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The variables involved in the equations that describe realistic synaptic dynamics always vary in a
limited range. Their boundedness makes the synapses forgetful, not for the mere passage of time,
but because new experiences overwrite old memories. The forgetting rate depends on how many
synapses are modified by each new experience: many changes means fast learning and fast forget-
ting, whereas few changes means slow learning and long memory retention. Reducing the average
number of modified synapses can extend the memory span at the price of a reduced amount of
information stored when a new experience is memorized. Every trick which allows to slow down
the learning process in a smart way can improve the memory performance. We review some of the
tricks that allow to elude fast forgetting �oblivion�. They are based on the stochastic selection of the
synapses whose modifications are actually consolidated following each new experience. In practice
only a randomly selected, small fraction of the synapses eligible for an update are actually modi-
fied. This allows to acquire the amount of information necessary to retrieve the memory without
compromising the retention of old experiences. The fraction of modified synapses can be further
reduced in a smart way by changing synapses only when it is really necessary, i.e. when the
post-synaptic neuron does not respond as desired. Finally we show that such a stochastic selection
emerges naturally from spike driven synaptic dynamics which read noisy pre and post-synaptic
neural activities. These activities can actually be generated by a chaotic system. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2213587�
ost cognitive functions rely on our remarkable ability
o record and store experiences in our memory. Nerve
ells (neurons) and the way they are linked through syn-
ptic connections are widely believed to constitute the el-
mentary storage devices of the brain. In the past 50 yr
everal models of artificial networks of neurons with plas-
ic synapses have been proposed. They were constructed
ith simplified models of biological neurons and synapses
nd they were shown to have remarkably good memories,
o the point that most of the investigators thought that
he process of storing experiences in our memory was
nderstood, at least at a theoretical level. In the last de-
ade, however, the neuroscience theorists discovered that
he memory performance of these networks is drastically
educed when more realistic synapses are considered. In
articular, as soon as the strengths of the synaptic con-
ections vary in a limited range, the number of memories
hat can be stored and remembered grows only as the
ogarithm of the number of synapses. The oldest experi-
nces are forgotten at a rate that depends on the average
umber of synapses that are modified. A possible solution
o this problem is to reduce as much as possible the num-
er of synapses that are modified, for example, by con-
olidating the modifications of a randomly selected subset
f synapses. We review the techniques that allow us to
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increase the memory of artificial neural networks by
slowing down the process of synaptic modification. The
stochasticity enables an unbiased reduction in the num-
ber of synaptic modifications and plays a key role in
memory formation.

I. INTRODUCTION

Highly simplified neural networks based on simple
McCulloch-Pitts neurons1 like perceptrons2–4 and Hopfield
networks5,6 can store and retrieve an enormous number of
memories. For a long time they have given the illusion that
the theoretical problem of learning and memory could be
solved with such simplified models of neurons and synapses.
In these networks the neurons are simple threshold units,
active when the total input generated by the other neurons is
above a certain threshold, inactive otherwise. The synapses
weigh the interaction between different neurons and they are
modified through switch-like transitions from one stable state
to another. The fact that the biological neurons and synapses
are highly complex has been often regarded as an evolution-
ary accident. This intellectually unsatisfying scenario turned
out to hide serious problems. Indeed, in all these models of
synaptic plasticity, the memory capacity strongly depends on
the number of stable synaptic states. For example, for both
the perceptron and the Hopfield networks, the number of
synaptic states that are necessary to learn properly all the

memories grows with the number of memories that are to be
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tored �see Fig. 1�. This would imply that the spread between
he maximum and the minimum synaptic efficacies increases
ith the number of memories.

Alternatively, given that biological synaptic efficacies
an vary in a limited range �i.e., they are bounded�, then
very synapse should be modified by an amount that de-
reases with the number of memories that have to be stored.
hat happens if we do not allow for arbitrarily small steps?
e will present in the next section a simple argument that

hows that the memory capacity decreases so dramatically
hat only a few memories could be stored in the whole brain.
he effects of synaptic boundaries on memories are known
ince the late 1980s.8 Such a strong reduction of memory
erformance was discussed already in the early 1990s9–11 and
t is related to the entity of the synaptic modifications follow-
ng each experience to be memorized �the number of syn-
pses that are modified and the amount by which they are
odified�: if large synaptic changes occur, the network is

ood at acquiring new memories but bad at retaining the old
nes; for small synaptic modifications, old memories are
verwritten at a lower rate, but less information is stored
hen the network goes through new experiences. The
emory reduction does not depend on the specific architec-

ure of the network, it is an inherent property of any bunch of
ynapses, whether they are in a network or they are consid-
red as isolated variables.

Is it possible to reduce the learning rate as much as re-
uired to have large memory spans without reducing too
uch the learning step? One possibility is to reduce the

earning rate by modifying only a randomly selected subset
f synapses when a memory is stored.9–12 Such a trick re-
uces the effective learning rate without the recourse to un-
easonably small synaptic modifications. The learning rate
an be further reduced if the neural representation of memo-

IG. 1. Perceptron synaptic weights grow with p, the number of memories
hat are stored: the maximum minus the minimum synaptic weight is plotted
gainst p �circles� in simulations of a perceptron �see, e.g., Refs. 2–4 and 7�
ith unbounded synapses learning random uncorrelated binary patterns �N
1000 input neurons�. The growth follows a power law �square root� on a
ide range and then it goes up quicker as the number of memories approach

he maximal storage capacity �p=2N=2000�. The average absolute value of
he synaptic weights grows in a similar manner �triangles�. The growth is
ue to the increase of the number of iterations per pattern required to learn
ll memories �gray line and data points�.
ies is sparse, and if the synapses are modified only when
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necessary, i.e., when the post-synaptic neuron does not re-
spond as desired �see Sec. VII�. We finally show that the
random selection can be achieved in a natural way when the
pre- and post-synaptic activity is noisy.13,14 This noise can be
generated by a chaotic system like a network of randomly
connected integrate-and-fire neurons.11,15

II. LEARNING WITH REALISTIC SYNAPSES:
THE PROBLEM OF OBLIVION

In a typical learning scenario, the internal state of each
synapse is continuously dragged around by the stimuli cor-
responding to the neural representation of the experiences
that are memorized. Every new experience modifies the in-
ternal state of each synapse, and it partially or totally over-
writes the memory of old experiences. In the case in which
each synapse is bounded, the old memory traces are not only
obscured by the noise generated by the new memories, but
they are actually forgotten. We illustrate this forgetting
mechanism with a simple intuitive argument �see Fig. 2�. We
consider a learning scenario in which a synapse goes through
an uninterrupted flow of experiences. Each experience is
memorized by modifying the synapse. We assume that the
synapse remains constant between two successive experi-
ences. We now focus on a specific experience that occurred
some time ago and we try to establish whether the synapse
we are considering preserves the memory of that experience.
Let us first focus on the case of unbounded synapses �Fig. 2,
top panel�. The synapse starts from some initial value and
when it goes through experience A, it is potentiated �see the

FIG. 2. Limiting the synaptic strengths between two bounds causes forget-
ting. Top panel: an unbounded synapse remembers about experience A. The
synaptic value is plotted against time. Every experience �A–F� modifies the
synapse either upward or downward. Bottom panel: the same synapse is
now bounded from above �the shaded wall represents a rigid bound for the
maximal value of the synapse�. The trajectories that can be seen through the
wall are those that the synapse would have followed, were not the bound
there. Now the modifications induced by A cannot be propagated up to the
present time �see the text for the explanation�.
black trajectory�. Successive experiences �B–F� bring the
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ynapse up and down, and the final, present value is deter-
ined by the sum of all these modifications. We now need a

riterion to establish whether the final value is still encoding
nformation about experience A. In order to do that, we make
virtual experiment: we go back to the past and we modify

xperience A in such a way that instead of potentiating the
ynapse, it depresses it �see the gray trajectory determined by
xperience A��. A necessary condition to retain memory of A
s that the modification of A can be propagated through time
nd it can affect the final value of the synapse. If the final
alue is always the same whatever happened when the syn-
pse went through experience A, then A is forgotten. In the
ase of unbounded synapses, the new trajectory is simply
isplaced by a certain amount that depends on the difference
etween A and A�, and the final value is clearly dependent
n this difference. So the final value is still correlated to the
odification induced by A.

We now show that the scenario is quite different in case
f bounded synapses �see Fig. 2, bottom panel�. We perform
xactly the same experiment as we did for the unbounded
ynapses. Now experience B already brings the synapse to its
aturation value �indicated by a shaded wall�. The synapse
annot go any farther up, so it stays at the maximum, also
hen experience C tries to potentiate the synapse again.
hen we now go back in the past and modify A into A� we

ee that initially the black and the gray trajectories are dif-
erent, but when the synapse goes through C, it hits the upper
ound and the two trajectories merge. Since then the two
rajectories become identical and the final value is the same,
hether the synapse went through A or A�. In this case the
odification induced by A can be changed in a wide range

nd still it cannot affect the final synaptic value. So at the
resent time A has been forgotten. In this simple example we
howed that forgetting is directly related to hitting the upper
r the lower bound of the synapse.

How fast is such a forgetting? We can estimate the for-
etting rate by computing the number of synapses that never
it one of the two boundaries. These synapses are guaranteed
o retain memory of the experience we are tracking. We as-
ume that the synaptic modifications cannot be arbitrarily
mall and that all the synaptic states can be visited. The
robability that a synapse hits one of the two boundaries
ollowing the experience at time t is Q�t�= pclose�t�pmod�t�,
here pclose�t� is the probability that the synapse is close

nough to one of the two boundaries and pmod�t� is the prob-
bility that the synaptic modification is large enough to
it the bound. The number of synapses n that never hit a
ound is

n = N�
t=1

p

�1 − Q�t�� , �1�

here N is the total number of synapses and p is the number
f experiences each synapse goes through after the memory
e intend to track. If Qmin=mint Q�t�, then we immediately

ealize that n decays to zero exponentially with p:

n = N�
p

�1 − Q�t�� � N�1 − Qmin�p � Ne−Qminp.

t=1

wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
To retrieve information about the tracked memory, at
least one synapse should be able to remember it �n�1�. This
imposes a tight constraint on the number of patterns p that
can be stored:

p � −
log N

log�1 − Qmin�
.

The logarithmic dependence on N makes this limitation
severe, and the neural network extremely inefficient as a
memory. Most of the synaptic resources are devoted to the
last stimuli seen, even when the information collected about
the stimulus and stored in the synapses is more than what is
needed to retrieve correctly the memorized pattern. Notice
that the condition that at least one synapse remembers is a
necessary condition. In general, it will not be sufficient to
retrieve enough information about the memorized stimulus to
reconstruct the pattern of activities imposed by the stimulus
during training, not even to recognize it as familiar. p is
essentially the memory span in terms of patterns whose
memory trace is still in the present synaptic structure. This
memory trace can be so feeble that it might be impossible to
retrieve any information about the pattern of activities in the
memory sliding window. This argument is very general and
it can be made rigorous for practically all biologically real-
istic synapses.11

The expression of the upper bound of p suggests a pos-
sible way out to elude the memory constraint: if consolidated
synaptic changes are rare enough �Qmin�1�, then the sliding
window in which modifications are remembered can be ex-
tended to 1/Qmin patterns:

p � −
log N

log�1 − Qmin�
�

log N

Qmin
.

The selection of the synapses that should change can be pro-
vided by the structure of the stimuli: for example, when the
neural representation of the stimuli is so sparse that the syn-
apses changed by one stimulus are unlikely to be touched by
another stimulus because the patterns of activities corre-
sponding to different stimuli have negligible overlaps. How-
ever, this is usually not enough, and additional mechanisms
for further refining the selection are needed. In the absence
of any information about the relevance of the stimuli, one
unbiased possibility is to select randomly a fraction of the
synapses which were chosen by each stimulus as candidates
to change their internal state. Each synapse would change
only with a given probability. This stochastic selection turns
out to work nicely for random uncorrelated patterns even
when the number of synaptic states is reduced to the extreme
case of bistable synapses.9–12 For example, in the case of
random uncorrelated binary patterns like those used for the
Hopfield model5 there is a minimal Qmin, which still allows
us to acquire enough information to retrieve a pattern after a
training of a single presentation. Such a Qmin can be reduced
down to a quantity that scales like 1/�N. This allows to store
a number of patterns that scales like �N log N, which is a
considerable improvement. In what follows we will consider
only bistable synapses since they behave qualitatively the

10,16
same as multistate synapses. Moreover, there is accumu-
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ating evidence that biological single synaptic contacts are
ndeed bistable on long time scales.17,18 Interestingly, there is
lso an increasing interest in implementing plastic bistable
ynapses in electronic hardware.13,19–22

II. LEARNING ON TOP OF THE EQUILIBRIUM
ISTRIBUTION

When the synapses vary in a limited range, the network
ends to automatically forget for the reasons explained in the
revious section. Synaptic modifications are essentially for-
otten because new experiences tend to bring the distribution
f the synaptic weights toward some equilibrium distribu-
ion, which depends on the statistics of the patterns and on
he synaptic dynamics. This distribution does not depend on
he initial condition, and hence it does not depend on the
ynaptic modifications that are induced by old memories.
hese modifications set a specific synaptic distribution,
trongly correlated with the patterns to be memorized. When

specific subset of synapses is considered �for example,
hose synapses that are potentiated by a particular experi-
nce�, the equilibrium distribution is perturbed. The succes-
ive presentations of other, dissimilar �uncorrelated� patterns
end to “levigate” the distribution and to smooth out any
oughness. The distribution of synaptic weights for every
ubset of synapses tends exponentially to the equilibrium
istribution, which means a state of oblivion. �Interestingly,
blivion comes from Latin “ob liviscor,” which means “to-
ards levigating.”�: whatever was the perturbation intro-
uced by an old pattern, it is completely forgotten. To illus-
rate quantitatively this forgetting process, we introduce the
robabilities Gi�t� that synapse i is in the potentiated state at
ime t. Following a presentation of a pattern between time t
nd t+1, the vector G changes according to

G�t + 1� = G�t� + Q+�t��1 − G�t�� − Q−�t�G�t� , �2�

here Q+�Q−� represents a vector of learning rates that en-
odes the probability that long term potentiation, LTP �long
erm depression, LTD�, is induced. The product Q±G is taken
omponent-wise. Q± depends on the activity of the pre- and
ost-synaptic neurons during the presentation of the pattern
nd on the specific synaptic dynamics. The probability that
he synapse makes a transition to the potentiated state is
iven by Q+ multiplied by the probability that the synapse is
ctually in the depressed state 1−G�t�, analogously for de-
ression. These factors reduce progressively the fraction of
ynapses that are allowed to change as G tends to the ex-
remal values 0,1, and guarantees the existence of an equi-
ibrium distribution �notice that in the case of the classic
erceptron and the Hopfield model, the synapses are un-
ounded and there is no equilibrium distribution�.

We denote the equilibrium distribution with Geq and we
onsider the dynamics of the perturbations G*=G−Geq

round the equilibrium distribution. Tracing these perturba-
ions in time and setting �G*�t�=G*�t+1�−G*�t�, we calcu-
ate:

�G*�t� = − Q�t�G*�t� + L�t� , �3�

here L�t�= �1−Geq�Q+�t�−GeqQ−�t� is the learning term

hat perturbs the equilibrium distribution, and Q�t�=Q+�t�

wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
+Q−�t� is the rate at which the forgetting term brings G*

toward zero and, hence, G toward Geq. The larger the frac-
tion of synapses that are changed, the faster is learning, and
the faster is the race toward the oblivion.

After t presentations, starting from the equilibrium dis-
tribution �G*�0�=0�, we have

G*�t + 1� = �
t�=0

t

L�t�� �
k=t�+1

t

�1 − Q�k�� . �4�

The product of the �1−Q�k�� factors provokes a fast decay of
the old learning terms. If the learning process is slowed
down by contracting all the transition probabilities �Q±

→�Q±, with ��1�, then �4� becomes

G*�t + 1� = ��
t�=0

t

L�t�� �
k=t�+1

t

�1 − �Q�k�� ,

where the � in front of the sum comes from the contraction
of the Q± contained in L�t�. If � is small:

G*�t + 1� � ��
t�=0

t

L�t��e−�Qmax�t−t��, �5�

with Qmax=maxkQ�k�. As � becomes small �slow learning
limit�, each perturbation shrinks by the same factor �the �
factor in front of the sum� and the nonlinearities due to the
forgetting terms disappear �1−�Q→1�. The linearization is
due to the fact that the forgetting term −QG* scales with the
distance G* of G from the equilibrium distribution. If this
distance remains small �proportional to ��, then the forget-
ting term scales as �2 �both G* and Q are proportional to ��,
and it can be arbitrarily small when compared to the learning
term L, which instead scales linearly with �. From �5� we
conclude that starting from the equilibrium distribution and
appropriately reducing the learning rates Q± �small �� will
lead to a linear summation of the synaptic changes, as if
synaptic saturation were not present �cf. Fig. 3�. Notice that
for each learning problem the learning rate � can be reduced
in advance and may then remain constant throughout the
learning process.

In the learning scenario considered so far the equilibrium
distribution depends on the statistics of the synaptic modifi-
cations presentations, and in the slow learning limit we have

Geq =
	Q+


	Q+
 + 	Q−

,

where the average 	¯
 is extended to all the patterns that are
presented to the network �see Ref. 23 for a rigorous deriva-
tion of this formula that is valid also when the same patterns
are presented more than once, as in Ref. 24�.

IV. CHOOSING THE RIGHT NEURONAL THRESHOLD:
THE ROLE OF INHIBITION

In the slow learning scenario �small �� the whole learn-
ing process develops in the neighborhood of the equilibrium
distribution. In order to be able to read the perturbations
provoked by each stimulus and to retrieve the information

about its activity pattern, it is important to make the neuronal
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ynamics sensitive to small fluctuations. For instance, if two
evels of activity should be discriminated depending on the
attern to be recalled, the threshold separating the two post-
ynaptic current distributions should be finely tuned. Other-
ise, small relative variations of the threshold �percentages
f the order of � /Geq� might completely disrupt the possibil-
ty to retrieve information from the synaptic matrix.

To illustrate a possible solution of this readout problem
e consider a single neuron that is driven by a set of inputs

� with N components ��i
��, weighted by binary synapses of

trength Ji=1/0. The total excitatory current to the post-
ynaptic neuron is �iJi�i

�. Due to the stochastic modifications
riggered by presenting many different patterns, the synaptic
trengths become random variables. To make the neuron sen-
itive to the fluctuations of the post-synaptic current around
he equilibrium distribution, we subtract a negative quantity
hat depends on the pattern �. For example, one might have
nstructured inhibition projecting onto the same post-
ynaptic neuron through the inhibitory synaptic strength gI.
he total synaptic current would then be

h� = �
i

Ji�i
� − gI�

i

�i
�.

f we assume that the expected excitatory synaptic strength
n the equilibrium, Geq, is identical for each component �and
herefore drop the index i� we can choose the global inhibi-
ory strength as gI=Geq. The expected post-synaptic current

�

IG. 3. Reducing the learning rates, Q→�Q, reduces the synaptic distortion
mposed by the saturating boundary, and learning becomes possible as if the

oundaries would not be present. �A� The optimal weight vector, G̃*�t�
G̃�t�−G�0�, would evolve according to the dynamics �G̃*�t�=L�t�, which

s obtained by neglecting the saturation term −Q�t�G*�t� in the dynamics for
he effective weight vector G*�t�=G�t�−G�0�; see Eqs. �3� and �7�. Starting

rom G̃*�0�=G*�0�=0 and presenting four patterns, each causing synaptic
pdates, the effective weight vector G* deviates by more that 90° from the

ptimal weight vector G̃*, and hence prevents a faithful learning. The arrows

epresent the final vectors after four iterations of the dynamics of G̃*�t�
dashed line� and G*�t� �solid line�, respectively. �B� If the learning rate is
educed by a small factor �, the synaptic distortions are disproportionately
educed by a factor �2, while the length of each update vector is only
educed by �. This rescaling brings the effective weight vector G* close to

he optimal weight vector G̃*. As can be proven, convergence is achieved if
he effective weight vector, G*, is defined by G*�t�=G�t�−gI, where gI is
ny globally inhibitory weight vector within the synaptic bounds, for in-
tance, with identical components gI=1/2.
n response to pattern �i then becomes

wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
	h�
 = �
i

�Gi − Geq��i
� = �

i

Gi
*�i

�.

A small enough threshold would be sufficient to discriminate
between two distributions of h.

This subtraction has a twofold value: on the one hand it
allows the neuron to read small perturbations and allows
small �’s which linearize the learning process. On the other
hand it permits to change only a small fraction of synapses to
discriminate between patterns which should produce differ-
ent responses.

A. Adapting inhibition

The problem of fine tuning is now moved to the choice
of the proper level of inhibition. If the synaptic dynamics
depends solely on the statistics of the patterns and it does not
get any feedback from the neural dynamics �see below�, then
the solution of the problem requires the introduction of some
additional mechanism. Interestingly this mechanism can be
based on the same principles as the learning mechanism,
because it is essentially required to measure the equilibrium
distribution. One possibility is that the connections between
the excitatory neurons of the input layer and the inhibitory
cells are learned in the same way as the excitatory synaptic
weights, with the only difference that the inhibitory synapses
are slower �i.e. their learning rates are smaller�. If the inhibi-
tory cells are activated with the same statistics as the output
excitatory cells, then the equilibrium distribution will be the
same and gI can be written as:

gI = Geq + gI
*��1, . . . ,�p� .

gI
* depends on the structure of the patterns and on the details

of the synaptic dynamics. If the inhibitory neurons are acti-
vated with the same statistics as the output excitatory neu-
rons onto which they project, but they are not correlated with
the specific activity, they have following each stimulus, then
gI

* will not be correlated with G*, and it will simply represent
some noise. If the activity of the inhibitory cells is correlated
with the activity of the output neurons, presentation by pre-
sentation, then gI

* will be correlated with G*. In particular, if
the excitatory connections to both the excitatory output neu-
rons and the inhibitory neurons are updated with a Hebbian
rule, then gI

* will tend to cancel the signal produced by G*.
To preserve the memory, the signal of gI

* should be smaller
than the one produced by G*. The only way of achieving a
smaller signal without disrupting the cancellation of the
equilibrium distributions is to reduce the transition probabili-
ties of the connections between excitatory to inhibitory cells.
The equilibrium distribution remains unchanged when both
Q+ and Q− are multiplied by the same factor, but the signal
depends linearly on the multiplying factor. An alternative
possibility is to have an anti-Hebbian rule that updates the
excitatory synapses projecting onto the inhibitory neurons.

All these mechanisms move the problem to the proper
tuning of other parameters �like the transition probabilities�
but prove that, in principle, it is possible to subtract the equi-
librium distribution, even when the statistical structure of the

patterns is not known a priori.

P license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



V
O

t
o
b
e
a
w
c
d
t
c
e
t
s
p
l
p
p
a
i
a
a
r
e
n
t

V
A

t
q
l
o
e
e
v
b
s
r
p
w
m
s
n
c
t
f
a
w

V
T

e
s

026112-6 Fusi and Senn Chaos 16, 026112 �2006�

Do
. SENSITIVITY TO THE CODING LEVEL
F THE PATTERNS

If the patterns that are presented have very different sta-
istics �e.g., different coding levels, or different frequency of
ccurrence�, then different sets of stimuli might compete to
ring the synaptic distribution toward completely different
quilibrium distributions �see Refs. 11 and 25 for a few ex-
mples�. The final equilibrium distribution will be some
eighted average of these distributions and it will still allow

lassification. However, the rate of convergence to the final
istribution can be very different from pattern to pattern, and
he forgetting term will be dominated by the patterns that
hange the highest number of synapses. To redistribute
qually the synaptic resources among the different patterns,
he transition probabilities should be tuned to guarantee the
ame balance between the number of potentiated and de-
ressed synapses for all patterns. For example, for uncorre-
ated random patterns with coding level f� �varying from
attern to pattern�, the probability of finding a potentiating
air of pre- and post-synaptic activities is f�

2 and the prob-
bility of a mismatched pair of activities is f��1− f��. The
nherent LTP transition probability q+ should scale as 1/ f�

2

nd the LTD probability as 1 / �f��1− f��� to ensure the bal-
nce for every pattern. Interestingly, in this case the equilib-
ium probability and the forgetting terms are the same for
very pattern. Notice that balancing LTP and LTD is not
ecessary in case some feedback about the performance of
he network �see Sec. VII�.

I. SENSITIVITY TO SIMILARITIES
ND CORRELATIONS BETWEEN PATTERNS

The equilibrium distribution is also strongly biased by
he correlations between patterns and by the relative fre-
uency of presentations of different stimuli. One way to il-
ustrate this point is to focus just on the dependency of Geq

n the relative frequency of presentation of each pattern. The
xistence of patterns that are presented more often than oth-
rs would imitate the fact that highly correlated patterns are
ery similar and, for the purpose of illustrating our point, can
e considered as repeated replicas of the same pattern. In
uch a case the equilibrium distribution and the ability to
ecall patterns change according to the relative frequency of
resentation of each pattern and the transition probabilities
ould be weighted by this frequency. This implies that
emory would be dominated by the patterns that are pre-

ented more often, while other patterns might be totally ig-
ored, especially if they should produce responses that are in
ontradiction with what the majority wants. This is probably
he case also in the living brain when classification is entirely
ree �i.e., not supervised�:26 subjects tend to classify patterns
lso according to their frequency of occurrence, especially
hen no feedback is provided.

II. REFINING THE SELECTION
HROUGH FEEDBACKS

Consolidated synaptic modifications should be rare
vents in the learning process. In the unsupervised learning

cenario considered so far, the selection of the synapses that

wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
should be changed is partially operated by the neural activity
and partially by the inherent stochastic mechanism acting at
the level of each synapse. Any kind of supervision might
provide some feedback about the correctness of the synaptic
modification and might help to refine the selection process.
This further selection permits us to enlarge the memory and
to partially remove the bias introduced by correlated pat-
terns. This is how it is possible to learn to discriminate pat-
terns that statistically would look too similar to be assigned
to different classes.

A. Implementation of the feedback signal

In a supervised learning scenario the external feedback
typically indicates what the desired response of the neuron is
in the presence of a specific stimulus. Such feedback can be
implemented by additional input currents supplied to the
neurons or by any other local or global signal �e.g., neuro-
modulators� that modifies the way synapses are updated.
These signals should affect the synaptic dynamics without
changing the information to be stored. For example, they can
modify the second order statistics of the trains of spikes of
the pre- and post-synaptic neurons when the mean rates are
the quantities to be stored.15 Alternatively, it can modify the
mean firing rates in a limited range, when the quantities to be
stored are just two levels of activation �for example, a high
firing rate or a low firing rate14,27�.

In what follows we will consider a scenario in which the
synapses are updated only when the response of the post-
synaptic neuron does not match the one desired by the su-
pervisor. This is the basic principle of the perceptron and the
delta learning rules �see, e.g., Refs. 2–4 and 7�. As soon as
the response of the post-synaptic neuron is correct, the syn-
apses are not updated. The advantage of reducing the number
of synapses to be changed is twofold: �1� it slows down the
forgetting process and it increases the memory span; �2� it
reduces the impact of correlations between activity patterns:
repeated occurrences of similar activity patterns does not
change the synaptic structure any further, unless memories
are not yet correctly stored.

B. The binary perceptron

The example of the perceptron with binary synapses pro-
vides a simple way to illustrate these concepts. The task is to
find the synaptic weights that connect N input neurons to a
single output neuron such that the total post-synaptic current
h� is below a certain threshold � for all patterns �� that
belong to class 0 �with target output z�=0�, and above � for
all patterns of class 1 �with target output z�=1�. For the
classical perceptron with analog-valued synaptic weights, an
appropriate weight vector can always be found by iteratively
applying the classical perceptron learning rule, provided that
the patterns are linearly separable �i.e., there is a weight vec-
tor w such that w�� is a subthreshold for patterns requiring
an output 0 and suprathreshold for patterns requiring an out-
put 1�. If the synaptic weights are binary, this linear separa-
bility of the two classes is not anymore sufficient to guaran-
tee the existence of a binary separation vector. The learning

28
problem becomes particularly hard �in fact, NP complete �
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n case of online learning, in which the synapses are kept
inary after every update. Recently we showed that if the
umber of input neurons N is large enough while the sepa-
ation margin remains strictly positive �see below� then a
inary weight vector that separates the classes always exists
see Refs. 29 and 30�. Moreover, the perceptron learning rule
ill find a solution with arbitrarily high probability as N

ncreases. However, to find such a solution, different require-
ents have to be met, as explained below.

. The learning rule

The perceptron calculates the total post-synaptic current
n response to a presynaptic pattern ��, h�=� j�Jj −gI�� j

�, and
ssigns 1 to the neuronal output if h� is above a threshold �,
nd 0 if it is below �. As introduced before, gI represents an
nhibitory synaptic strength that here is not modified. Syn-
pses from an active presynaptic neuron can be strengthened
f the target is 1, and weakened if it is 0. The synapses are
nly strengthened, however, if the target is 1 and the total
nput current is not yet too far above threshold �i.e., if h�

�+
 for some margin 
�0�. Similarly, the synapses are
eakened only if the target is 0 and h� is not yet too far
elow the threshold �i.e., h���−
�. Moreover, by a stochas-
ic selection, only a subset of synapses satisfying the above
riteria is finally chosen to be modified. Hence, when pre-
enting a pattern �� at time t the binary synaptic strengths

j�=0,1� are stochastically changed according to

j�t + 1� = �Jj�t� + � j
�� j

+�1 − Jj�t�� , if z� = 1, h� 	 � + 
 ,

Jj�t� − � j
�� j

−Jj�t� , if z� = 0, h� � � − 
 ,
�
�6�

here � j
± are binary random variables that are 1 with �small�

robability Q± and 0 otherwise. z� represents the target out-
ut for pattern ��, � the neuronal threshold, and 
 the learn-
ng margin. The factors containing Jj guarantee that a syn-
pse will only be potentiated, provided it is currently
epressed, hence the factor �1−Jj�t��, and a synapse will
nly be depressed provided it is currently potentiated, hence
he factor Jj�t�. The condition on the total post-synaptic cur-
ent h� prevents the synapse to be updated when the post-
ynaptic neuron responds already as desired by the supervi-
or. The condition on h� is referred to as a stop learning, or
ore appropriately as a no-update condition. Note that tak-

ng the expectation values in the above formula leads to the
ynamics of the potentiation probabilities G�t�, as specified
n Sec. III, Eq. �2� �with Q± defined later�.

. Conditions for efficient learning

Three ingredients are necessary to guarantee the conver-
ence to a set of synaptic weights that allows the post-
ynaptic neuron to respond correctly to all input patterns: �1�
global inhibition that roughly cancels the average excita-

ion, �2� a neuronal threshold that is small compared to the
otal excitatory input current, and �3� a small synaptic tran-
ition probability. The basic idea is that it is possible to con-
truct a solution in an arbitrarily small neighborhood of the
nitial synaptic distribution �i.e., the synaptic distribution de-

ermined by a large number of experiences that precede the

wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
presentations of the patterns that we intend to store�. Under
these condition, the departure from linear summation of the
learning terms caused by synaptic saturation can be kept so
small that the binary perceptron behaves like the classic per-
ceptron with unbounded synapses. In what follows we give
an intuitive argument for why the different ingredients are
necessary. We will make additional assumptions to keep the
argument as simple as possible. A rigorous proof of the com-
plete perceptron convergence theorem for binary synapses
can be found in Refs. 29 and 30.

3. The convergence proof

Let us assume that the components of the patterns are
drawn from the same statistics, and the patterns are presented
only once. In this case there is a unique equilibrium distri-
bution Geq that is the same for all components and does not
change in time. We further assume that every new pattern is
learned on top of the equilibrium distribution, and hence that
the initial potentiation probabilities G�0� are equal to Geq. In
the most general case, the statistics of synaptic modifications
can change because the statistics of the patterns mutate, or
because the external feedback changes. For the sake of sim-
plicity, we now assume that the distribution starts from a
generic G�0� and that the total synaptic current is given by
h�t�=� j�G�t�−G�0���. Instead of adding an inhibitory term
that cancels the equilibrium distribution, we subtract the ini-
tial distribution G�0�. We will discuss later the implications
of such an assumption. Consider again G*�t�=G�t�−G�0�. As
in Eq. �3�, we have

�G*�t� = − Q�t�G*�t� + L�t� , �7�

but now L�t�= �1−G�0��Q+�t�−G�0�Q−�t�. Here, Q�t�
=Q+�t�+Q−�t� is the vector of effective learning rates. It is
composed of Q+�t�=�tztc+�t�q, where �t is the presynaptic
activity, zt is the target output, q is a fixed transition prob-
ability determining the learning rate, and c+�t� is 1, when the
post-synaptic neuron does not respond as desired by the su-
pervisor and 0 otherwise. More precisely, we have c+�t�
=ztH��+
−h�t��, where H�¯� is the Heaviside function �1
when the argument is positive, 0 otherwise� and h�t�
=� j�Gj�t�−G�0��� j

t. Analogously, Q−�t�=�t�1−zt�c−�t�q,
where c−�t�= �1−zt�H�h�t�−�−
�.

If all components of G�0� are equal to 1/2, then L�t�
= �Q+�t�−Q−�t�� /2, and this “linear part” of the update vector
is proportional to the synaptic modifications that one would
have in the case of the classic perceptron with unbounded
synapses. Indeed, L�t� would be +q� /2 if the desired activity
of the post-synaptic neuron is 1 and h��, and −q� /2 if the
desired activity is 0 and h��. Were it not for the distortion
introduced by −Q�t�G*�t�, the theorem that guarantees the
convergence of the perceptron learning rule for linearly sepa-
rable patterns could be applied to our case. Fortunately, the
distortion introduced by −QG* can be made arbitrarily small
by a proper rescaling of the neuronal threshold � and the
learning rate q. Recall that forgetting term QG* scales as �2,
whereas L�t� only scales as �, so that there is always a small
� such that L�t� dominates. This is also expressed by formula
�5� and illustrated in Fig. 3. Notice that � is not a dynamic

variable. It is just a rescaling factor that is chosen at the
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eginning of the learning process, and it is never changed.
he iterative process to choose its value is only virtual.

If we want to fully map the dynamics �7� onto the one of
he classic perceptron, we need not only to keep the summed
istortions −QG* small, but we must also ensure that the
onditions for the synaptic updates, c±�t�, become the same
s in the classic perceptron throughout the learning process.
his is also achieved by decreasing the scaling factor �.

ndeed, with the scaling of the learning rate, q→q�, the total
ost-synaptic current will also be multiplied by the same
actor, h→h�. This is because h depends on the distance
etween G and G�0�. If the threshold is similarly scaled, �

��, the vanishing distortions −QG* will also lead to the
ame update conditions as in the classic perceptron. For
mall enough scaling factors �, the convergence of the learn-
ng process �7� is therefore guaranteed by the classical per-
eptron convergence proof.

So far we assumed that G�0� was subtracted from G to
ompute the response of the output neuron. What happens if
e decide to subtract a predefined arbitrary inhibition gI?
ortunately, the feedback of the supervisor would force the
xcitatory weight vector G�t� to move toward the arbitrarily
hosen inhibitory vector, even when there is no solution to
he learning problem �e.g., for nonlinearly separable pat-
erns�. As soon as the components of G�t� are close enough
o gI, then G*�t� can point in any direction and the solution to
he learning problem can be found. As a consequence, exci-
ation and inhibition will eventually balance. For a rigorous
roof of this argument we again refer to Refs. 29 and 30.

. Simulation results

The necessity of the three ingredients that ensure con-
ergence is confirmed by simulations. Figure 4 shows that
he number of iterations required for learning 20 random 0/1
atterns �with the same probability for 0 and 1� grows by
ore than a factor 100 if global inhibition �gI� changes from
value between 0.2–0.8 to either 0.05 or 0.95. It also shows

hat the required iterations increase by the same factor if the
hreshold ��� is beyond 0–0.2. The iterations would sym-

etrically increase if the threshold would be smaller than
0.2. The span of admissible thresholds roughly corresponds

o the span of admissible values for gI, and covers roughly
alf the span between the maximal and minimal excitatory
eight. Finally, the bottom panel shows that the transition
robability Q �which is scaled by the learning rate q� needs
o be small enough to ensure convergence. While no conver-
ence would arise if Q is above some value, convergence is
lways possible for small enough Q, although the number of
terations decays inversely with the decreasing Q.

Figure 5 summarizes the performances for different syn-
ptic models. The memory performance is evaluated by com-
uting the number of patterns that can be correctly retrieved.
his is done by increasing progressively the number of pat-

erns p to be stored until the quality of retrieval �the fraction
f patterns that are correctly retrieved� goes below 0.8. At the
op of Fig. 5 we show the quality of retrieval versus p for the
erceptron with binary synapses �crosses�, the stochastic bi-
ary perceptron without the no-update condition �triangles�,

nd the stochastic binary perceptron with the no-update con-

wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
dition �circles�. At the bottom of Fig. 5, we show how p
scales with N. Both stochastic versions of the binary percep-
tron perform significantly better than the deterministic binary
perceptron. For the first two p��N while for the determin-
istic perceptron p� log�N�. The difference in the perfor-
mance becomes huge when a large number of neurons is

FIG. 4. Perceptron with binary synapses: required iterations to learn cor-
rectly 20 random uncorrelated patterns as a function of �a� the inhibitory
synaptic strength gI, �b� the threshold � �scaled by 1/N�, and �c� the learning
rate q. In all cases the number of input neurons was N=500.
considered.
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III. IMPLEMENTING STOCHASTIC SELECTION
ITH SPIKE DRIVEN SYNAPTIC DYNAMICS

Noisy neural activity can naturally implement the sto-
hastic selection mechanism described in the previous sec-

IG. 5. Memory performance for different synaptic models. Top: the quality
f retrieval �i.e., fraction of patterns that are retrieved correctly� is plotted
gainst the total number memories that are stored during learning. As the
umber of memories increases, the quality of retrieval decreases because of
he interference between patterns and the decay of the mnemonic trace due
o the boundedness of the synapses. The quality of retrieval is plotted for
hree models: crosses represent the performance of a perceptron with binary
ynapses; triangles are for a perceptron without a no-update condition and
inary synapses; and circles are for a perceptron with the no-update condi-
ion and binary synapses. In all cases the number of input neurons N is 5000
nd the patterns �� to be stored �the memories� are random uncorrelated,
ith each component �i

� being 1 or 0 with probability 1 /2. Bottom: the
torage capacity—expressed as the number of patterns that can be retrieved
ith quality larger than 0.8—is plotted against N for the same models con-

idered in the top panel. The gray line represents the upper bound for all
etworks with binary synapses �Ref. 31�.
wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
tions, even when the synaptic dynamics are inherently deter-
ministic. We illustrate the main ideas by presenting a simple
example. It will be clear to the reader that the same prin-
ciples can be applied to a variety of synaptic models. We
consider now a scenario in which the relevant information
about a memory is encoded in a pattern of neural firing rates.
When the plastic network goes through a new experience,
each synapse memorized the activity of the pre- and post-
synaptic neurons by modifying its internal state. Inspired by
the cortical recordings in vivo, we assume that the neural
activity is noisy. For example, we assume that the pre and
post-synaptic neurons emit spikes according to a Poisson
process with a mean frequency determined by the pattern of
activities to be memorized. If these stochastic processes are
statistically independent, each synapse will behave in a dif-
ferent way, even if it experiences the same pre- and post-
synaptic average activity. The dynamics can be constructed
in such a way that only a randomly chosen subset of
the synapses consolidate the modifications induced by the
stimulus.

We illustrate the mechanism with a specific example �see
Fig. 6�. We consider a synapse that is bistable in the absence
of spikes, i.e., if its internal state variable X is above a
threshold, then the synapse is attracted to the maximal value,
otherwise it decays to the minimal value �see the midplot in
Fig. 6�. The maximum and the minimum are the only two
stable synaptic values. Every presynaptic spike �top� kicks X
up and down depending on whether the post-synaptic depo-
larization �bottom plots� is above or below a certain thresh-
old. Other rules like spike timing dependent plasticity
�STDP� would produce the same behavior.32–35 When a syn-
apse is exposed to a stimulation, X can cross the threshold or
remain on the same side as it was at the beginning of the
stimulation. In the first case the synapse makes a transition to
a different state �see Fig. 6 left�, while in the second case, no
transition occurs �see Fig. 6, right�. Whether the transition
occurs or not depends on the specific realization of the sto-
chastic processes that control the pre- and the post-synaptic
activity. In some cases there are enough closely spaced
presynaptic spikes that coincide with elevated post-synaptic
depolarization and the synapse can make a transition. In
other cases the threshold is never crossed and the synapse
returns to the initial value. The fraction of cases in which the
synapse makes a transition determines the probability Q that

FIG. 6. Spike driven synaptic dynam-
ics implementing stochastic selection
�adapted from Ref. 10�. From top to
bottom: presynaptic spikes, synaptic
internal state, and post-synaptic depo-
larization as a function of time. Left:
the synapse starts from the minimum
�depressed state� but between 100 and
150 ms crosses the synaptic threshold
�x and ends up in the potentiated state.
A transition occurred. Right: the syn-
apse starts from the depressed state, it
fluctuates above it, but it never crosses
the synaptic threshold, ending in the
depressed state. No transition
occurred.
P license or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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ontrols the learning rate. Notice that the synaptic dynamics
re entirely deterministic and the load of generating stochas-
icity is transferred outside the synapse. Such a mechanism
as been introduced in Ref. 13 and more recently has been
pplied to spike timing dependent plasticity,34,36 and to
mplementations of the stochastic perceptron.14,27 Interest-
ngly, deterministic networks of randomly connected neurons
an generate chaotic activity37 and, in particular, the proper
isorder that is needed to drive the stochastic selection
echanism.15

X. DISCUSSION

Stochasticity has always played an important role in
earning algorithms based on the exploration of the space of
ossible synaptic configurations. Reinforcement learning is
ertainly a well-known example.38 Here we showed how sto-
hasticity can also be important to elude oblivion in the case
f realistic, bounded synapses.

Most of the classical learning algorithms assume implic-
tly that the variables that characterize the synaptic dynamics
an vary in an unlimited range or that arbitrarily small modi-
cations are possible. In general, as the number of memories

ncreases, the synaptic modifications should decrease to a
evel that is biologically implausible. Here we showed that
tochastic selection can move the problem from space—the
mount by which each synapse is modified—to time—the
robability that a synapse is modified, or the fraction of case
n which the synapse is changed during its lifetime.

If the probability of modification can be small, then the
earning rate can be reduced to very small numbers. We be-
ieve that for any physical system �including biological syn-
pses�, it is easier to reduce a probability of an event like
ynaptic consolidation than to regulate finely the amount by
hich each synapse is modified. The main reason is that

mall probabilities—rare events—can be readily achieved by
ombining independent stochastic processes. The probability
f a joint event would be the multiplication of the individual
robabilities and the final probability can go to zero expo-
entially with the number of stochastic processes that are
nvolved in the generation of the event of synaptic consoli-
ation. We showed in the previous section one example of a
pike driven synapse implementing stochastic selection.

The drawback of the stochastic selection approach is that
he learning rate is relatively low. Typically multiple presen-
ations of the same pattern are needed in order to store
nough information that the pattern can be retrieved. One of
he issues that is currently being investigated is whether it is
ossible to speed up the learning process without sacrificing
he memory span. One possibility is to combine fast and
low synapses: the first would be responsible for acquiring
nformation, the second would retain memory of old events.

more elegant and efficient solution would be to change the
robability that a synapse is consolidated according to the
istory of synaptic modifications �metalearning�. In practice,
he Q�t� of Eq. �1� would decrease in time in such a way that
he decay of the memory term is a power law instead of an
xponential. These solutions have been recently studied in
ef. 39, and they turned out to perform orders of magnitude
wnloaded 30 May 2010 to 129.132.209.75. Redistribution subject to AI
better than models in which the synaptic dynamics is char-
acterized by a single time constant �i.e., a single probability
of modification�.

A second issue that is still open and seems to be a gen-
eral problem of all classical and more recent neural networks
is the question of memory retrieval. In all the classical mod-
els and in the examples that we showed here, in order to
retrieve a memory it is necessary to discriminate between
very close synaptic currents: neurons that should be active
receive a total synaptic current that is very close to the one
that should be inactive, to a degree that again may be bio-
logically implausible. Although it is not necessary to decide
a priori where to place the threshold that separates active and
inactive neurons, the problem of discriminating between
very close values is still an open issue, also for the model
proposed in the present contribution.
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