification co-exist in an electronic
circuit inspired by neocortex,” Nature, vol. 405, no. 6789, pp. 947–951,
2000.

[14] E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network
of integrate-and-fire neurons,” in Proceedings of IEEE International
Symposium on Circuits and Systems. IEEE, 2004, pp. V–357–V–360.

[15] N. V. Swindale, “Orientation tuning curves: Empirical description and
estimation of parameters,” Biological Cybernetics, vol. 78, pp. 45–56,
1998.

1238


	Main
	Welcome Messages
	Committees
	Table of Contents
	Technical Program
	Tutorials
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

