Optimal Interleaving on Tori

Anxiao (Andrew) Jiang, Matthew Cook, and Jehoshua Bruck
California Institute of Technology
Parallel and Distributed Systems Laboratory
MC 136-93
Pasadena, CA 91125, U.S.A.
E-mail: \{jax,cook,bruck\}@paradise.caltech.edu

Abstract

This paper studies t-interleaving on two-dimensional tori, which is defined by the property that every connected subgraph of order t in the torus is labelled by t distinct integers. This is the first time that the t-interleaving problem is solved for graphs of modular structures. t-interleaving on tori has applications in distributed data storage and burst error correction, and is closely related to Lee metric codes. We say that a torus can be perfectly t-interleaved if its t-interleaving number - the minimum number of distinct integers needed to t-interleave the torus - meets the sphere-packing lower bound. We prove the necessary and sufficient conditions for tori that can be perfectly t interleaved, and present efficient perfect t-interleaving constructions. The most important contribution of this paper is to prove that when a torus is large enough in both dimensions, its t-interleaving number is at most one more than the sphere-packing lower bound, and to present an optimal and efficient t-interleaving scheme for such tori. Then we prove bounds for the t-interleaving numbers of the remaining cases, completing a general characterization of the t-interleaving problem on 2-dimensional tori.

Index Terms

Burst, chromatic number, cluster, error-correcting code, multidimensional interleaving, t-interleaving, torus.

I. Introduction

Interleaving is an important technique used for error burst correction and network data storage. A most common example is the interleaving of n codewords in the form of ' $1-2-3-\cdots-n-1-2-3-\cdots-n-\cdots \cdots$ ' for combatting one-dimensional error bursts in communication channels [24]. The concept of one-dimensional error burst was generalized to high dimensions by Blaum, Bruck and Vardy in [11], where an error burst of size t is a set of errors confined to a connected subgraph of order t in a multi-dimensional array. (The order of a graph is defined to be the number of vertices in that graph.) Accordingly, the concept of t-interleaving was defined in [11], which is a scheme to label the vertices of a multi-dimensional array with integers in such a way that every connected subgraph of order t is labelled by t distinct integers. t-interleaving schemes on two- and three-dimensional arrays were presented in [11], with applications in combatting error bursts in holographic storage systems and optical recording systems. Subsequent work on t-interleaving includes [30], where t-interleaving on circulant graphs with two offsets was studied, and [33], where a dual problem of t-interleaving on two-dimensional arrays was explored. The problem of two-dimensional interleaving with repetitions was introduced in [10] by Blaum, Bruck and Farrell, and was extensively studied in [13] by Etzion and Vardy. That problem is to interleave integers on a two-dimensional mesh (array or its variation) in such a way that in every connected subgraph of order t, each integer appears at most r times. Here t and r are given parameters, and the concept of interleaving with repetitions is a generalization of t-interleaving. More work on interleaving with repetitions includes [25] and [28]. Interleaving schemes on two-dimensional arrays achieving the Reiger bound were studied by Abdel-Ghaffar in [1], where error bursts of both rectangular shapes and arbitrary connected shapes were considered. More examples of interleaving for coping with error bursts include [4] and [9], where the error bursts are respectively of 'circular' types and rectangular shapes. As to interleaving schemes for network data storage, in [19], an algorithm was presented to
interleave N integers on a tree whose edges have lengths, in such a way that for every point of the tree (including a vertex or a point on an edge), the smallest ball centered at the point that contains at least N integers contains all the N distinct integers. That algorithm is useful for distributed data storage in hierarchical networks that minimizes data retrieval delay. A related interleaving algorithm aiming at the graceful degradation of data-storage performance in faulty environments was presented in [20]. In [21], a scheme called multi-cluster interleaving was studied, which is a scheme to interleave integers on a path or a cycle such that every m disjoint intervals of length L in the path or cycle together contain at least K distinct integers, where $K>L$. Multi-cluster interleaving can be used for data storage on array-networks, ring-networks or disks where data are accessed through multiple access points.

In this paper, we study t-interleaving on two-dimensional tori. It is the first time that the t-interleaving problem on graphs of modular (wrapping-around) structures is solved. Torus is an important network structure for parallel and distributed systems [12], [26], [29], [31]. t-interleaving on tori has applications in both burst error correction and distributed data storage, in the same way as introduced in [11], [30], [33], [19] and [20]. (Specifically, for distributed data storage, a t-interleaving on a 2dimensional torus ensures that for every vertex, the integers assigned within $\left\lfloor\frac{t-1}{2}\right\rfloor$ hops are all distinct.) t-interleaving on tori is also closely related to a research topic in coding theory called Lee metric codes [2], [3], [5], [6], [7], [8], [14], [15], [16], [17], [18], [22], [23], [27]. In a t-interleaved n-dimensional torus, every set of vertices labelled by the same integer is a Lee metric code of length n whose minimum distance is t; and the set of Lee metric codes corresponding to different integers partition the whole code space.

Below we present the definitions. t-interleaving was originally defined in [11] for arrays. We generalize its notion for general graphs straightforwardly.

Definition 1.1: Let G be a graph. We say that G is interleaved (or there is an interleaving on G) if every vertex of G is labelled by one integer. We say that G is t-interleaved (or there is a t-interleaving on G) if every connected subgraph of G of order t is labelled by exactly t distinct integers.

The classic vertex coloring problem is clearly also a t-interleaving problem, where $t=2$. On the other hand, t-interleaving a graph G is the same as vertex-coloring the power graph G^{t}. Determining the chromatic number of a power graph is difficult in general. To the best of our knowledge, no result on the type of graphs we are interested in has appeared in the literature.

Definition 1.2: A two-dimensional $l_{1} \times l_{2}$ torus is a graph containing $l_{1} l_{2}$ vertices and $2 l_{1} l_{2}$ edges. We denote its vertices by (i, j) for $0 \leq i \leq l_{1}-1$ and $0 \leq j \leq l_{2}-1$, in the way shown in the figure below:

$(0,0)$	$(0,1)$	\cdots	$\left(0, l_{2}-1\right)$
$(1,0)$	$(1,1)$	\cdots	$\left(1, l_{2}-1\right)$
\vdots	\vdots	\ddots	\vdots
$\left(l_{1}-1,0\right)$	$\left(l_{1}-1,1\right)$	\cdots	$\left(l_{1}-1, l_{2}-1\right)$

Each vertex (i, j) is incident to four edges, which connect it to its four neighbors $\left((i-1) \bmod l_{1}, j\right),\left((i+1) \bmod l_{1}, j\right)$, $\left(i,(j-1) \bmod l_{2}\right)$ and $\left(i,(j+1) \bmod l_{2}\right)$.

Now we can define the problem of t-interleaving on tori.
Definition 1.3: Given a t-interleaved torus G, the number of distinct integers used to label the vertices of G is called the degree of this given t-interleaving scheme. The minimum degree of all the possible t-interleaving schemes for G is called the t-interleaving number of G. A t-interleaving on a torus whose degree equals the torus' t-interleaving number is called an optimal t-interleaving.

Example 1.1: The following 5×5 torus is 3-interleaved with degree 6 .

Fig. 1. Six examples of spheres.

0	3	1	4	2
1	4	2	0	3
2	0	3	1	5
3	1	5	2	0
4	2	0	3	1

If we replace the two integers ' 5 ' with ' 4 ', we will get a 3 -interleaving with degree 5 . Consider the vertex $(1,1)$ and its four neighbors $(0,1),(2,1),(1,0)$ and $(1,2)$, and notice that any two of them are contained in a connected subgraph of order 3 therefore any 3-interleaving scheme has to label those 5 vertices with 5 distinct integers. So the 3-interleaving number of this torus actually equals 5 .

Our objective is to find optimal t-interleaving. To do that, it is important to obtain the t-interleaving numbers of tori. A universal lower bound of them, for tori that have at least t rows and t columns, can be obtained as follows. Figure 1 shows six subgraphs of a torus, which we call spheres $S_{1}, S_{2}, \cdots, S_{6}$, respectively. In general, for any $t \geq 3$, the sphere S_{t} is obtained by attaching to the sphere S_{t-2} all the vertices adjacent to it. Any two vertices in S_{t} are connected by a path of at most $t-1$ edges, so a t-interleaving needs to label them with different integers. So the order of S_{t}, which we shall denote by $\left|S_{t}\right|$, sets a universal lower bound for the t-interleaving number. This argument was originally proposed in [11] for studying t-interleaving on arrays. A direct calculation tells us that $\left|S_{t}\right|=\frac{t^{2}+1}{2}$ when t is odd, and $\left|S_{t}\right|=\frac{t^{2}}{2}$ when t is even.

We define perfect t-interleaving to be a t-interleaving whose degree equals $\left|S_{t}\right|$, the universal lower bound, on a torus that has at least t rows and t columns. (A torus that does not satisfy that condition has only a very limited number of rows or columns; in this paper, we do not discuss the perfectness of interleaving for those tori.) We will show that a torus can be perfectly interleaved if and only if its sizes in both dimensions are multiples of a certain function of t. Then what about tori of other sizes? Our main result will show that when a torus is sufficiently large in both dimensions, its t-interleaving number exceeds the lower bound $\left|S_{t}\right|$ by at most one.

A more detailed description of our results is as follows:

- We prove that an $l_{1} \times l_{2}$ torus can be perfectly t-interleaved if and only if the following condition is satisfied: when t is odd (respectively, even), both l_{1} and l_{2} are multiples of $\frac{t^{2}+1}{2}$ (respectively, t). We reveal the close relationship between perfect t-interleaving and perfect sphere packing, and present the complete set of perfect sphere packing constructions. Based on that, we obtain a set of efficient perfect t-interleaving constructions, which include the lattice interleaver scheme presented in [11] as a special case.
- We prove that for any torus that is sufficiently large in both dimensions, its t-interleaving number is either $\left|S_{t}\right|$ or $\left|S_{t}\right|+1$ - that is, at most one more than the degree of perfect t-interleaving. More specifically, there exist integer pairs $\left(\theta_{1}, \theta_{2}\right)$ such that whenever $l_{1} \geq \theta_{1}$ and $l_{2} \geq \theta_{2}$, the t-interleaving number of an $l_{1} \times l_{2}$ torus is at most $\left|S_{t}\right|+1$. Here θ_{1} and θ_{2} depend on t, and naturally, there is a tradeoff between them - if θ_{1} takes a greater value, then the minimum value that θ_{2} can take decreases or remains the same, and vice versa. We find a sequence of valid values for θ_{1} and θ_{2}, which are shown in Theorem 10 and Theorem 11. We present optimal t-interleaving constructions for tori whose sizes exceed the found pairs $\left(\theta_{1}, \theta_{2}\right)$. (And we comment that those constructions, as a general interleaving method, can also be used to optimally t-interleave tori of many other sizes.)
- We study upper bounds for t-interleaving numbers, and show that every $l_{1} \times l_{2}$ torus' t-interleaving number is $\left|S_{t}\right|+O\left(t^{2}\right)$.

Fig. 2. A qualitative illustration of the t-interleaving numbers.

That upper bound is tight, even if $l_{1} \rightarrow+\infty$ or $l_{2} \rightarrow+\infty$. When both l_{1} and l_{2} are of the order $\Omega\left(t^{2}\right)$, the t-interleaving number of an $l_{1} \times l_{2}$ torus is $\left|S_{t}\right|+O(t)$.

The results can be illustrated qualitatively as Fig. 2. (The figure is not quantitative. The coordinates of points, such as the shape of the curve, are not exact.) Fig. 2 shows for any given t, how the $l_{1} \times l_{2}$ tori can be divided into different classes based on their t-interleaving numbers.

The uniform lattice of dots in Fig. 2 are the sizes of all the tori that can be perfectly t-interleaved. The region labelled as Region I consists of all the integer pairs $\left(\theta_{1}, \theta_{2}\right)$. The boundary curve of Region I is non-increasing, and symmetric with respect to the line $l_{2}=l_{1}$. We know the exact t-interleaving number of every torus in this region - $\left|S_{t}\right|$ if it is one of the lattice dots, and $\left|S_{t}\right|+1$ otherwise. The most important contribution of this paper is to prove the existence of Region I, and present the corresponding optimal interleaving constructions. Region II is the region where $l_{1}=\Omega\left(t^{2}\right)$ and $l_{2}=\Omega\left(t^{2}\right)$, in which the tori's t-interleaving numbers are upper-bounded by $\left|S_{t}\right|+O(t)$. Region III includes every torus, where the t-interleaving number is upper-bounded by $\left|S_{t}\right|+O\left(t^{2}\right)$. That upper bound for Region III is tight, even if l_{1} or l_{2} approaches $+\infty$. (So increasing a torus' size in only one dimension does not help reduce the t-interleaving number very effectively in general.)

The rest of the paper is organized as follows. In Section II, we show the necessary and sufficient conditions for tori that can be perfectly t-interleaved, and present perfect t-interleaving constructions based on perfect sphere packing. In Section III, we present a t-interleaving method, with which we can t-interleave large tori with a degree within one of the optimal. In Section IV, we improve upon the t-interleaving method shown in Section III, and present optimal t-interleaving constructions for tori whose sizes are large in both dimensions. As a parallel result, the existence of Region I is proved. In Section V, we prove some general bounds for the t-interleaving numbers. In Section VI, we conclude this paper.

II. Perfect t-Interleaving

In this section, we show the close relationship between perfect t-interleaving and perfect sphere packing, and use it to prove the necessary and sufficient condition for tori to have perfect t-interleaving. We present the complete set of perfect sphere packing constructions. Based on them, we derive efficient perfect t-interleaving constructions.

Fig. 3. Examples of the sphere S_{t}.

A. Perfect t-Interleaving and Sphere Packing

Definition 2.1: The Lee distance between two vertices in a torus is the number of edges in the shortest path connecting those two vertices. For two vertices in an $l_{1} \times l_{2}$ torus $G,\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$, the Lee distance between them is denoted by $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)$. (Therefore, $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=\min \left\{\left(a_{1}-a_{2}\right) \bmod l_{1},\left(a_{2}-a_{1}\right) \bmod l_{1}\right\}+\min \left\{\left(b_{1}-\right.\right.$ $\left.\left.b_{2}\right) \bmod l_{2},\left(b_{2}-b_{1}\right) \bmod l_{2}\right\}$.) Occasionally, in order to emphasize that the two vertices are in G, we also denote it by $d_{G}\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)$.

Clearly, an interleaving on a torus is a t-interleaving if and only if the Lee distance between any two vertices labelled by the same integer is at least t.

The following is a more detailed definition of spheres, compared to the one in the Introduction section.
Definition 2.2: Let G be an $l_{1} \times l_{2}$ torus where $l_{1} \geq 2\left\lfloor\frac{t-1}{2}\right\rfloor+1$ and $l_{2} \geq t$, and let (a, b) be a vertex in G. When t is odd, the sphere centered at $(a, b), S_{t}^{(a, b)}$, is defined to be the subgraph induced by all those vertices whose Lee distance to (a, b) is less than or equal to $\frac{t-1}{2}$. When t is even, the sphere left-centered at $(a, b), S_{t}^{(a, b)}$, is defined to be the subgraph induced by all those vertices whose Lee distance to either (a, b) or $\left(a,(b+1) \bmod l_{2}\right)$ is less than or equal to $\frac{t}{2}-1$. (a, b) is called the center of $S_{t}^{(a, b)}$ if t is odd, or the left-center of $S_{t}^{(a, b)}$ if t is even. If we do not care where the sphere is centered or left-centered, then the sphere is simply denoted by S_{t}. The number of vertices in the sphere is denoted by $\left|S_{t}\right|$.

Example 2.1: Fig. 3 (a) shows the spheres S_{1} to S_{6}. Fig. 3 (b) shows two spheres, $S_{3}^{(0,2)}$ and $S_{4}^{(0,2)}$, in a 3×5 torus.
For any $l_{1} \times l_{2}$ torus where $l_{1} \geq t$ and $l_{2} \geq t$, its t-interleaving number is at least $\left|S_{t}\right|$. We call $\left|S_{t}\right|$ the sphere packing lower bound. The relationship between this bound and sphere packing will become clearer soon.

Definition 2.3: A torus G is said to have a perfect packing of spheres S_{t} if spheres S_{t} are packed in G in such a way that every vertex of G lies in exactly one of the spheres.

Lemma 1: (1) Let t be odd. An interleaving on an $l_{1} \times l_{2}$ torus (where $l_{1} \geq t$ and $l_{2} \geq t$) is a t-interleaving if and only if for any two vertices $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ that are labelled by the same integer, the two spheres centered at them, $S_{t}^{\left(a_{1}, b_{1}\right)}$ and $S_{t}^{\left(a_{2}, b_{2}\right)}$, do not share any common vertex.
(2) Let t be even. An interleaving on an $l_{1} \times l_{2}$ torus (where $l_{1} \geq t-1$ and $l_{2} \geq t$) is a t-interleaving if and only if for any two vertices $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ that are labelled by the same integer, the two spheres with them as left-centers, $S_{t}^{\left(a_{1}, b_{1}\right)}$ and $S_{t}^{\left(a_{2}, b_{2}\right)}$, do not share any common vertex and what's more, $b_{1} \neq b_{2}$ or $\left(a_{1}-a_{2}\right) \neq \pm(t-1) \bmod l_{1}$.

Proof: (1) Let t be odd. Both $S_{t}^{\left(a_{1}, b_{1}\right)}$ and $S_{t}^{\left(a_{2}, b_{2}\right)}$ are classic spheres with radius $\frac{t-1}{2}$. If the interleaving is a t-interleaving, then the Lee distance between $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is at least $t=2 \cdot \frac{t-1}{2}+1$, so $S_{t}^{\left(a_{1}, b_{1}\right)}$ and $S_{t}^{\left(a_{2}, b_{2}\right)}$ must have no intersection. The converse is also true.
(2) Let t be even. We consider two cases - $b_{1}=b_{2}$ and $b_{1} \neq b_{2}$.

First consider the case ' $b_{1}=b_{2}$ '. In this case, $S_{t}^{\left(a_{1}, b_{1}\right)}$ and $S_{t}^{\left(a_{2}, b_{2}\right)}$ have no intersection if and only if $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \geq$ $2 \cdot\left(\frac{t}{2}-1\right)+1=t-1$. And $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=t-1$ if and only if $\left(a_{1}-a_{2}\right) \equiv \pm(t-1) \bmod l_{1}$. So the Lee distance between $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is at least t if and only if $S_{t}^{\left(a_{1}, b_{1}\right)}$ and $S_{t}^{\left(a_{2}, b_{2}\right)}$ have no intersection and $\left(a_{1}-a_{2}\right) \neq \pm(t-1) \bmod l_{1}$, which is the conclusion we want.

Now consider the case ' $b_{1} \neq b_{2}$ '. In this case, the Lee distance between $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is at least $t \Longleftrightarrow$ both the Lee distance between $\left(a_{1},\left(b_{1}+1\right) \bmod l_{2}\right)$ and $\left(a_{2}, b_{2}\right)$ and the Lee distance between $\left(a_{2},\left(b_{2}+1\right) \bmod l_{2}\right)$ and $\left(a_{1}, b_{1}\right)$ are at least $t-1 \Longleftrightarrow S_{t-1}^{\left(a_{1},\left(b_{1}+1\right) \bmod l_{2}\right)}$ does not intersect $S_{t-1}^{\left(a_{2}, b_{2}\right)}$ and $S_{t-1}^{\left(a_{2},\left(b_{2}+1\right) \bmod l_{2}\right)}$ does not intersect $S_{t-1}^{\left(a_{1}, b_{1}\right)} \Longleftrightarrow S_{t}^{\left(a_{1}, b_{1}\right)}$ and $S_{t}^{\left(a_{2}, b_{2}\right)}$ have no intersection. (Note that $S_{t}^{\left(a_{1}, b_{1}\right)}$ is the union of $S_{t-1}^{\left(a_{1}, b_{1}\right)}$ and $S_{t-1}^{\left(a_{1},\left(b_{1}+1\right) \bmod l_{2}\right)}$, and $S_{t}^{\left(a_{2}, b_{2}\right)}$ is the union of $S_{t-1}^{\left(a_{2}, b_{2}\right)}$ and $S_{t-1}^{\left(a_{2},\left(b_{2}+1\right) \bmod l_{2}\right)}$.) So we get the conclusion we want.

Theorem 1: For an $l_{1} \times l_{2}$ torus where $l_{1} \geq t$ and $l_{2} \geq t$, if an interleaving on it is a perfect t-interleaving, then for every integer, the spheres S_{t} centered or left-centered at the vertices labelled by that integer form a perfect sphere packing in the torus. The converse is also true when $t \neq 2$.

Proof: Let's say that the torus is interleaved. We used I to denote the set of distinct integers used by the interleaving. For any integer $i \in I$, we use N_{i} to denote the number of vertices labelled by i.

Let's firstly prove one direction. Assume that the interleaving is a perfect t-interleaving. Then $|I|=\left|S_{t}\right|$. By Lemma 1 , for any $i \in I$, the spheres S_{t} centered or left-centered at vertices labelled by i do not overlap. By counting the number of vertices in the torus and in each sphere S_{t}, we get $N_{i} \leq \frac{l_{1} l_{2}}{\left|S_{t}\right|}$ for any $i \in I$. Since $\sum_{i \in I} N_{i}=l_{1} l_{2}$, we get $N_{i}=\frac{l_{1} l_{2}}{\left|S_{t}\right|}$ for any $i \in I$. So for any integer $i \in I$, the spheres S_{t} centered or left-centered at the vertices labelled by i form a perfect sphere packing in the torus.

Now let's prove the converse direction. Assume $t \neq 2$. And assume for every integer, the spheres S_{t} centered or leftcentered at the vertices labelled by that integer form a perfect sphere packing in the torus. Then $N_{i}=\frac{l_{1} l_{2}}{\left|S_{t}\right|}$ for any $i \in I$. Since $\sum_{i \in I} N_{i}=l_{1} l_{2}$, we get $|I|=\left|S_{t}\right|$. What is left to prove is that the interleaving is a t-interleaving. By Lemma 1 , the interleaving can fail to be a t-interleaving only if the following situation becomes true: " t is even, and there exist two vertices - $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ - labelled by the same integer such that $b_{1}=b_{2}$ and $a_{1}-a_{2} \equiv t-1 \bmod l_{1}$." We will show that such a situation cannot happen.

Assume that situation happens. Then it is straightforward to verify that the following four vertices $-\left(a_{1}-\left(\frac{t}{2}-1\right) \bmod \right.$ $\left.l_{1}, b_{1}\right),\left(a_{2}+\left(\frac{t}{2}-1\right) \bmod l_{1}, b_{1}\right),\left(a_{1}-\left(\frac{t}{2}-2\right) \bmod l_{1}, b_{1}-1 \bmod l_{2}\right),\left(a_{2}+\left(\frac{t}{2}-2\right) \bmod l_{1}, b_{1}-1 \bmod l_{2}\right)$ - are contained in either $S_{t}^{\left(a_{1}, b_{1}\right)}$ or $S_{t}^{\left(a_{2}, b_{2}\right)}$, while the following two vertices - $\left(a_{1}-\left(\frac{t}{2}-1\right) \bmod l_{1}, b_{1}-1 \bmod l_{2}\right)$ and $\left(a_{2}+\left(\frac{t}{2}-1\right) \bmod \right.$ $\left.l_{1}, b_{1}-1 \bmod l_{2}\right)$ - are neither contained in $S_{t}^{\left(a_{1}, b_{1}\right)}$ nor in $S_{t}^{\left(a_{2}, b_{2}\right)}$. The two vertices, $\left(a_{1}-\left(\frac{t}{2}-1\right) \bmod l_{1}, b_{1}-1 \bmod l_{2}\right)$ and $\left(a_{2}+\left(\frac{t}{2}-1\right) \bmod l_{1}, b_{1}-1 \bmod l_{2}\right)$, cannot both be contained in spheres S_{t} that are left-centered at vertices labelled by the same integer which labels $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$, because they are vertically adjacent, and the vertices directly above them, below them and to the right of them are all contained in two spheres that do not contain them. (To see that, observe the shape of a sphere.) That contradicts that fact that all the spheres S_{t} left-centered at the vertices labelled by the integer which labels $\left(a_{1}, b_{1}\right)$ form a perfect sphere packing in the torus. So the assumed situation cannot happen. By summarizing the above results, we see that the interleaving must be a perfect t-interleaving.

Theorem 2: For an $l_{1} \times l_{2}$ torus where $l_{1} \geq t$ and $l_{2} \geq t$, if it can be perfectly t-interleaved, then the spheres S_{t} can be perfectly packed in it. The converse is also true when $t \neq 2$.

Proof: Let G be an $l_{1} \times l_{2}$ torus. For any t, Theorem 1 has shown that if G can be perfectly t-interleaved, then the spheres S_{t} can be perfectly packed in it. Now we prove the other direction. Assume $t \neq 2$, and the spheres S_{t} can be perfectly packed in G. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$ be a set of vertices such that the spheres S_{t} centered or left-centered at them form a perfect packing in G. The proof of Theorem 1 has essentially showed that for any i and $j(i \neq j)$, the Lee distance between
$\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ is at least t. Now we can interleave G is this way: label each sphere S_{t} with $\left|S_{t}\right|$ distinct integers such that every integer is used exactly once in every sphere, and make all the spheres to be labelled in the same way (namely, all the spheres have the same 'interleaving pattern'). Clearly, for any two integers a and b, the two sets of vertices respectively labelled by a and b are cosets of each other in the torus - therefore the Lee distance between any two vertices labelled by the same integer is at least t. So G has a perfect t-interleaving.

B. Perfect t-Interleaving and Its Construction

The following lemma is an important property of perfect sphere packing. It will help us derive the necessary and sufficient condition for perfect t-interleaving.

Lemma 2: Let t be even and $t \geq 4$. When spheres S_{t} are perfectly packed in an $l_{1} \times l_{2}$ torus, there exists an integer $a \in\{+1,-1\}$, such that if there is a sphere left-centered at the vertex (x, y), then there are two spheres respectively leftcentered at $\left(\left(x-\frac{t}{2}\right) \bmod l_{1},\left(y-a \cdot \frac{t}{2}\right) \bmod l_{2}\right)$ and $\left(\left(x+\frac{t}{2}\right) \bmod l_{1},\left(y+a \cdot \frac{t}{2}\right) \bmod l_{2}\right)$.

Proof: Assume spheres S_{t} are perfectly packed in an $l_{1} \times l_{2}$ torus, where $t \geq 4$ and t is even. Firstly, we will show that $l_{1} \geq t$. Since t is even, a sphere S_{t} spans $t-1$ rows. So $l_{1} \geq t-1$. Now we show why $l_{1} \neq t-1$. Fig. 4 (a) shows two examples - the first example shows a sphere S_{4} in a torus of 3 rows, and the second example shows a sphere S_{6} in a torus of 5 rows. (The vertices in the two spheres are indicated by relatively large black dots in the figure.) Considering the shapes of the spheres, we can easily see that the two adjacent vertices in each dashed circle cannot be both contained in non-overlapping spheres. Such a phenomenon always happens when $l_{1}=t-1$. Since here spheres S_{t} are perfectly packed in the torus, we get $l_{1} \geq t$.

Clearly, one of the following two cases must be true:

- Case 1: whenever there is a sphere left-centered at a vertex (x, y), there are four spheres respectively left-centered at the four vertices $\left(\left(x-\frac{t}{2}\right) \bmod l_{1},\left(y-\frac{t}{2}\right) \bmod l_{2}\right),\left(\left(x-\frac{t}{2}\right) \bmod l_{1},\left(y+\frac{t}{2}\right) \bmod l_{2}\right),\left(\left(x+\frac{t}{2}\right) \bmod l_{1},\left(y-\frac{t}{2}\right) \bmod l_{2}\right)$ and $\left(\left(x+\frac{t}{2}\right) \bmod l_{1},\left(y+\frac{t}{2}\right) \bmod l_{2}\right)$.
- Case 2: there exists a sphere left-centered at a vertex $\left(x_{0}, y_{0}\right)$, such that there is no sphere left-centered at at least one of the following four vertices - $\left(\left(x_{0}-\frac{t}{2}\right) \bmod l_{1},\left(y_{0}-\frac{t}{2}\right) \bmod l_{2}\right),\left(\left(x_{0}-\frac{t}{2}\right) \bmod l_{1},\left(y_{0}+\frac{t}{2}\right) \bmod l_{2}\right),\left(\left(x_{0}+\right.\right.$ $\left.\left.\frac{t}{2}\right) \bmod l_{1},\left(y_{0}-\frac{t}{2}\right) \bmod l_{2}\right)$ and $\left(\left(x_{0}+\frac{t}{2}\right) \bmod l_{1},\left(y_{0}+\frac{t}{2}\right) \bmod l_{2}\right)$.

If Case 1 is true, then the conclusion of this lemma obviously holds. From now on, let us assume that Case 2 is true. WLOG (without loss of generality), we assume that there is one sphere left-centered at $\left(x_{0}, y_{0}\right)$, but there is no sphere left-centered at $\left(\left(x_{0}-\frac{t}{2}\right) \bmod l_{1},\left(y_{0}+\frac{t}{2}\right) \bmod l_{2}\right)$. (All the other possible instances can be proved with the same method.)

Since $l_{1} \geq t$, the vertex $\left(\left(x_{0}-\frac{t}{2}\right) \bmod l_{1},\left(y_{0}+1\right) \bmod l_{2}\right)$ - which we shall call 'vertex A ' - is not contained in the sphere left-centered at $\left(x_{0}, y_{0}\right)$. (An example is shown in Fig. 4 (b), where the sphere in consideration is an S_{t} with $t=8$, whose left-center $\left(x_{0}, y_{0}\right)$ is labelled by ' C '. The vertex A is labelled by ' A '.) The vertex A is contained in one of the perfectly packed spheres, which we shall call 'sphere B '. The relative position of vertex A in sphere B can only be one of the following two possibilities:

- Possibility 1: the vertex A is the right-most vertex in the bottom row of the sphere B. (See Fig. 5 (a).)
- Possibility 2: the vertex A is in the down-left diagonal of the border of the sphere B, but it is not the left-most vertex of the sphere B. (See Fig. 5 (b), (c) and (d).)

Possibility 1, however, can be easily found to be impossible, since otherwise the neighboring vertex to the right of vertex A and the vertex below it cannot both be contained in non-overlapping spheres. (See the two vertices in the dashed circle in Fig. 5 (a).) So only possibility 2 is true. In the following proof we use the example of $t=8$ for illustration, and assume that the relative position of the sphere B is as shown in Fig. $5(\mathrm{~b})$. We comment that when t takes other values or when the sphere B takes other relative positions, the following argument still holds, which will be easy to see.

(a)

(b)

Fig. 4. A sphere in a torus.

Fig. 5. Relative positions of spheres and vertices.

Let the sphere left-centered at (x_{0}, y_{0}) be the sphere denoted by ' L_{1} ' in Fig. 6, and let sphere B be the sphere now denoted by ' R_{1} ' in Fig. 6. We immediately see that the vertex denoted by ' E ' must be the right-most vertex of a sphere, so the sphere containing the vertex ' E ' must be the sphere denoted by ' L_{2} '. Then we immediately see that the vertex denoted by ' F ' must be the right-most vertex in the bottom row of a sphere, so the sphere containing the vertex ' F ' must be the sphere denoted by ' R_{2} '. With the same method we can fix the positions of a series of spheres $L_{1}, L_{2}, L_{3}, L_{4}, \cdots$ and a series of spheres R_{1}, R_{2}, R_{3}, R_{4}, \cdots. Since the torus is finite, we will get a series of spheres $L_{1}, L_{2}, L_{3}, L_{4}, \cdots, L_{n}$ such that the relative position of L_{n} to L_{1} is the same as the relative position of L_{1} to L_{2} (see Fig. 6 for an illustration) - so such a series of spheres form a 'cycle' in the torus. Since the spheres are perfectly packed in the torus, no two spheres in this 'cycle' overlap. Similarly, the spheres $R_{1}, R_{2}, \cdots, R_{n}$ also form a 'cycle' in the torus. (Note that we do not make any assumption about whether these two 'cycles' overlap or not.)

Fig. 6. The packing of spheres in a torus.

If those two 'cycles' contain all the spheres in the torus, then we are already very close to the end of this proof. If those two 'cycles' do not contain all the spheres in the torus, then there must be some spheres outside the two 'cycles' that are directly attached to the down-left side of the 'cycle' formed by $L_{1}, L_{2}, \cdots, L_{n}$. (Consider the very regular way the 'cycle' is formed, and the resulting shape of the 'cycle' which is invariant to horizontal and vertical shifts.) Let D_{1} be a sphere directly attached to the 'cycle' formed by $L_{1}, L_{2}, \cdots, L_{n}$, as shown in Fig. 6. (Note that we do not care about the exact position of D_{1}, as long as it is directly attached to the down-left side of the 'cycle'.) Then the vertex ' I ' immediately determines that the sphere containing it must be ' D_{2} '; similarly the vertex ' J ' determines the position of the sphere ' D_{3} '; and so on $\cdots \cdots$ So we will get a series of spheres $D_{1}, D_{2}, D_{3}, \cdots, D_{n}$ which will again form a 'cycle'. (It is easy to see that this 'cycle' does not overlap the previous two 'cycles'.) With the same method as above, we will find more and more 'cycles', until they together contain all the spheres in the torus.

We can easily see that in each of the 'cycles' here, if there is a sphere left-centered at a vertex (x, y), then there are two spheres respectively left-centered at $\left(\left(x-\frac{t}{2}\right) \bmod l_{1},\left(y-\frac{t}{2}\right) \bmod l_{2}\right)$ and $\left(\left(x+\frac{t}{2}\right) \bmod l_{1},\left(y+\frac{t}{2}\right) \bmod l_{2}\right)$. When other instances of Case 2 are true (see the definition of 'Case 2' in previous text), it can be shown in the same way that whenever there is a sphere left-centered at a vertex (x, y), there are two spheres respectively left-centered at $\left(\left(x-\frac{t}{2}\right) \bmod l_{1},\left(y+\frac{t}{2}\right) \bmod l_{2}\right)$ and $\left(\left(x+\frac{t}{2}\right) \bmod l_{1},\left(y-\frac{t}{2}\right) \bmod l_{2}\right)$. By summarizing the above conclusions, we see that this lemma is proved.

Definition 2.5: Let t be an even positive integer, let a be either +1 or -1 , and let G be an $l_{1} \times l_{2}$ torus. Let (x, y) be an arbitrary vertex in G. We define "the cycle containing (x, y) (corresponding to the parameter a)" to be the set of spheres S_{t} that are respectively left-centered at the vertices $(x, y),\left(\left(x+\frac{t}{2}\right) \bmod l_{1},\left(y+a \cdot \frac{t}{2}\right) \bmod l_{2}\right),\left(\left(x+2 \cdot \frac{t}{2}\right) \bmod l_{1},\left(y+2 a \cdot \frac{t}{2}\right) \bmod l_{2}\right)$, $\left(\left(x+3 \cdot \frac{t}{2}\right) \bmod l_{1},\left(y+3 a \cdot \frac{t}{2}\right) \bmod l_{2}\right)$,

The proof of the following lemma is omitted due to its simplicity.
Lemma 3: Let t be an even positive integer, let a be either +1 or -1 , and let G be an $l_{1} \times l_{2}$ torus. For any vertex (x, y) in G, the cycle containing it (corresponding to the parameter a) consists of $\frac{l c m\left(l_{1}, l_{2}, \frac{t}{2}\right)}{\frac{t}{2}}$ distinct spheres S_{t}.

The following theorem shows the necessary and sufficient condition for tori that can be perfectly t-interleaved.

Theorem 3: Let G be an $l_{1} \times l_{2}$ torus where $l_{1} \geq t$ and $l_{2} \geq t$. If t is odd, then G can be perfectly t-interleaved if and only if both l_{1} and l_{2} are multiples of $\frac{t^{2}+1}{2}$. If t is even, then G can be perfectly t-interleaved if and only if both l_{1} and l_{2} are multiples of t.

Proof: We consider the following three cases one by one:

- Case 1: $t=2$.
- Case 2: t is even but $t \neq 2$.
- Case 3: t is odd.

Case 1: $t=2$. In this case, 2-interleaving is equivalent to vertex coloring, so the 2-interleaving number of G equals G 's chromatic number $\chi(G)$. Let R_{1} and R_{2} be two rings which respectively have l_{1} and l_{2} vertices. Then G is the Cartesian product of those two rings, namely, $G=R_{1} \otimes R_{2}$. It is well known [32] that for any two graphs H_{1} and $H_{2}, \chi\left(H_{1} \otimes H_{2}\right)=$ $\max \left\{\chi\left(H_{1}\right), \chi\left(H_{2}\right)\right\}$. Since $l_{1} \geq t=2$ (respectively, $l_{2} \geq t=2$), we get that $\chi\left(R_{1}\right) \geq 2$ (respectively, $\chi\left(R_{2}\right) \geq 2$); and $\chi\left(R_{1}\right)=2$ (respectively, $\chi\left(R_{2}\right)=2$) if and only if l_{1} (respectively, l_{2}) is a multiple of 2 . So $\chi(G)=2$ if and only if both l_{1} and l_{2} are multiples of 2 . Since $\left|S_{2}\right|=2$, we get the conclusion in this lemma.

Case 2: t is even but $t \neq 2$. Firstly, we prove one direction. Assume G can be perfectly t-interleaved. We will show that both l_{1} and l_{2} are multiples of t. Let i be an integer used by a perfect t-interleaving on G. Then by Theorem 1 , the spheres S_{t} left-centered at the vertices labelled by i form a perfect sphere packing in G. By Lemma 2, there exists an integer $a \in\{+1,-1\}$ such that for any cycle containing a vertex labelled by i (corresponding to the parameter a), the spheres S_{t} in the cycle are all left-centered at vertices labelled by i — and therefore they do not overlap. By Lemma 3, the cycle containing a vertex labelled by i consists of $\frac{l c m\left(l_{1}, l_{2}, \frac{t}{2}\right)}{\frac{t}{2}}$ distinct spheres S_{t}. So such a cycle consists of $\frac{l c m\left(l_{1}, l_{2}, \frac{t}{2}\right)}{\frac{t}{2}} \cdot\left|S_{t}\right|=\frac{l c m\left(l_{1}, l_{2}, \frac{t}{2}\right)}{\frac{t}{2}} \cdot \frac{t^{2}}{2}=l c m\left(l_{1}, l_{2}, \frac{t}{2}\right) \cdot t$ vertices. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be any two vertices labelled by i. We can see that for the cycle containing $\left(x_{1}, y_{1}\right)$ and the cycle containing $\left(x_{2}, y_{2}\right)$, they either do not overlap, or they are the same cycle. Therefore, the vertices in G can be partitioned into several such cycles - so $l_{1} \cdot l_{2}$ is a multiple of $l c m\left(l_{1}, l_{2}, \frac{t}{2}\right) \cdot t$. Since $l c m\left(l_{1}, l_{2}, \frac{t}{2}\right)$ is a multiple of l_{1}, l_{2} must be a multiple of t. Similarly, l_{1} must be a multiple of t, too. So if G can be perfectly t-interleaved, then both l_{1} and l_{2} are multiples of t.

Now we prove the other direction. Assume both l_{1} and l_{2} are multiples of t. Let W be such a set of vertices in G : $W=\left\{(x, y) \left\lvert\, x \equiv 0 \bmod \frac{t}{2}\right., y \equiv 0 \bmod \frac{t}{2}, x+y \equiv 0 \bmod t\right\}$. It is easy to verify that the Lee distance between any two vertices in W is at least t. Now for $i=0,1, \cdots, \frac{t}{2}-1$ and for $j=0,1, \cdots, t-1$, define $W^{i, j}$ to be $W^{i, j}=\{((x+$ i) $\left.\left.\bmod l_{1},(y+j) \bmod l_{2}\right) \mid(x, y) \in W\right\}$. Clearly those $\frac{t}{2} \cdot t=\left|S_{t}\right|$ sets - $W^{0,0}, W^{0,1}, \cdots, W^{\frac{t}{2}-1, t-1}$ - is a partition of the vertices in G. For each $W^{i, j}$, we label the vertices in it with one distinct integer. Clearly such an interleaving is a perfect t-interleaving. So if both l_{1} and l_{2} are multiples of t, then G can be perfectly t-interleaved.

Case 3: t is odd. Firstly, we prove one direction. Assume both l_{1} and l_{2} are multiples of $\frac{t^{2}+1}{2}$. Golomb and Welch have shown in [15] that an $\frac{t^{2}+1}{2} \times \frac{t^{2}+1}{2}$ torus can be perfectly packed by the spheres S_{t} for odd t. Therefore, G can also be perfectly packed by S_{t} because a torus has a toroidal topology and G can be 'folded' into an $\frac{t^{2}+1}{2} \times \frac{t^{2}+1}{2}$ torus. Let C be a set of vertices in G such that the spheres S_{t} centered at the vertices in C form a perfect sphere packing. Then the Lee distance between any two vertices in C is at least t. We call a set of vertices D a coset of C when the following condition is satisfied: "there exist integers a and b such that a vertex $(x, y) \in C$ if and only if $\left((x+a) \bmod l_{1},(y+b) \bmod l_{2}\right) \in D . " C$ has $\left|S_{t}\right|$ different cosets in total (including C itself), and those cosets partition the vertices of G. For each coset, we label its vertices with one distinct integer, and we get a perfect t-interleaving. So if both l_{1} and l_{2} are multiples of $\frac{t^{2}+1}{2}$, then G can be perfectly t-interleaved.

Now we prove the other direction. Assume G can be perfectly t-interleaved. Let i be an integer used by a perfect t interleaving on G. Then by Theorem 1, the spheres S_{t} centered at the vertices labelled by i form a perfect sphere packing in G. Golomb and Welch presented in [15] a way to perfectly pack spheres S_{t} in a torus when t is odd, which can be described as "either of the following two conditions is true: (1) whenever there is a sphere S_{t} centered at a vertex (x, y), there are two spheres respectively centered at $\left(\left(x+\frac{t+1}{2}\right) \bmod l_{1},\left(y+\frac{t-1}{2}\right) \bmod l_{2}\right)$ and $\left(\left(x-\frac{t-1}{2}\right) \bmod l_{1},\left(y+\frac{t+1}{2}\right) \bmod l_{2}\right)$; (2) whenever there is a sphere S_{t} centered at a vertex (x, y), there are two spheres respectively centered at $\left(\left(x+\frac{t-1}{2}\right) \bmod l_{1},\left(y+\frac{t+1}{2}\right) \bmod l_{2}\right)$ and $\left(\left(x-\frac{t+1}{2}\right) \bmod l_{1},\left(y+\frac{t-1}{2}\right) \bmod l_{2}\right) "$. It is well known that that way of packing is in fact the only way to perfectly pack S_{t} for odd t, whose feasibility requires both l_{1} and l_{2} to be multiples of $\frac{t^{2}+1}{2}$. So if G can be perfectly t-interleaved, then both l_{1} and l_{2} are multiples of $\frac{t^{2}+1}{2}$.

Below we present the complete set of perfect sphere packing constructions. But firstly let's explain a few concepts. Let G be an $l_{1} \times l_{2}$ torus that is perfectly packed by spheres S_{t} - there are $\frac{l_{1} l_{2}}{\left|S_{t}\right|}$ such spheres. Define e as $e=\frac{l_{1} l_{2}}{\left|S_{t}\right|}$, and let's say those spheres are centered (or left-centered) at the vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{e}, y_{e}\right)$. By vertically (respectively, horizontally) shifting the spheres in G, we mean to select some integer s, and get a new set of perfectly packed spheres that are centered (or left-centered) at $\left(x_{1}+s \bmod l_{1}, y_{1}\right),\left(x_{2}+s \bmod l_{1}, y_{2}\right), \cdots,\left(x_{e}+s \bmod l_{1}, y_{e}\right)\left(\right.$ respectively, at $\left(x_{1}, y_{1}+s \bmod l_{2}\right)$, $\left.\left(x_{2}, y_{2}+s \bmod l_{2}\right), \cdots,\left(x_{e}, y_{e}+s \bmod l_{2}\right)\right)$. By vertically reversing the spheres in G, we mean to get a new set of perfectly packed spheres that are centered (or left-centered) at $\left(-x_{1} \bmod l_{1}, y_{1}\right),\left(-x_{2} \bmod l_{1}, y_{2}\right), \cdots,\left(-x_{e} \bmod l_{1}, y_{e}\right)$. After such a 'shift' or 'reverse' operation, technically speaking, the way the spheres are perfectly packed in G are changed - however, the 'pattern of the sphere packing' essentially remains the same.

Construction 2.1: The complete set of perfect sphere packing constructions

Input: A positive integer t. An $l_{1} \times l_{2}$ torus G, where (1) both l_{1} and l_{2} are multiples of t if t is even and $t \neq 2$, (2) l_{2} is even if $t=2$, and (3) both l_{1} and l_{2} are multiples of $\frac{t^{2}+1}{2}$ if t is odd.

Output: A perfect packing of the spheres S_{t} in G.

Construction:

1. If t is even and $t \neq 2$, then do the following:

- Let $A_{1}, A_{2}, \cdots, A_{g c d\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)-1}$ be $\operatorname{gcd}\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)-1$ integers, where A_{i} can be any integer in the set $\left\{0,1, \cdots, \frac{t}{2}-1\right\}$ for $i=1,2, \cdots, \operatorname{gcd}\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)-1$.
- Find the $\operatorname{gcd}\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)$ cycles in G (corresponding to the parameter 1) respectively containing the vertex $(0,0),\left(\sum_{i=1}^{1} A_{i}\right.$, $\left.\sum_{i=1}^{1}\left(t+A_{i}\right)\right),\left(\sum_{i=1}^{2} A_{i}, \sum_{i=1}^{2}\left(t+A_{i}\right)\right), \cdots,\left(\sum_{i=1}^{g c d\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)-1} A_{i}, \sum_{i=1}^{g c d\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)-1}\left(t+A_{i}\right)\right)$. The spheres S_{t} in those $\operatorname{gcd}\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)$ cycles form a perfect sphere packing in the torus.

2. If $t=2$, the do the following:

- The $l_{1} \times l_{2}$ torus G has l_{1} rows, each of which can be seen as a ring of l_{2} vertices. When $t=2$, the sphere S_{t} simply consists of two horizontally adjacent vertices. Split each row of G into $\frac{l_{2}}{2}$ spheres in any way. The resulting $\frac{l_{1} l_{2}}{2}$ spheres form a perfect sphere packing in the torus.
3 . If t is odd, then do the following:
- Find such a set of $\frac{l_{1} l_{2}}{\left|S_{t}\right|}$ spheres S_{t} : each of the spheres is centered at a vertex $\left(i(m+1)+j \cdot(-m) \bmod l_{1}, i \cdot m+j(m+\right.$ 1) mod l_{2}) for some integers i and j. Those spheres form a perfect sphere packing in the torus.

4. Horizontally shift, vertically shift, and/or vertically reverse the spheres in G in any way.

Theorem 4: Construction 2.1 is the complete set of perfect sphere packing constructions.

Proof: We consider the following three cases. For each case, we need to prove two things: firstly, the 'Input' part of Construction 2.1 sets the necessary and sufficient condition for a torus to have perfect sphere packing; secondly, the 'Construction'
part of Construction 2.1 generates perfect sphere packing correctly, and every perfect sphere packing that exists is a possible output of it.

Case 1: t is even and $t \neq 2$. In this case, since a sphere S_{t} occupies $t-1$ rows and t columns, for the $l_{1} \times l_{2}$ torus G to have perfect sphere packing, it must be that $l_{1} \geq t-1$ and $l_{2} \geq t$. We can show that $l_{1} \neq t-1$ in the following way - assume $l_{1}=t-1$ and spheres S_{t} are perfectly packed in G; say a sphere S_{t} is left-centered at (x, y) in G; then the two vertices, $\left(x-\left(\frac{t}{2}-1\right) \bmod l_{1}, y-1 \bmod l_{2}\right)$ and $\left(x+\left(\frac{t}{2}-1\right) \bmod l_{1}, y-1 \bmod l_{2}\right)$, cannot both be contained in spheres (see the proof of Theorem 1 for a very similar argument), and that contradicts the statement that spheres are perfectly packed in G. Therefore, if G can be perfectly packed by spheres, $l_{1} \geq t$ and $l_{2} \geq t$. Then, from Theorem 2 and Theorem 3 , we see that G can be perfectly packed by spheres if and only if both l_{1} and l_{2} are multiples of t. So the 'Input' part of Construction 2.1 correctly sets of the necessary and sufficient condition for a torus to have perfect sphere packing.

Lemma 2 and its proof have shown that when spheres are perfectly packed in a torus, those spheres can be partitioned into cycles. By observing the shape of the border of a cycle, we see that two adjacent cycles can freely 'slide' along each other's border - and there are $\frac{t}{2}$ possible relative positions between two adjacent cycles. In Construction 2.1, the $\frac{t}{2}$ possible relative positions are determined by A_{i}, a variable that can take $\frac{t}{2}$ possible values. Now it is easy to see that Step 1 of Construction 2.1 provides a perfect sphere packing (which takes one of many possible forms, depending on the value of the ' A_{i} 's), and its Step 4 changes the positions of the spheres to furthermore cover all the possible cases of perfect sphere packing.
(2) Case 2: $t=2$. We skip the proof for this case due to its simplicity.
(3) Case 3: t is odd. In this case, Construction 2.1 re-produces the sphere-packing method presented in [15], which is commonly known as the unique way to pack spheres for odd t (see the final paragraph of the proof of Theorem 3 for a more detailed introduction).

Now we present perfect t-interleaving constructions that are based on perfect sphere packing.

Construction 2.2: Perfect t-interleaving constructions

Input: A positive integer t. An $l_{1} \times l_{2}$ torus G, where both l_{1} and l_{2} are multiples of t if t is even, and both l_{1} and l_{2} are multiples of $\frac{t^{2}+1}{2}$ if t is odd.

Output: A perfect t-interleaving on G.

Construction:

(1) If $t \neq 2$, then do the following:

- Use Construction 2.1 to get a perfect sphere packing in G. Label each of those spheres with $\left|S_{t}\right|$ distinct integers, in such a way that all the spheres have the same interleaving pattern, and every integer is used exactly once in each sphere.
(2) If $t=2$, then do the following:
- For every vertex (i, j) of G, if $i+j$ is even, label it with the integer ' 0 ', otherwise label it with the integer ' 1 '.

The following example illustrates how to use Construction 2.1 to obtain perfect sphere packing, and how to use Construction 2.2 to obtain perfect t-interleaving.

Example 2.2: Let $t=4$, and let G be an 12×24 torus. Firstly, we use Construction 2.1 to find a perfect sphere packing in G. Since t is even, the Step 1 of Construction 2.1 is executed. We choose $A_{1}, A_{2}, \cdots, A_{g c d\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)-1}$ to be $A_{1}=0, A_{2}=1$. (Note that here $\operatorname{gcd}\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)-1=2$.) Then the $\operatorname{gcd}\left(\frac{l_{1}}{t}, \frac{l_{2}}{t}\right)=3$ cycles in G are as shown in Fig. 7 (a), which are three sets of spheres S_{t} respectively of three different background shades. The spheres in those 3 cycles form a perfect packing in G.

Next, we use Construction 2.2 to perfectly t-interleave G. Let the perfect sphere packing remain as it is; and label all the spheres with the same interleaving pattern, using $\left|S_{t}\right|=8$ distinct integers. The resulting perfect t-interleaving on G is shown in Fig. 7 (b).

Fig. 7. Example of perfect sphere packing using Construction 2.1 and perfect t-interleaving using Construction 2.2.

We comment that Construction 2.2 provides the complete set of perfect t-interleaving constructions that have the following property: for any two integers, the two sets of vertices respectively labelled by those two integers are cosets of each other in the torus. What is more, in [11], three t-interleaving constructions for two-dimensional arrays were presented, all based on lattice interleavers. Those three constructions can also be applied to tori because of their periodic patterns. Our Construction 2.2 generalizes the results in [11] in two ways: firstly, it covers more constructions based on lattice interleavers, with the results of [11] included as special cases; secondly, when t is even, it also covers constructions that do not use lattice interleavers, which we can make happen by simply letting any A_{i} and A_{j} take different values.

III. Achieving an Interleaving Degree within One of the Optimal

In this section, we present a novel t-interleaving construction, with which we can t-interleave any large enough torus with a degree within one of the optimal. The construction presented here will also be used as a building block in Section IV for optimal t-interleaving.

A. Interleaving Construction

Definition 3.1:

- Given a positive integer t, if t is odd, then P is defined to be a string of integers ' $a_{1}, a_{2}, \cdots, a_{\frac{t-1}{2}}$ ', where $a_{\frac{t-1}{2}}=t+1$ and $a_{i}=t$ for $1 \leq i<\frac{t-1}{2}$; if t is even, then P is defined to be a string of integers ' $a_{1}, a_{2}, \cdots, a_{\frac{t}{2}}$, where $a_{\frac{t}{2}}=t$ and $a_{i}=t-1$ for $1 \leq i<\frac{t}{2}$. (For example, if $t=3$, then $P={ }^{\prime} 4$ '; if $t=4$, then $P={ }^{\prime} 3,4$ '; if $t=5$, then $P={ }^{\prime} 5,6{ }^{\prime}$.)
- Given a positive integer t, if t is odd, then Q is defined to be a string of integers ' $b_{1}, b_{2}, \cdots, b_{\frac{t+1}{2}}$ ', where $b_{\frac{t+1}{2}}=t+1$ and $b_{i}=t$ for $1 \leq i<\frac{t+1}{2}$; if t is even, then Q is defined to be a string of integers ' $b_{1}, b_{2}, \cdots, b_{\frac{t}{2}+1}$ ', where $b_{\frac{t}{2}+1}=t$ and $b_{i}=t-1$ for $1 \leq i<\frac{t}{2}+1$.
- Given a positive integer t, an offset sequence is a string of ' P 's and ' Q 's. (As an example, an offset sequence consisting of 1 ' P ' and 2 ' Q 's can be ' $P Q Q$ ', ' $Q P Q$ ' or ' $Q Q P$ '.) The offset sequence is also naturally seen as a string of integers

0	2	4	0	3	5	1	4
1	3	5	1	4	0	2	5
2	4	0	2	5	1	3	0
3	5	1	3	0	2	4	1
4	0	2	4	1	3	5	2
5	1	3	5	2	4	0	3

Fig. 8. An example of t-interleaving with the three features.
which is the union of the integers in its ' P 's and ' Q 's. (For example, when $t=3$, if an offset sequence consisting of 1 ' P ' and 2 ' Q 's is ' $P Q Q$ ', then the offset sequence is also seen as ' $4,3,4,3,4$ '; when $t=4$, if an offset sequence consisting of 3 ' P 's and 2 ' Q 's is ' $P Q P P Q$ ', then the offset sequence is also seen as ' $3,4,3,3,4,3,4,3,4,3,3,4$ '.) The number of integers in an offset sequence is called its length.

In this section, we are particularly interested in one kind of t-interleaving on an $l_{1} \times l_{2}$ torus, which has the following features:

- Feature 1: $l_{1}=\left|S_{t}\right|+1$. (In other words, if t is odd, then $l_{1}=\frac{t^{2}+1}{2}+1$; if t is even, then $l_{1}=\frac{t^{2}}{2}+1$.)
- Feature 2: The degree of the t-interleaving equals l_{1}. And in every column of the torus, each of the l_{1} integers is assigned to exactly one vertex.
- Feature 3: If the vertex $\left(a_{1}, b_{1}\right)$ and the vertex $\left(a_{2}, b_{2}\right)$ are labelled by the same integer, then for $i=1,2, \cdots, l_{1}-1$, the vertex $\left(\left(a_{1}+i\right) \bmod l_{1}, b_{1}\right)$ and the vertex $\left(\left(a_{2}+i\right) \bmod l_{1}, b_{2}\right)$ are labelled by the same integer.

Example 3.1: Fig. 8 shows a t-interleaving on an $l_{1} \times l_{2}$ torus which has the above three features. There $t=3, l_{1}=\left|S_{t}\right|+1=$ 6 and $l_{2}=8$.

Now let's fixed an integer ' i ', where $0 \leq i \leq 5$, and say the set of vertices labelled by ' i ' are ' $\left(x_{0}, 0\right),\left(x_{1}, 1\right), \cdots,\left(x_{l_{2}-1}, l_{2}-\right.$ 1)'. Then the following string of integers: ' $\left(x_{1}-x_{0}\right) \bmod l_{1},\left(x_{2}-x_{1}\right) \bmod l_{1}, \cdots,\left(x_{7}-x_{6}\right) \bmod l_{1},\left(x_{0}-x_{7}\right) \bmod l_{1}$ ', equals ' $4,4,4,3,4,4,3,4$ '. Since when $t=3, P=4$ ' and $Q=' 3,4$ ', the above string of integers actually equals ' $P P P Q P Q$ ', which is an offset sequence of length l_{2}. We comment that this phenomenon is not a pure coincidence - offset sequences do help us find t-interleavings that have the above three features. In fact, we can prove that in many cases (e.g., when $t=5$ or 7), for any t-interleaving on a torus that has the above three features, after horizontally shifting and/or vertically reversing the interleaving pattern, the resulting interleaving will have the same phenomenon as the example shown here.

The following construction outputs a t-interleaving that has the three features.

Construction 3.1:

Input: A positive integer t. An $l_{1} \times l_{2}$ torus, where $l_{1}=\left|S_{t}\right|+1$. An integer m that equals $\left\lfloor\frac{t}{2}\right\rfloor$. Two integers p and q that satisfy the following equation set if t is odd:

$$
\left\{\begin{align*}
& p m+q(m+1)=l_{2} \tag{1}\\
& p\left(2 m^{2}+m+1\right)+q\left(2 m^{2}+3 m+2\right) \equiv 0 \bmod \left(2 m^{2}+2 m+2\right) \\
& p \text { and } q \text { are non-negative integers, } p+q>0
\end{align*}\right.
$$

and satisfy the following equation set if t is even:

$$
\left\{\begin{array}{c}
p m+q(m+1)=l_{2} \tag{2}\\
p\left(2 m^{2}-m+1\right)+q\left(2 m^{2}+m\right) \equiv 0 \bmod \left(2 m^{2}+1\right) \\
p \text { and } q \text { are non-negative integers, } p+q>0
\end{array}\right.
$$

Output: A t-interleaving on the $l_{1} \times l_{2}$ torus that satisfies Feature 1, Feature 2 and Feature 3.
Construction: Let $S=$ ' $s_{0}, s_{1}, \cdots, s_{l_{2}-1}$ ' be an arbitrary offset sequence consisting of p ' P 's and q ' Q 's. For $j=1,2, \cdots, l_{2}$ and for $i=0,1, \cdots, l_{1}-1$, label the vertex $\left(\left(\sum_{k=0}^{j-1} s_{k}+i\right) \bmod l_{1}, j \bmod l_{2}\right)$ with the integer ' i '.

Example 3.2: Let $t=3, l_{1}=6, l_{2}=8, m=1, p=4$, and $q=2$. We use Construction 3.1 to t-interleave an $l_{1} \times l_{2}$ torus. Say the offset sequence S is chosen to be ' $P P P Q P Q$ '. Then Construction 3.1 outputs the t-interleaving shown in Fig. 8.

We explain Construction 3.1 a little bit. The Equation Set (1) (for odd t) and the Equation Set (2) (for even t) ensure that the offset sequence S, which consists of p ' P 's and q ' Q 's, exists. Furthermore, for any integer $j\left(0 \leq j \leq l_{2}-1\right)$, if (a, j) and $\left(b,(j+1) \bmod l_{2}\right)$ are two vertices labelled by the same integer, then $b-a \equiv s_{j} \bmod l_{1} —$ namely, the offset sequence S indicates the vertical offsets of any two vertices in adjacent columns that are labelled by the same integer. It is simple to verify that the t-interleaving output by Construction 3.1 satisfies all the three features - Feature 1,2 and 3 - listed earlier in this subsection.

The following lemma will be used to prove the correctness of Construction 3.1 and also in future analysis.
Lemma 4: Let $i \in\left\{0,1, \cdots,\left|S_{t}\right|\right\}$ be any of the integers used by Construction 3.1 to interleave the $l_{1} \times l_{2}$ torus. Let $\left\{\left(b_{0}, 0\right),\left(b_{1}, 1\right), \cdots,\left(b_{l_{2}-1}, l_{2}-1\right)\right\}$ be the set of vertices in the torus that are labelled by i. Let m and S have the same meaning as in Construction 3.1 (namely, $m=\left\lfloor\frac{t}{2}\right\rfloor$, and $S=' s_{0}, s_{1}, \cdots, s_{l_{2}-1}$ ' is the offset sequence consisting of p ' P 's and q ' Q 's utilized by Construction 3.1). For any two integers j_{1} and $j_{2}\left(0 \leq j_{1} \neq j_{2} \leq l_{2}-1\right)$, we define $L_{j_{1} \rightarrow j_{2}}$ as $L_{j_{1} \rightarrow j_{2}}=\left[\left(j_{2}-j_{1}\right) \bmod l_{2}\right]+\min \left\{\left(b_{j_{2}}-b_{j_{1}}\right) \bmod l_{1},\left(b_{j_{1}}-b_{j_{2}}\right) \bmod l_{1}\right\}$. Then we have the following conclusions:

- Case 1: t is odd, $j_{2}-j_{1} \equiv m \bmod l_{2}$, and $s_{j_{1}}, s_{\left(j_{1}+1\right) \bmod l_{2}}, s_{\left(j_{1}+2\right) \bmod l_{2}}, \cdots, s_{\left(j_{2}-1\right) \bmod l_{2}}$ do not all equal t. In this case, $b_{j_{2}}-b_{j_{1}} \equiv-(m+1) \bmod l_{1}$ and $L_{j_{1} \rightarrow j_{2}}=t$.
- Case 2: t is odd, $j_{2}-j_{1} \equiv m+1 \bmod l_{2}$, and exactly one of $s_{j_{1}}, s_{\left(j_{1}+1\right) \bmod l_{2},}, s_{\left(j_{1}+2\right) \bmod l_{2}}, \cdots, s_{\left(j_{2}-1\right) \bmod l_{2}}$ equals $t+1$. In this case, $b_{j_{2}}-b_{j_{1}} \equiv m \bmod l_{1}$ and $L_{j_{1} \rightarrow j_{2}}=t$.
- Case 3: t is even, $j_{2}-j_{1} \equiv 1 \bmod l_{2}$, and $s_{j_{1}}=t-1$. In this case, $b_{j_{2}}-b_{j_{1}} \equiv t-1 \bmod l_{1}$ and $L_{j_{1} \rightarrow j_{2}}=t$.
- Case 4: t is even, $j_{2}-j_{1} \equiv m \bmod l_{2}$, and $s_{j_{1}}, s_{\left(j_{1}+1\right) \bmod l_{2}}, s_{\left(j_{1}+2\right) \bmod l_{2}}, \cdots, s_{\left(j_{2}-1\right) \bmod l_{2}}$ do not all equal $t-1$. In this case, $b_{j_{2}}-b_{j_{1}} \equiv-m \bmod l_{1}$ and $L_{j_{1} \rightarrow j_{2}}=t$.
- Case 5: t is even, $j_{2}-j_{1} \equiv m+1 \bmod l_{2}$, and exactly one of $s_{j_{1}}, s_{\left(j_{1}+1\right) \bmod l_{2}}, s_{\left(j_{1}+2\right) \bmod l_{2}}, \cdots, s_{\left(j_{2}-1\right) \bmod l_{2}}$ equals t. In this case, $b_{j_{2}}-b_{j_{1}} \equiv m-1 \bmod l_{1}$ and $L_{j_{1} \rightarrow j_{2}}=t$.
- If none of the above five cases is true, and $j_{2}-j_{1} \neq t \bmod l_{2}$, then $L_{j_{1} \rightarrow j_{2}}>t$. If none of the above five cases is true, and $j_{2}-j_{1} \equiv t \bmod l_{2}$, then $L_{j_{1} \rightarrow j_{2}} \geq t$.

Proof: Let $\Delta=t+1$ if t is odd, and let $\Delta=t$ if t is even. The offset sequence S consists of ' P 's and ' Q 's, so it has the following property: for any $k \in\left\{0,1, \cdots, l_{2}-1\right\}$ such that $s_{k}=\Delta$, the following $m-1$ integers $-s_{(k+1) \bmod l_{2}}$, $s_{(k+2) \bmod l_{2}}, \cdots, s_{(k+m-1) \bmod l_{2}}$ - all equal $\Delta-1$, and either $s_{(k+m) \bmod l_{2}}$ or $s_{(k+m+1) \bmod l_{2}}$ equals Δ. Also note that $b_{j_{2}}-b_{j_{1}} \equiv s_{j_{1}}+s_{\left(j_{1}+1\right) \bmod l_{2}}+s_{\left(j_{1}+2\right) \bmod l_{2}}+\cdots+s_{\left(j_{2}-1\right) \bmod l_{2}} \bmod l_{1}$. Based on those two observations, this lemma can be proved with straightforward computation.

Theorem 5: Construction 3.1 is correct.
Proof: Let $\left(b_{j_{1}}, j_{1}\right)$ and $\left(b_{j_{2}}, j_{2}\right)$ be any two vertices labelled by the same integer in the $l_{1} \times l_{2}$ torus that was interleaved by Construction 3.1. The Lee distance between them is $d\left(\left(b_{j_{1}}, j_{1}\right),\left(b_{j_{2}}, j_{2}\right)\right)=\min \left\{\left(j_{2}-j_{1}\right) \bmod l_{2},\left(j_{1}-j_{2}\right) \bmod l_{2}\right\}+$ $\min \left\{\left(b_{j_{2}}-b_{j_{1}}\right) \bmod l_{1},\left(b_{j_{1}}-b_{j_{2}}\right) \bmod l_{1}\right\}=\min \left\{L_{j_{1} \rightarrow j_{2}}, L_{j_{2} \rightarrow j_{1}}\right\}$. From Lemma 4, it is clearly that neither $L_{j_{1} \rightarrow j_{2}}$ nor $L_{j_{2} \rightarrow j_{1}}$ is less than t. Therefore $d\left(\left(b_{j_{1}}, j_{1}\right),\left(b_{j_{2}}, j_{2}\right)\right) \geq t$. So Construction $3.1 t$-interleaved the torus. And as mentioned before, this t-interleaving satisfies Feature 1, Feature 2 and Feature 3.

B. Existence of Offset Sequences

The feasibility of Construction 3.1 depends only on one thing - whether the two input parameters ' p ' and ' q ' exist or not. The following theorem shows that when the width of the torus, l_{2}, exceeds a threshold, ' p ' and ' q ' are guaranteed to exist.

Theorem 6: Let t be an odd (respectively, even) positive integer. When $l_{2} \geq\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(\left|S_{t}\right|+1\right)$, there exists at least one solution (p, q) to the equation set (1) (respectively, equation set (2)), which is shown in the 'Input' part of Construction 3.1.

Proof: Firstly, let's assume t is odd. The equation set (1) is as follows:

$$
\left\{\begin{aligned}
& p m+q(m+1)=l_{2} \\
& p\left(2 m^{2}+m+1\right)+q\left(2 m^{2}+3 m+2\right) \equiv 0 \bmod \left(2 m^{2}+2 m+2\right) \\
& p \text { and } q \text { are non-negative integers, } p+q>0
\end{aligned}\right.
$$

where $m=\left\lfloor\frac{t}{2}\right\rfloor$. We introduce a new variable z, and transform the above equation set equivalently to be:

$$
\left\{\begin{array}{cc}
\left(\begin{array}{cc}
m & m+1 \\
2 m^{2}+m+1 & 2 m^{2}+3 m+2
\end{array}\right)\binom{p}{q}=\binom{l_{2}}{z\left(2 m^{2}+2 m+2\right)} \\
p \text { and } q \text { are non-negative integers; } z \text { is a positive integer. }
\end{array}\right.
$$

which is the same as:

$$
\left\{\begin{array}{c}
\binom{p}{q}= \\
\\
p \text { and } q \text { are non-negative integers; } z \text { is a positive integer. }
\end{array} \begin{array}{cc}
m & m+1 \\
2 m^{2}+m+1 & 2 m^{2}+3 m+2
\end{array}\right)^{-1}\binom{l_{2}}{z\left(2 m^{2}+2 m+2\right)}
$$

which equals:

$$
\left\{\begin{array}{l}
p=2(m+1)\left(m^{2}+m+1\right) z-\left(2 m^{2}+3 m+2\right) l_{2} \\
q=\left(2 m^{2}+m+1\right) l_{2}-2 m\left(m^{2}+m+1\right) z \\
p \text { and } q \text { are non-negative integers; } z \text { is a positive integer. }
\end{array}\right.
$$

There exists a solution for the variables p, q and z in the above equation set if and only if the following conditions can be satisfied:

$$
\left\{\begin{array}{l}
2(m+1)\left(m^{2}+m+1\right) z-\left(2 m^{2}+3 m+2\right) l_{2} \geq 0 \\
\left(2 m^{2}+m+1\right) l_{2}-2 m\left(m^{2}+m+1\right) z \geq 0 \\
z \text { is a positive integer. }
\end{array}\right.
$$

which is equivalent to:

$$
\left\{\begin{array}{c}
\frac{\left(2 m^{2}+3 m+2\right) l_{2}}{2(m+1)\left(m^{2}+m+1\right)} \leq z \leq \frac{\left(2 m^{2}+m+1\right) l_{2}}{2 m\left(m^{2}+m+1\right)} \\
z \text { is a positive integer. }
\end{array}\right.
$$

To enable a value for z to exist that satisfies the above conditions, it is sufficient to make $\frac{\left(2 m^{2}+m+1\right) l_{2}}{2 m\left(m^{2}+m+1\right)}-\frac{\left(2 m^{2}+3 m+2\right) l_{2}}{2(m+1)\left(m^{2}+m+1\right)} \geq 1$ — that is, to make $l_{2} \geq 2 m(m+1)\left(m^{2}+m+1\right)=\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(\left|S_{t}\right|+1\right)$. Therefore when $l_{2} \geq\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(\left|S_{t}\right|+1\right)$, there exists at least one solution (p, q) to the equation set (1).

When t is even, the conclusion can be proved in a very similar way. We skip its details.

Corollary 1: When $l_{2} \geq\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(\left|S_{t}\right|+1\right)$, Construction 3.1 can be used to output a t-interleaving on an $\left(\left|S_{t}\right|+1\right) \times l_{2}$ torus.

Proof: When $l_{2} \geq\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(\left|S_{t}\right|+1\right)$, all the parameters in the 'Input' part of Construction 3.1 exist, including p and q.
(a)

B			
0	0	0	0
1	1	1	1
2	2	2	2

C	
1	2
3	4

(b)

0	1	2	3
3	2	1	0
0	0	0	0
1	1	1	1
2	2	2	2

E

1	2	0	1	2	3	1	2
3	4	3	2	1	0	3	4

Fig. 9. Examples of tiling tori

C. Interleaving with Degree within One of the Optimal

In this subsection, we will show how to interleave a large enough torus with the degree within one of the optimal.
We define the simple term of tiling tori here. By tiling several interleaved tori vertically or horizontally, we get a larger torus, whose interleaving is the straightforward combination of the interleaving on the smaller tori. It is best explained with an example.

Example 3.3: Three interleaved tori- A, B and $C —$ are shown in Fig.9. The torus D is a 5×4 torus, got by tiling A and B vertically in the form of $\left[\begin{array}{l}A \\ B\end{array}\right]$. The torus E is a 2×8 torus, got by tiling one copy of A and two copies of C horizontally in the form of $\left[\begin{array}{lll}C & A & C\end{array}\right]$.

The following construction t-interleaves a large enough torus with at most $\left|S_{t}\right|+2$ distinct integers.

Construction 3.2: t-interleave an $l_{1} \times l_{2}$ torus G, where $l_{1} \geq\left|S_{t}\right|\left(\left|S_{t}\right|+1\right)$ and $l_{2} \geq\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(\left|S_{t}\right|+1\right)$, using at most $\left|S_{t}\right|+2$ distinct integers.

1. Let G_{1} be an $\left(\left|S_{t}\right|+1\right) \times l_{2}$ torus that is t-interleaved by Construction 3.1 , using the integers ' 0 ', ' 1 ', \cdots, ' $\left|S_{t}\right|$ '. Let $\left\{\left(c_{0}, 0\right),\left(c_{1}, 1\right), \cdots,\left(c_{l_{2}-1}, l_{2}-1\right)\right\}$ be the set of vertices in G_{1} labelled by the integer ' 0 '.
2. Let G_{2} be an $\left(\left|S_{t}\right|+2\right) \times l_{2}$ torus. Label the vertices $\left\{\left(c_{0}, 0\right),\left(c_{1}, 1\right), \cdots,\left(c_{l_{2}-1}, l_{2}-1\right)\right\}$ in G_{2} with the integer ' $\left|S_{t}\right|+1$ '.
3. For $j=0,1, \cdots, l_{2}-1$ and for $i=1,2, \cdots,\left|S_{t}\right|+1$, label the vertex $\left(\left(c_{j}+i\right) \bmod \left(\left|S_{t}\right|+2\right), j\right)$ in G_{2} with the integer ' $i-1$ '.
4. Let x and y be two non-negative integers such that $l_{1}=x\left(\left|S_{t}\right|+1\right)+y\left(\left|S_{t}\right|+2\right)$. Tile x copies of G_{1} and y copies of G_{2} vertically to get an $l_{1} \times l_{2}$ torus G. (Then G has been t-interleaved using at most $\left|S_{t}\right|+2$ distinct integers.)

Example 3.4: We use Construction 3.2 to t-interleave a 7×6 torus G, where $t=2$. The first step is to use Construction 3.1 to t-interleave a 3×6 torus G_{1}. Say the offset sequence selected in Construction 3.1 is $S=$ ' $Q Q Q^{\prime}={ }^{\prime} 1,2,1,2,1,2^{\prime}$, then G_{1} is as shown in Fig. 10. Then the 4×6 torus G_{2} is as shown in the figure. By tiling one copy of G_{1} and one copy of G_{2} vertically, we get the t-interleaved torus $G .\left|S_{t}\right|+2=4$ distinct integers are used to interleave G.

Theorem 7: Construction 3.2 is correct.

Proof: It is a known fact that for any two relatively prime positive integers A and B, any integer C no less than $(A-1)(B-1)$ can be expressed as $C=x A+y B$ where x and y are non-negative integers. Therefore in Construction 3.2, since $l_{1} \geq$ $\left|S_{t}\right|\left(\left|S_{t}\right|+1\right), l_{1}$ indeed can be expressed as $l_{1}=x\left(\left|S_{t}\right|+1\right)+y\left(\left|S_{t}\right|+2\right)$, as shown in the last step of Construction 3.2. So the construction can be executed from beginning to end successfully. Now we prove that the construction does t-interleave G - that is, for any two vertices $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ labelled by the same integer i in G, the Lee distance between them is at least t. We consider three cases.

G1					
0	2	0	2	0	2
1	0	1	0	1	0
2	1	2	1	2	1

G_{2}					
3	2	3	2	3	2
0	3	0	3	0	3
1	0	1	0	1	0
2	1	2	1	2	1

G					
0	2	0	2	0	2
1	0	1	0	1	0
2	1	2	1	2	1
3	2	3	2	3	2
0	3	0	3	0	3
1	0	1	0	1	0
2	1	2	1	2	1

Fig. 10. Examples of Construction 3.2.

Case 1: $b_{1}=b_{2}$, which means that $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are in the same column of G. We see every column of G as a ring of length l_{1} (because it is toroidal). Then, observe the integers labelling a column of G, and we can see that on the column, the integers following an integer ' $\left|S_{t}\right|+1$ ' and before the next integer ' $\left|S_{t}\right|+1$ ' must be ' $0,1, \cdots,\left|S_{t}\right|, 0,1, \cdots,\left|S_{t}\right|, \cdots \cdots, 0,1, \cdots,\left|S_{t}\right|$ ', where the pattern $0,1, \cdots,\left|S_{t}\right|$ appears at least once. Therefore since $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are labelled by the same integer, the Lee distance between them must be at least $\left|S_{t}\right|+1>t$.

Case 2: $b_{1} \neq b_{2}$, and $i \neq\left|S_{t}\right|+1$. In this case, let's first observe two conclusions:

- The interleaving on G_{2} is t-interleaving. (See Construction 3.2 for the definition of G_{2}.) This can be proved as follows: any two vertices labelled by the same integer in G_{2} can be expressed as $\left(\left(c_{j_{1}}+i_{0}\right) \bmod \left(\left|S_{t}\right|+2\right), j_{1}\right)$ and $\left(\left(c_{j_{2}}+\right.\right.$ $\left.\left.i_{0}\right) \bmod \left(\left|S_{t}\right|+2\right), j_{2}\right)$ (see the Step 2 and Step 3 of Construction 3.2); then, $d_{G_{2}}\left(\left(\left(c_{j_{1}}+i_{0}\right) \bmod \left(\left|S_{t}\right|+2\right), j_{1}\right),\left(\left(c_{j_{2}}+\right.\right.\right.$ $\left.\left.\left.i_{0}\right) \bmod \left(\left|S_{t}\right|+2\right), j_{2}\right)\right)=d_{G_{2}}\left(\left(c_{j_{1}}, j_{1}\right),\left(c_{j_{2}}, j_{2}\right)\right) \geq d_{G_{1}}\left(\left(c_{j_{1}}, j_{1}\right),\left(c_{j_{2}}, j_{2}\right)\right) \geq t$.
- Let (α, j) and (β, j) be two vertices respectively in G_{1} and G_{2} both of which are labelled by the same integer. Then it is simple to see that $\beta=\alpha$ or $\beta=\alpha+1$. Since G_{1} has $\left|S_{t}\right|+1$ rows and G_{2} has $\left|S_{t}\right|+2$ rows, we have $d_{G_{2}}((\beta, j),(0, j)) \geq$ $d_{G_{1}}((\alpha, j),(0, j))$ and $d_{G_{2}}\left((\beta, j),\left(\left|S_{t}\right|+1, j\right)\right) \geq d_{G_{1}}\left((\alpha, j),\left(\left|S_{t}\right|, j\right)\right)$. That is, if u and v are two vertices respectively in G_{1} and G_{2} both of which are in the j-th column and labelled by the same integer, the vertical distance from v to the two 'borders' of G_{2} is no less than the vertical distance from u to the two 'borders' of G_{1}.

According to Construction 3.2, G is got by vertically tiling x copies of G_{1} and y copies of G_{2}. Let's call each of those $x+y$ tori a component torus of G. Now, if $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are in the same component torus of G, we know the Lee distance between them in G is no less than the Lee distance between them in that component torus, which is at least t because that component torus is t-interleaved. If $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are not in the same component torus of G, we do the following. We firstly construct a torus G^{\prime} which is got by vertically tiling $x+y$ copies of G_{1}. It is simple to see that G^{\prime} is t-interleaved. We call each of the $x+y$ copies of G_{1} in G^{\prime} a component torus of G^{\prime}. Let's say $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are respectively in the k_{1}-th and k_{2}-th component torus of G. Let $\left(c_{1}, b_{1}\right)$ and $\left(c_{2}, b_{2}\right)$ be the two vertices labelled by the integer i that are respectively in the k_{1}-th and k_{2}-th component torus of G^{\prime}. Observe the shortest path between $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right) \underline{\text { in } G}$, and we see that it can be split into such three intervals: from $\left(a_{1}, b_{1}\right)$ to a border of the k_{1}-th component torus, from the border of the k_{1}-th component torus to the border of the k_{2}-th component torus, and from the border of the k_{2}-th component torus to $\left(a_{2}, b_{2}\right)$. There is a corresponding (not necessarily shortest) path connecting $\left(c_{1}, b_{1}\right)$ and $\left(c_{2}, b_{2}\right)$ in G^{\prime}, which can be split into such three intervals similarly. And each of the three intervals of the first path is at least as long as the corresponding interval of the second path. G^{\prime} is t-interleaved, so the second path's length is at least t. So the Lee distance between $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ in G is at least t.

Case 3: $b_{1} \neq b_{2}$, and $i=\left|S_{t}\right|+1$. In this case, it is simple to see that the two vertices in $G,\left(a_{1}+1 \bmod l_{1}, b_{1}\right)$ and $\left(a_{2}+1 \bmod l_{1}, b_{2}\right)$, are both labelled by the integer 0 . Based on the conclusion of Case $2, d_{G}\left(\left(a_{1}+1 \bmod l_{1}, b_{1}\right),\left(a_{2}+\right.\right.$ $\left.\left.1 \bmod l_{1}, b_{2}\right)\right) \geq t$. So $d_{G}\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=d_{G}\left(\left(a_{1}+1 \bmod l_{1}, b_{1}\right),\left(a_{2}+1 \bmod l_{1}, b_{2}\right)\right) \geq t$.

So Construction 3.2 correctly t-interleaved G.

As a result of Construction 3.2, we get the following theorem.

Theorem 8: When $l_{1} \geq\left|S_{t}\right|\left(\left|S_{t}\right|+1\right)$ and $l_{2} \geq\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(\left|S_{t}\right|+1\right)$, an $l_{1} \times l_{2}$ (or equivalently, $l_{2} \times l_{1}$) torus' t-interleaving number is at most $\left|S_{t}\right|+2$.

By combining Construction 2.2 (the construction for perfect t-interleaving) and Construction 3.2, we can t-interleave any sufficiently large torus with a degree within one of the optimal.

IV. Optimal Interleaving on Large Tori

In the previous section, it is shown that when l_{2} is large enough, an $\left(\left|S_{t}\right|+1\right) \times l_{2}$ torus can be t-interleaved using $\left|S_{t}\right|+1$ integers. In this section, we will construct an $\left[k\left(\left|S_{t}\right|+1\right)-1\right] \times l_{2}$ torus which is also t-interleaved using $\left|S_{t}\right|+1$ integers, by using an operation we call 'removing a zigzag row'. (' k ' is some integer.) Those two tori have a special property: when they (or multiple copies of them) are tiled vertically to get a larger torus, the larger torus is also t-interleaved with degree $\left|S_{t}\right|+1$. $\left|S_{t}\right|+1$ and $k\left(\left|S_{t}\right|+1\right)-1$ are relatively prime, so a large enough l_{1} must be a linear combination of those two numbers with non-negative integral coefficients - therefore an $l_{1} \times l_{2}$ torus can be t-interleaved using $\left|S_{t}\right|+1$ integers in this way. We present constructions to optimally t-interleave such tori; and as a parallel result, the existence of Region I (see Section I: Introduction) is proved.

All the results of this section can be split into two parts: one for the case ' t is odd', and the other for the case ' t is even'. Those two cases can be analyzed with very similar methods; however their analysis and results differ in details. For succinctness, in this section, we only analyze in detail the case ' t is odd', which should suffice for illustrating all the ideas. So in the first three subsections here - Subsection A, B, and C, we always assume that t is odd. In Subsection D, we present just the final result for the case ' t is even'. We list the major intermediate results for the case ' t is even' in Appendix II.

A. Removing a Zigzag Row in a Torus

Definition 4.1: A zigzag row in an $l_{1} \times l_{2}$ torus is a set of l_{2} vertices of the torus: $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$, where $0 \leq a_{i} \leq l_{1}-1$ for $i=0,1, \cdots, l_{2}-1$. (For example, $\{(2,0),(3,1),(0,2),(0,3),(3,4)\}$ is a zigzag row in a 4×5 torus.)

Definition 4.2: Let T be an $l_{1} \times l_{2}$ torus. Let $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$ be a zigzag row in T. Let there be an interleaving on T, which labels T 's vertex (b, c) with the integer $I(b, c)$, for $b=0,1, \cdots, l_{1}-1$ and $c=0,1, \cdots, l_{2}-1$. Then a torus G is said to be 'got by removing the zigzag row $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$ in T ' if and only if these two conditions are satisfied:

- G is an $\left(l_{1}-1\right) \times l_{2}$ torus.
- For $i=0,1, \cdots, l_{1}-2$ and $j=0,1, \cdots, l_{2}-1$, the vertex (i, j) in G is labelled by the integer $I(i, j)$ if $i<a_{j}$, and by the integer $I(i+1, j)$ if $i \geq a_{j}$.

Example 4.1: In Fig. 11, a 6×5 torus T is shown. A zigzag row $\{(3,0),(2,1),(1,2),(3,3),(1,4)\}$ in T is circled in the figure. Fig. 11 shows a torus G got by removing the zigzag row $\{(3,0),(2,1),(1,2),(3,3),(1,4)\}$ in T.

It can be readily observed that G can be seen as being derived from T in the following way: firstly, delete the zigzag row in T that is circled in Fig. 11; then in each column of T, move the vertices below the circled vertex upward.

In order to get our final results, we present three rules to follow for devising a zigzag row. Let B be an $l_{0} \times l_{2}$ torus which is t-interleaved by Construction 3.1. (That means $l_{0}=\left|S_{t}\right|+1$.) Let $S=' s_{0}, s_{1}, \cdots, s_{l_{2}-1}$ ' be the offset sequence utilized by Construction 3.1 when it was t-interleaving B. Let H be an $l_{1} \times l_{2}$ torus got by tiling several copies of B vertically. Let $m=\left\lfloor\frac{t}{2}\right\rfloor$. Then the three rules for devising a zigzag row in $H-\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}-$ are:
T

1	3	5	2	4						
2	4	6	3	5						
3	5	1	4	6						
4	6	2	5	1						
5	1	3	6	2						
6	2	4	1	3	\quad	1	3	5	2	4
:---	:---	:---	:---	:---						
2	4	1	3	6						
3	6	2	4	1						
5	1	3	6	2						
6	2	4	1	3						

Fig. 11. Removing a zigzag row $\{(3,0),(2,1),(1,2),(3,3),(1,4)\}$ in T.

- Rule 1: For any j such that $0 \leq j \leq l_{2}-1$, if the integers $s_{j}, s_{(j+1) \bmod l_{2}}, \cdots, s_{(j+m-1) \bmod l_{2}}$ do not all equal t, then $a_{j} \geq a_{(j+m)} \bmod l_{2}+m$.
- Rule 2: For any j such that $0 \leq j \leq l_{2}-1$, if exactly one of the integers $s_{j}, s_{(j+1) \bmod l_{2}}, \cdots, s_{(j+m) \bmod l_{2}}$ equals $t+1$, then $a_{j} \leq a_{(j+m+1) \bmod l_{2}}-(m-1)$.
- Rule 3: For any j such that $0 \leq j \leq l_{2}-1, m \leq a_{j} \leq l_{1}-m-1$.

Lemma 5: Let B be a torus t-interleaved by Construction 3.1. Let H be a torus got by tiling copies of B vertically, and let T be a torus got by removing a zigzag row in H, where the zigzag row in H follows the three rules - Rule 1 , Rule 2 and Rule 3. Let G be a torus got by tiling copies of B and T vertically. Then, both T and G are t-interleaved.

Proof: When $t=1$, the proof is trivial. So we assume $t \geq 3$ in the rest of the proof. It is simple to see that H is t-interleaved, because H is got by tiling B, a t-interleaved torus. We assume B is an $l_{0} \times l_{2}$ torus (where $l_{0}=\left|S_{t}\right|+1$), H is an $l_{1} \times l_{2}$ torus (where l_{1} is a multiple of l_{0}), T is an $l_{T} \times l_{2}$ torus (where $l_{T}=l_{1}-1$), and G is an $l_{G} \times l_{2}$ torus. Let $m=\left\lfloor\frac{t}{2}\right\rfloor$. Let $S=$ ' $s_{0}, s_{1}, \cdots, s_{l_{2}-1}$ ' be the offset sequence utilized by Construction 3.1 when it was t-interleaving B.
(1) In this part, we will prove that T is t-interleaved. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two vertices in T both labelled by some integer ' r '. We need to prove that $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq t$.

Let $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$ denote the zigzag row removed in H to get T. If $a_{y_{1}} \leq x_{1}$, then let $z_{1}=x_{1}+1$; otherwise let $z_{1}=x_{1}$. Similarly, if $a_{y_{2}} \leq x_{2}$, then let $z_{2}=x_{2}+1$; otherwise let $z_{2}=x_{2}$. Clearly, the two vertices in H, $\left(z_{1}, y_{1}\right)$ and $\left(z_{2}, y_{2}\right)$, are also labelled by ' r '.

We only need to consider the following three cases:
Case 1: $y_{1}=y_{2}$. In this case, $d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)$ is a multiple of $\left|S_{t}\right|+1$ (the number of rows in $\left.B\right)$; and $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}\right.\right.$, $\left.\left.y_{2}\right)\right) \geq d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)-1 \geq\left|S_{t}\right|=\frac{t^{2}+1}{2}>t$.

Case 2: $y_{1} \neq y_{2}$ and $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \leq d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)-2$. Without loss of generality (WLOG), we assume $x_{1} \geq x_{2}$. Then, based on the definition of the 'removing a zigzag row', it is simple to verify that the following must be true: $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)-2, a_{y_{2}}<z_{2}<z_{1}<a_{y_{1}},\left(z_{2}-z_{1} \bmod l_{1}\right) \leq\left(z_{1}-z_{2} \bmod l_{1}\right)$. By Rule 3, any vertex in the removed zigzag row is neither in the first m rows nor in the last m rows of H, so $\left(z_{2}-z_{1} \bmod l_{1}\right) \geq 2 m+3$. So $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)-2>\left(z_{2}-z_{1} \bmod l_{1}\right)-2 \geq 2 m+1=t$.

Case 3: $y_{1} \neq y_{2}$ and $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)-1$. We know that $d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right) \geq t$. So to show that $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq t$, we just need to prove that if $d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=t$, then $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq$ $d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)$. By Lemma 4, there are only two non-trivial sub-cases to consider WLOG:

Sub-case 3.1: $y_{2}-y_{1} \equiv m \bmod l_{2}, z_{2}-z_{1} \equiv-(m+1) \bmod l_{1}, d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=\left(y_{2}-y_{1} \bmod l_{2}\right)+\left(z_{1}-\right.$
 $z_{2}+(m+1)$), then from Rule 1, it is simple to see that $x_{1}-x_{2}=z_{1}-z_{2}-\operatorname{so} d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=$ t. If $z_{1}<z_{2}$ (which means that $\left(z_{1}, y_{1}\right)$ and $\left(z_{2}, y_{2}\right)$ are respectively in the first and last $m+1$ rows of H), since the
first and last m rows of H and T must be the same, we get that $\left(x_{1}-x_{2} \bmod l_{T}\right)=\left(z_{1}-z_{2} \bmod l_{1}\right)=m+1-$ so $d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=t$.

Sub-case 3.2: $y_{2}-y_{1} \equiv m+1 \bmod l_{2}, z_{2}-z_{1} \equiv m \bmod l_{1}, d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=\left(y_{2}-y_{1} \bmod l_{2}\right)+\left(z_{2}-z_{1} \bmod l_{1}\right)=$ t, and exactly one of $s_{y_{1}}, s_{\left(y_{1}+1\right) \bmod l_{2}}, s_{\left(y_{1}+2\right) \bmod l_{2}}, \cdots, s_{\left(y_{1}+m\right) \bmod l_{2}}$ equals $t+1$. If $z_{1}<z_{2}\left(\right.$ which means $\left.z_{1}=z_{2}-m\right)$, then from Rule 2, it is simple to see that $x_{2}-x_{1}=z_{2}-z_{1}-\operatorname{so} d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=t$. If $z_{1}>z_{2}$ (which means that $\left(z_{1}, y_{1}\right)$ and $\left(z_{2}, y_{2}\right)$ are respectively in the last and first m rows of H), since the first and last m rows of H and T must be the same, we get that $\left(x_{2}-x_{1} \bmod l_{T}\right)=\left(z_{2}-z_{1} \bmod l_{1}\right)=m-\operatorname{so} d_{T}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=$ $d_{H}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=t$.

So T is t-interleaved.
(2) In this part, we will prove that G is t-interleaved. First let's have an observation: when a t-interleaved torus K is tiled with other tori vertically to get a larger torus \hat{G}, for any two vertices μ and ν in K (which are now also in \hat{G}) labelled by the same integer, the Lee distance between them in \hat{G}, $d_{\hat{G}}(\mu, \nu)$, is clearly no less than t. Let's also notice that the torus got by tiling one copy of B and one copy of T vertically is t-interleaved, which can be proved with exactly the same proof as in part (1).
G is got by tiling multiple copies of B and T. Let's call each copy of B or T in G a component torus. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two vertices in G labelled by the same integer. Assume $d_{G}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \leq t$. Then since both B and T have more than t rows, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ must be either in the same component torus or in two adjacent component tori. Now if $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are in the same component torus, let K denote that component torus; if $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are in two adjacent component tori, let K be the torus got by vertically tiling those two component tori; let \hat{G} be the same as G. By using the observation in the previous paragraph, we can readily prove that $d_{G}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq t$. So G is t-interleaved.

B. Constructing the Zigzag Row

We presented three rules on devising a zigzag row in the previous subsection. But specifically, how to construct a zigzag row that follow all those rules? In this subsection, we present such constructions.

Before the formal presentation, let us go over a few concepts. An offset sequence is a string of ' P 's and ' Q 's, where P and Q are strings of integers depending on t. For example, when $t=5, P={ }^{‘} 5,6$ ' and $Q={ }^{‘} 5,5,6$ '. Then an offset sequence ${ }^{\prime} P P Q$ ' can also be written as ' $5,6,5,6,5,5,6$ '. Let's also express the offset sequence ' $P P Q$ ' as ' $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}$ ', where $s_{0}=5, s_{1}=6, \cdots, s_{6}=6$. Then for $i=0,1, \cdots, 6, s_{i}$ is called the ' $(i+1)$-th element' of the offset sequence. s_{2} is also called the 'first element of a P ', because it is the first element of the second P in the offset sequence. For the same reason, s_{0} is the first element of a P (the first P in the offset sequence), s_{1} is the second (or last) element of a P (the first P in the offset sequence), s_{4} is the first element of a Q (the first/last/only Q in the offset sequence), and so on.

Now we begin the formal presentation of the constructions. Let B be an $l_{0} \times l_{2}$ torus that is t-interleaved by Construction 3.1. (Therefore $l_{0}=\left|S_{t}\right|+1$.) Let H be an $l_{1} \times l_{2}$ torus got by tiling z copies of B vertically. (Therefore $l_{1}=z l_{0}=z\left(\left|S_{t}\right|+1\right)$.) Let $S={ }^{\prime} s_{0}, s_{1}, \cdots, s_{l_{2}-1}$ ' be the offset sequence utilized by Construction 3.1 when it was t-interleaving B. We say that the offset sequence S consists of p ' P 's and q ' Q 's, where we require $p>0$ and $q>0$. We require that in the offset sequence, the ' P 's and ' Q 's are interleaved very evenly - to be specific, in the offset sequence, between any two nearby ' P 's (including between the last ' P ' and the first ' P ', because we see the offset sequence as being toroidal, so the last ' P ' and the first ' P ' are also nearby ' P 's), there are either $\left\lceil\frac{q}{p}\right\rceil$ or $\left\lfloor\frac{q}{p}\right\rfloor$ consecutive ' Q 's; and between any two nearby ' Q 's (including between the last ' Q ' and the first ' Q '), there are either $\left\lceil\frac{p}{q}\right\rceil$ or $\left\lfloor\frac{p}{q}\right\rfloor$ consecutive ' P 's. Also, we require the offset sequence to start with a ' P ' and to end with a ' Q '. (For example, an offset sequence consisting of 3 ' P 's and 5 ' Q 's that satisfies the above requirements is ' $P Q Q P Q Q P Q$ '.) Let $m=\frac{t-1}{2}$. Let $L=m+m\left\lceil\frac{p}{q}\right\rceil$ if $p \geq q$, and let $L=m+(m-1)\left\lceil\frac{q}{p}\right\rceil$ if $p<q$. We require that $l_{1} \geq\left(\left\lceil\frac{p}{q}\right\rceil+1\right) m^{2}+2 m+1$ if $p \geq q$, and require that $l_{1} \geq\left(\left\lceil\frac{q}{p}\right\rceil+1\right) m^{2}+m+\left(2-\left\lceil\frac{q}{p}\right\rceil\right)$ if $p<q$. Below we present two constructions for constructing a zigzag row in H, applicable respectively when $p \geq q$ and when $p<q$. Note that the constructed zigzag row is denoted by $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$. Also note that both constructions require $t>3$. (The analysis for the case ' $t=3$ ', as a somewhat special case, will be presented in Appendix I.)

Construction 4.1: Constructing a zigzag row in H, when t is odd, $t>3$, and $p \geq q>0$

1. Let $s_{x_{1}}, s_{x_{2}}, \cdots, s_{x_{p+q}}$ be the integers such that $0=x_{1}<x_{2}<\cdots<x_{p+q}=l_{2}-m-1$, and each $s_{x_{i}}(1 \leq i \leq p+q)$ is the first element of a ' P ' or ' Q ' in the offset sequence S.

Let $a_{x_{1}}=L$. For $i=2$ to $p+q$, if $s_{x_{i-1}}$ is the first element of a ' Q ', let $a_{x_{i}}=L$.
For $i=2$ to $p+q$, if $s_{x_{i-1}}$ is the first element of a ' P ', then let $a_{x_{i}}=a_{x_{i-1}}-m$.
2. For $i=2$ to m and for $j=1$ to $p+q$, let $a_{x_{j}+i-1}=a_{x_{j}+i-2}+L$.
3. Let $s_{y_{1}}, s_{y_{2}}, \cdots, s_{y_{q}}$ be the integers such that $y_{1}<y_{2}<\cdots<y_{q}=l_{2}-1$, and each $s_{y_{i}}(1 \leq i \leq q)$ is the last element of a ' Q ' in the offset sequence S.

For $i=1$ to q, let $a_{y_{i}}=m L+m$.
Now we have fully determined the zigzag row, $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$, in the torus H.

The zigzag row constructed by Construction 4.1 has a quite regular structure. We show it with an example.
Example 4.2: We use this example to illustrate Construction 4.1. In this example, $t=5$, and B is an 14×18 torus as shown in Fig. 12(a). B is t-interleaved by Construction 3.1 by using the offset sequence $S={ }^{`} P P P Q P P P Q '={ }^{`} 5,6,5,6,5,6,5,5,6,5,6$, $5,6,5,6,5,5,6$. The torus H is shown in Fig. 12(b). H is an 28×18 torus got by tiling 2 copies of B vertically. The rest of the parameters used by Construction 4.1 are $p=6, q=2, m=2$ and $L=8$. It is not difficult to verify that the zigzag row in H constructed by Construction 4.1 is $\{(8,0),(16,1),(6,2),(14,3),(4,4),(12,5),(2,6),(10,7),(18,8),(8,9),(16,10),(6,11)$, $(14,12),(4,13),(12,14),(2,15),(10,16),(18,17)\}$. In Fig.12(b), the vertices in the zigzag row are shown in solid-line circles, solid-line hexagons, or dashed-line circles.

Now we briefly analyze the structure of the zigzag row in H. Let us write the offset sequence S as $S={ }^{\prime} s_{0}, s_{1}, \cdots, s_{17}$ '. Then for $i=0,1, \cdots, 17$, we can see that s_{i} actually shows the 'offset' between the i-th column and the $(i+1)$-th column of H - in other words, if we shift the integers in the i-th column of H down (toroidally) by s_{i} units, we get the $(i+1)$-th column of H. So we can think of s_{i} as 'spanning from the i-th column to the $(i+1)$-th column of H '. And let's say a P or Q in the offset sequence spans the columns that all its elements span. Then, since the offset sequence here is ' $P P P Q P P P Q$ ', the ranges each of them spans is as indicated in Fig. 12(b).

Let us observe the vertices in the zigzag row that are in solid-line circles. If we indicate them by $\left(a_{x_{1}}, x_{1}\right),\left(a_{x_{2}}, x_{2}\right), \cdots$, $\left(a_{x_{p+q}}, x_{p+q}\right)$, where $x_{1}<x_{2} \cdots<x_{p+q}$, then we can see that $s_{x_{1}}, s_{x_{2}}, \cdots, s_{x_{p+q}}$ are the 'first elements' of the ' P 's and ' Q 's in the offset sequence (namely, each of them is the first element of a ' P ' or a ' Q ' in the offset sequence). And we can see that the vertices in solid-line circles have a regular structure - basically, it climes up by $m=2$ units from one vertex to the next, and drops to a base-position if it is between the spanned ranges of a Q and a P. Now let us observe the vertices in solid-line hexagons. We can see that they correspond to those 'second elements of the ' P 's and ' Q 's in the offset sequence', and they also have a regular structure. To be specific, the positions of the vertices in solid-line hexagons can be got by shifting the positions of the vertices in solid-line circles horizontally by 1 unit and then down by $L=8$ units. In general, those vertices in a zigzag row that correspond to the $(i+1)$-th elements of ' P 's and ' Q 's can be got by shifting the positions of the vertices that correspond to the i-th elements of ' P 's and ' Q 's horizontally by 1 unit and down by L unit (here $0 \leq i<m$). As for the vertices in dashed-line circles, they correspond to the 'last elements of the ' Q 's in the offset sequence', and they are all in the same row. The above observations can be extended in an obvious way to the general outputs of Construction 4.1.

Now we present the second construction.
Construction 4.2: Constructing a zigzag row in H, when t is odd, $t>3$, and $0<p<q$

1. Let $s_{x_{1}}, s_{x_{2}}, \cdots, s_{x_{p+q}}$ be the integers such that $0=x_{1}<x_{2}<\cdots<x_{p+q}=l_{2}-m-1$, and each $s_{x_{i}}(1 \leq i \leq p+q)$ is the first element of a ' P ' or ' Q ' in the offset sequence S.

Let $a_{x_{1}}=L$.
For $i=2$ to $p+q$, if $s_{x_{i}}$ is the first element of a ' P ', let $a_{x_{i}}=L$; if $s_{x_{i-1}}$ is the first element of a ' P ', let $a_{x_{i}}=$ $L-\left\lceil\frac{q}{p}\right\rceil(m-1)$; otherwise, let $a_{x_{i}}=a_{x_{i-1}}+(m-1)$.
(b)
(b) H

Fig. 12. An example of Construction 4.1.
2. For $i=2$ to m and for $j=1$ to $p+q$, let $a_{x_{j}+i-1}=a_{x_{j}+i-2}+L$.
3. Let $s_{y_{1}}, s_{y_{2}}, \cdots, s_{y_{q}}$ be the integers such that $y_{1}<y_{2}<\cdots<y_{q}=l_{2}-1$, and each $s_{y_{i}}(1 \leq i \leq q)$ is the last element of a ' Q ' in the offset sequence S.

For $i=1$ to q, let $a_{y_{i}}=a_{y_{i}-1}+L$.
Now we have fully determined the zigzag row, $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$, in the torus H.

Like Construction 4.1, the zigzag row constructed by Construction 4.2 also has a regular (and similar) structure.

Theorem 9: The zigzag rows constructed by Construction 4.1 and Construction 4.2 follow all the three rules - Rule 1, Rule 2 and Rule 3.

The above theorem can be proved with straightforward verification. So we skip its proof.

C. Optimal Interleaving When t is Odd

In this subsection, we prove that when t is odd, for a torus whose size is large enough in both dimensions, its t-interleaving number is at most one more than the sphere packing lower bound, $\left|S_{t}\right|$. We also present the corresponding optimal t-interleaving construction.

Lemma 6: In Equation Set (1) (the equation set in Construction 3.1), let the values of t, m and l_{2} be fixed. Let ' $p=p_{0}, q=$ q_{0} ' be a solution that satisfies the Equation Set (1). Then, another solution ' $p=p_{1}, q=q_{1}$ ' also satisfies the Equation Set (1) if and only if there exists an integer c such that $p_{1}=p_{0}+c(m+1)\left(2 m^{2}+2 m+2\right) \geq 0$ and $q_{1}=q_{0}-c m\left(2 m^{2}+2 m+2\right) \geq 0$.

Proof: We can easily prove that " $p=p_{1}, q=q_{1}$ ' is a solution that satisfies the Equation Set (1) if $p_{1}=p_{0}+c(m+$ 1) $\left(2 m^{2}+2 m+2\right) \geq 0$ and $q_{1}=q_{0}-c m\left(2 m^{2}+2 m+2\right) \geq 0$ for some integer c ', by plugging ' $p=p_{1}, q=q_{1}$ ' into the Equation Set (1). Now let's prove the other direction.

Assume ' $p=p_{1}, q=q_{1}$ ' is a solution that satisfies the Equation Set (1). Let $x=p_{1}-p_{0}$ and $y=q_{1}-q_{0}$. By the first equation in Equation Set (1), $p_{1} m+q_{1}(m+1)=l_{2}=p_{0} m+q_{0}(m+1)-$ therefore $\left(p_{1}-p_{0}\right) m=-\left(q_{1}-q_{0}\right)(m+1)$, which is $x m=-y(m+1)$. So x is a multiple of $m+1$ and y is a multiple of m. So there exists an integer a such that $x=a(m+1)$ and $y=-a m$.

Now let us look at the second equation in Equation Set (1), $p_{1}\left(2 m^{2}+m+1\right)+q_{1}\left(2 m^{2}+3 m+2\right) \equiv 0 \bmod \left(2 m^{2}+\right.$ $2 m+2)$. Note that $2 m^{2}+m+1 \equiv-(m+1) \bmod \left(2 m^{2}+2 m+2\right)$ and $2 m^{2}+3 m+2 \equiv m \bmod \left(2 m^{2}+2 m+2\right)$. So $-p_{1}(m+1)+q_{1} m \equiv 0 \bmod \left(2 m^{2}+2 m+2\right)$. Since $p_{1}=p_{0}+x=p_{0}+a(m+1)$ and $q_{1}=q_{0}+y=q_{0}-a m$, we get $-\left[p_{0}+a(m+1)\right](m+1)+\left(q_{0}-a m\right) m \equiv\left[-p_{0}(m+1)+q_{0} m\right]-\left[a(m+1)^{2}+a m^{2}\right] \equiv-a\left(2 m^{2}+2 m+1\right) \equiv$ $0 \bmod \left(2 m^{2}+2 m+2\right)$. Since $2 m^{2}+2 m+1$ and $2 m^{2}+2 m+2$ must be relatively prime, we get $2 m^{2}+2 m+2 \mid a$. So there exist an integer c such that $a=c\left(2 m^{2}+2 m+2\right)$. Then $p_{1}=p_{0}+x=p_{0}+a(m+1)=p_{0}+c(m+1)\left(2 m^{2}+2 m+2\right) \geq 0$ and $q_{1}=q_{0}+y=q_{0}-a m=q_{0}-c m\left(2 m^{2}+2 m+2\right) \geq 0$.(The two inequalities come from the last condition in Equation Set (1).) That completes the proof of the other direction of this lemma.

Lemma 7: In Equation Set (1) (the equation set in Construction 3.1), let the values of t, m and l_{2} be fixed. Let $\Delta_{P}=$ $(m+1)\left(2 m^{2}+2 m+2\right)$ and $\Delta_{Q}=m\left(2 m^{2}+2 m+2\right)$. If there exists a solution of p and q that satisfies the Equation Set (1), then there exists a solution ' $p=p^{*}, q=q^{*}$ that satisfies not only the Equation Set (1) but also one of the following two inequalities:

$$
\begin{align*}
& \frac{l_{2}}{2 m+1}-\frac{\Delta_{Q}}{2}<q^{*} \leq p^{*}<\frac{l_{2}}{2 m+1}+\frac{\Delta_{P}}{2} \tag{3}\\
& \frac{l_{2}}{2 m+1}-\frac{\Delta_{P}}{2} \leq p^{*}<q^{*} \leq \frac{l_{2}}{2 m+1}+\frac{\Delta_{Q}}{2} \tag{4}
\end{align*}
$$

Proof: Assume there is a solution ' $p=p_{0}, q=q_{0}$ ' that satisfies Equation Set (1). Trivially, either $p_{0} \geq q_{0}$ or $p_{0}<q_{0}$. Firstly, let us assume that $p_{0} \geq q_{0}$. If $p_{0} \geq \frac{l_{2}}{2 m+1}+\Delta_{P}$, then $q_{0}=\frac{l_{2}-p_{0} m}{m+1} \leq \frac{l_{2}-\left[l_{2} /(2 m+1)+\Delta_{P}\right] m}{m+1}=\frac{l_{2}-\left[l_{2} /(2 m+1)+(m+1)\left(2 m^{2}+2 m+2\right)\right] m}{m+1}$ $=\frac{l_{2}}{2 m+1}-\Delta_{Q}$ (and vice versa) - so then by Lemma 6, ' $p=p_{0}-\Delta_{P}, q=q_{0}+\Delta_{Q}$ ' is also a solution to Equation Set (1), and what's more, $p_{0}-\Delta_{P} \geq \frac{l_{1}}{2 m+1} \geq q_{0}+\Delta_{Q}$. Based on the above observation, we can see that there must exist a solution ' $p=p_{1}, q=q_{1}$ ' such that $\frac{l_{2}}{2 m+1}-\Delta_{Q}<q_{1} \leq p_{1}<\frac{l_{2}}{2 m+1}+\Delta_{P}$. If $p_{1}<\frac{l_{2}}{2 m+1}+\frac{\Delta_{P}}{2}$, then $q_{1}>\frac{l_{2}}{2 m+1}-\frac{\Delta_{Q}}{2}-$ then we can simply let $p^{*}=p_{1}$ and let $q^{*}=q_{1}$. If $p_{1} \geq \frac{l_{2}}{2 m+1}+\frac{\Delta_{P}}{2}$, then $q_{1} \leq \frac{l_{2}}{2 m+1}-\frac{\Delta_{Q}}{2}-$ then we will let $p^{*}=p_{1}-\Delta_{P}$ and let $q^{*}=q_{1}+\Delta_{Q}$, in which case we will have $\frac{l_{2}}{2 m+1}-\frac{\Delta_{P}}{2} \leq p^{*}<\frac{l_{2}}{2 m+1}<q^{*} \leq \frac{l_{2}}{2 m+1}+\frac{\Delta_{Q}}{2}$. So when $p_{0} \geq q_{0}$, this lemma holds. The case that ' $p_{0}<q_{0}$ ' can be analyzed similarly.

Theorem 10: Let t be a positive odd integer. Let $m=\frac{t-1}{2}$. Define A as

$$
\begin{aligned}
& A=\max \left\{\left(\left\lceil\frac{l_{2}+(m+1)(2 m+1)\left(m^{2}+m+1\right)}{l_{2}-m(2 m+1)\left(m^{2}+m+1\right)}\right\rceil+1\right) m^{2}+2 m+1,\right. \\
& \left.\left(\left\lceil\frac{l_{2}+m(2 m+1)\left(m^{2}+m+1\right)}{l_{2}-(m+1)(2 m+1)\left(m^{2}+m+1\right)}\right\rceil+1\right) m^{2}+m+2-\left\lceil\frac{l_{2}+m(2 m+1)\left(m^{2}+m+1\right)}{l_{2}-(m+1)(2 m+1)\left(m^{2}+m+1\right)}\right\rceil\right\}
\end{aligned}
$$

. Then when

$$
l_{2} \geq(m+1)(2 m+1)\left(m^{2}+m+1\right)+1
$$

and

$$
l_{1} \geq\left(2 m^{2}+2 m+1\right)\left(\left\lceil\frac{A}{2 m^{2}+2 m+2}\right\rceil\left(2 m^{2}+2 m+2\right)-2\right)
$$

, an $l_{1} \times l_{2}$ (or equivalently, $l_{2} \times l_{1}$) torus' t-interleaving number is either $\left|S_{t}\right|$ or $\left|S_{t}\right|+1$.

Proof: This theorem is trivially correct when $t=1$. When $t=3$, by the result of Appendix I (Theorem 13), we can also easily verify that this theorem is correct. So in the following analysis, we assume that $t>3$.

Let's first define a few variables for the ease of expression. Let $\Delta_{P}=(m+1)\left(2 m^{2}+2 m+2\right), \Delta_{Q}=m\left(2 m^{2}+2 m+2\right), B=$ $\frac{l_{2}+(m+1)(2 m+1)\left(m^{2}+m+1\right)}{l_{2}-m(2 m+1)\left(m^{2}+m+1\right)}, C=\frac{l_{2}+m(2 m+1)\left(m^{2}+m+1\right)}{l_{2}-(m+1)(2 m+1)\left(m^{2}+m+1\right)}, D=(\lceil B\rceil+1) m^{2}+2 m+1$, and $E=(\lceil C\rceil+1) m^{2}+m+2-\lceil C\rceil$. Then clearly $A=\max \{D, E\}$.

When $l_{2} \geq(m+1)(2 m+1)\left(m^{2}+m+1\right)+1=\left(m+\frac{1}{2}\right)(m+1)\left(2 m^{2}+2 m+2\right)+1>m(m+1)\left(2 m^{2}+2 m+2\right)=\left\lfloor\frac{t}{2}\right\rfloor\left(\left\lfloor\frac{t}{2}\right\rfloor+\right.$ 1) $\left(\left|S_{t}\right|+1\right)$, by Theorem 6, there exists at least one solution of p and q that satisfies Equation Set (1). Then by Lemma 7, there exists a solution ' $p=p^{*}, q=q^{*}$ ' to Equation Set (1) that satisfies either the condition $\frac{l_{2}}{2 m+1}-\frac{\Delta_{Q}}{2}<q^{*} \leq p^{*}<\frac{l_{2}}{2 m+1}+\frac{\Delta_{P}}{2}$ or the condition $\frac{l_{2}}{2 m+1}-\frac{\Delta_{P}}{2} \leq p^{*}<q^{*} \leq \frac{l_{2}}{2 m+1}+\frac{\Delta_{Q}}{2}$. We analyze the two cases below.

- Case 1: there is a solution ' $p=p^{*}, q=q^{*}$ ' to Equation Set (1) that satisfies the condition $\frac{l_{2}}{2 m+1}-\frac{\Delta_{Q}}{2}<q^{*} \leq p^{*}<$ $\frac{l_{2}}{2 m+1}+\frac{\Delta_{P}}{2}$. We use Construction 3.1 to t-interleave an $\left(\left|S_{t}\right|+1\right) \times l_{2}$ torus G_{1}. Note that when $l_{2} \geq(m+1)(2 m+1)\left(m^{2}+\right.$ $m+1)+1, \frac{l_{2}}{2 m+1}-\frac{\Delta_{Q}}{2}>0$, so $q^{*}>0$. Also note that $\frac{p^{*}}{q^{*}}<\frac{l_{2} /(2 m+1)+\Delta_{P} / 2}{l_{2} /(2 m+1)-\Delta_{Q} / 2}=B$, so $D \geq\left(\left\lceil\frac{p^{*}}{q^{*}}\right\rceil+1\right) m^{2}+2 m+1$. Let G_{2} be an $\left[\left\lceil\frac{D}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)\right] \times l_{2}$ torus got by tiling $\left\lceil\frac{D}{\left|S_{t}\right|+1}\right\rceil$ copies of G_{1} vertically. We use Construction 4.1 to find a zigzag row in G_{2}; then by removing the zigzag row in G_{2}, we get a torus G_{3} whose size is $\left[\left\lceil\frac{D}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1\right] \times l_{2}$. Clearly the number of rows in $G_{1},\left|S_{t}\right|+1$, and the number of rows in $G_{3},\left\lceil\frac{D}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1$, are relatively prime. So for any $l_{0} \times l_{2}$ torus G where $l_{0} \geq\left(\left|S_{t}\right|+1-1\right)\left(\left\lceil\frac{D}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1-1\right)=\left|S_{t}\right|\left(\left\lceil\frac{D}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-2\right)$, it can be got by tiling copies of G_{1} and G_{3} vertically - and by Lemma 5, G is t-interleaved, with the t-interleaving degree of $\left|S_{t}\right|+1$.
- Case 2: there is a solution ' $p=p^{*}, q=q^{*}$ to Equation Set (1) that satisfies the condition $\frac{l_{2}}{2 m+1}-\frac{\Delta_{P}}{2} \leq p^{*}<q^{*} \leq$ $\frac{l_{2}}{2 m+1}+\frac{\Delta_{Q}}{2}$. We use Construction 3.1 to t-interleave an $\left(\left|S_{t}\right|+1\right) \times l_{2}$ torus G_{1}. Note that when $l_{2} \geq(m+1)(2 m+1)\left(m^{2}+\right.$ $m+1)+1, \frac{l_{2}}{2 m+1}-\frac{\Delta_{P}}{2}>0$, so $p^{*}>0$. Also note that $\frac{q^{*}}{p^{*}} \leq \frac{l_{2} /(2 m+1)+\Delta_{Q} / 2}{l_{2} /(2 m+1)-\Delta_{P} / 2}=C$, so $E \geq\left(\left\lceil\frac{q^{*}}{p^{*}}\right\rceil+1\right) m^{2}+m+\left(2-\left\lceil\frac{q^{*}}{p^{*}}\right\rceil\right)$. Let G_{2} be an $\left[\left\lceil\frac{E}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)\right] \times l_{2}$ torus got by tiling $\left\lceil\frac{E}{\left|S_{t}\right|+1}\right\rceil$ copies of G_{1} vertically. We use Construction 4.2 to find a zigzag row in G_{2}; then by removing the zigzag row in G_{2}, we get a torus G_{3} whose size is $\left[\left\lceil\frac{E}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1\right] \times l_{2}$. Clearly the number of rows in $G_{1},\left|S_{t}\right|+1$, and the number of rows in $G_{3},\left\lceil\frac{E}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1$, are relatively prime. So for any $l_{0} \times l_{2}$ torus G where $l_{0} \geq\left(\left|S_{t}\right|+1-1\right)\left(\left\lceil\frac{E}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1-1\right)=\left|S_{t}\right|\left(\left\lceil\frac{E}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-2\right)$, it can be got by tiling copies of G_{1} and G_{3} vertically - and by Lemma 5, G is t-interleaved, with the t-interleaving degree of $\left|S_{t}\right|+1$.

Now let G be an $l_{1} \times l_{2}$ torus where $l_{2} \geq(m+1)(2 m+1)\left(m^{2}+m+1\right)+1$ and $l_{1} \geq\left(2 m^{2}+2 m+1\right)\left(\left\lceil\frac{A}{2 m^{2}+2 m+2}\right\rceil\left(2 m^{2}+\right.\right.$ $2 m+2)-2)=\left|S_{t}\right|\left(\left\lceil\frac{\max \{D, E\}}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-2\right)$. Based on the analysis for Case (1) and Case (2), we know that G 's t interleaving number is at most $\left|S_{t}\right|+1$. By the sphere packing lower bound, G 's t-interleaving number is at least $\left|S_{t}\right|$. So G 's t-interleaving number is either $\left|S_{t}\right|$ or $\left|S_{t}\right|+1$.

For easy reference, we show the method for optimally t-interleaving a large torus as a construction below. Note that the construction below is applicable only when $t \geq 5$ (and by default, t is odd). When $t=1$, any torus can be t-interleaved with 1 integer in a trivial way. When $t=3$, the torus can be t-interleaved with the construction to be presented in Appendix I.

Construction 4.3: Optimal t-Interleaving on a Large Torus

Input: An odd integer t such that $t \geq 5$. An integer m such that $m=\frac{t-1}{2}$. An $l_{1} \times l_{2}$ torus, where

$$
l_{2} \geq(m+1)(2 m+1)\left(m^{2}+m+1\right)+1
$$

and

$$
l_{1} \geq\left(2 m^{2}+2 m+1\right)\left(\left\lceil\frac{A}{2 m^{2}+2 m+2}\right\rceil\left(2 m^{2}+2 m+2\right)-2\right)
$$

. (The parameter A is as defined in Theorem 10.)
Output: An optimal t-interleaving on the $l_{1} \times l_{2}$ torus.

Construction:

1. If both l_{1} and l_{2} are multiples of $\left|S_{t}\right|$, then the $l_{1} \times l_{2}$ torus' t-interleaving number is $\left|S_{t}\right|$. In this case, we use Construction 2.2 to t-interleave the $l_{1} \times l_{2}$ torus with $\left|S_{t}\right|$ distinct integers.
2. If either l_{1} or l_{2} is not a multiple of $\left|S_{t}\right|$, then the $l_{1} \times l_{2}$ torus' t-interleaving number is $\left|S_{t}\right|+1$. In this case, we t-interleave the torus with $\left|S_{t}\right|+1$ integers in the following way: firstly, we t-interleave an $\left(\left|S_{t}\right|+1\right) \times l_{2}$ torus, B, by using Construction 3.1 (note that $\left|S_{t}\right|+1=2 m^{2}+2 m+2$); secondly, let H be an $\left[\left\lceil\frac{A}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)\right] \times l_{2}$ torus which is got by tiling $\left\lceil\frac{A}{\left|S_{t}\right|+1}\right\rceil$ copies of B vertically, and use Construction 4.1 or Construction 4.2 (depending on which is applicable) to find a zigzag row in H; thirdly, remove the zigzag row in H to get a $\left[\left\lceil\frac{A}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1\right] \times l_{2}$ torus T; finally, find non-negative integers x and y such that $l_{1}=x\left(\left|S_{t}\right|+1\right)+y\left[\left\lceil\frac{A}{\left|S_{t}\right|+1}\right\rceil\left(\left|S_{t}\right|+1\right)-1\right]$, and get an $l_{1} \times l_{2}$ torus by tiling x copies of B and y copies of T vertically. The resulting interleaving on the $l_{1} \times l_{2}$ torus is a t-interleaving.

D. Optimal Interleaving When t Is Even

When t is even, the optimal t-interleaving on large tori can be analyzed in a very similar way as in the case of odd t. The main result for even t is shown in the following theorem. For succinctness, we leave the major steps and intermediate results of the corresponding analysis in Appendix II.

Theorem 11: Let t be a positive even integer. Let $m=\frac{t}{2}$. Define A as

$$
\begin{aligned}
A=\max \{ & \left(\left\lceil\frac{2 l_{2}+(m+1)(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-m(2 m+1)\left(2 m^{2}+1\right)}\right\rceil+1\right) m^{2}+\left(3-\left\lceil\frac{2 l_{2}+(m+1)(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-m(2 m+1)\left(2 m^{2}+1\right)}\right\rceil\right) m-3, \\
& \left(\left\lceil\frac{2 l_{2}+m(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-(m+1)(2 m+1)\left(2 m^{2}+1\right)}\right\rceil+1\right) m^{2}+\left(3-\left\lceil\frac{2 l_{2}+m(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-(m+1)(2 m+1)\left(2 m^{2}+1\right)}\right\rceil\right) m-1 \\
& \left.-2\left\lceil\frac{2 l_{2}+m(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-(m+1)(2 m+1)\left(2 m^{2}+1\right)}\right\rceil\right\}
\end{aligned}
$$

. Then when

$$
l_{2}>\frac{(m+1)(2 m+1)\left(2 m^{2}+1\right)}{2}
$$

and

$$
l_{1} \geq 2 m^{2}\left(\left\lceil\frac{A}{2 m^{2}+1}\right\rceil\left(2 m^{2}+1\right)-2\right)
$$

, an $l_{1} \times l_{2}$ (or equivalently, $l_{2} \times l_{1}$) torus' t-interleaving number is either $\left|S_{t}\right|$ or $\left|S_{t}\right|+1$.

V. General Bounds on Interleaving Numbers

We have shown that for a torus whose size is large enough in both dimensions (Theorem 10 and Theorem 11), its t interleaving number is at most $\left|S_{t}\right|+1$. If the requirement on the torus' size is loosened to some extent (Theorem 8), then its t-interleaving number is at most $\left|S_{t}\right|+2$. Does that mean for a torus of any size, its t-interleaving number is always at most $\left|S_{t}\right|$ plus a small constant? The answer is no. The following theorem shows bounds on t-interleaving numbers.

Theorem 12: (1) The t-interleaving numbers of two-dimensional tori are $\left|S_{t}\right|+O\left(t^{2}\right)$ in general. And that upper bound is tight, even if the following restriction is enforced on the tori - the number of rows or the number of columns of the torus approaches infinity. (2) When both l_{1} and l_{2} are of the order $\Omega\left(t^{2}\right)$, the t-interleaving number of an $l_{1} \times l_{2}$ torus is $\left|S_{t}\right|+O(t)$.

Proof: (1) Firstly, let's show that the t-interleaving numbers of two-dimensional tori are $\left|S_{t}\right|+O\left(t^{2}\right)$ in general. Let G be an $l_{1} \times l_{2}$ torus. First we assume that t is even and $l_{1} \geq t, l_{2} \geq t$. Let $K_{1}=\left\lfloor\frac{l_{1}}{t}\right\rfloor, K_{2}=\left\lfloor\frac{l_{2}}{t}\right\rfloor$. We see G as being tiled by small blocks in the way shown in Fig. 13, where the blocks are labelled by ' A ' or ' B '. (Note that two blocks both labelled as 'A' are not necessary of the same size. And two blocks both labelled as ' B ' are not necessary of the same size, either.) For every block labelled as 'A' (respectively, 'B'), the four blocks around it (to its left, right, up and down) are all labelled as 'B' (respectively, 'A'). Each block consists of either $\left\lceil\frac{l_{1}}{2 K_{1}}\right\rceil$ or $\left\lfloor\frac{l_{1}}{2 K_{1}}\right\rfloor$ rows, and either $\left\lceil\frac{l_{2}}{2 K_{2}}\right\rceil$ or $\left\lfloor\frac{l_{2}}{2 K_{2}}\right\rfloor$ columns. (Note that

Fig. 13. See G as being tiled by small blocks.
$\left.\left\lceil\frac{l_{1}}{2 K_{1}}\right\rceil=\left\lceil\frac{K_{1} t+\left(l_{1} \bmod t\right)}{2 K_{1}}\right\rceil=\frac{t}{2}+\left\lceil\frac{l_{1} \bmod t}{2 K_{1}}\right\rceil,\left\lfloor\frac{l_{1}}{2 K_{1}}\right\rfloor=\frac{t}{2}+\left\lfloor\frac{l_{1} \bmod t}{2 K_{1}}\right\rfloor,\left\lceil\frac{l_{2}}{2 K_{2}}\right\rceil=\frac{t}{2}+\left\lceil\frac{l_{2} \bmod t}{2 K_{2}}\right\rceil,\left\lfloor\frac{l_{2}}{2 K_{2}}\right\rfloor=\frac{t}{2}+\left\lfloor\frac{l_{2} \bmod t}{2 K_{2}}\right\rfloor.\right)$ We see each block as a torus of its corresponding size. (So for a block whose size is $\alpha \times \beta$, it vertices are denoted by (i, j) for $i=0,1, \cdots, \alpha-1$ and $j=0,1, \cdots, \beta$, in the same way a torus' vertices are normally denoted.) Now we interleave all the blocks following these two rules: (i) only integers in the set $\left\{1,2, \cdots,\left\lceil\frac{l_{1}}{2 K_{1}}\right\rceil \cdot\left\lceil\frac{l_{2}}{2 K_{2}}\right\rceil\right\}$ are used to interleave any block ' A ', and only integers in the set $\left\{\left\lceil\frac{l_{1}}{2 K_{1}}\right\rceil \cdot\left\lceil\frac{l_{2}}{2 K_{2}}\right\rceil+1,\left\lceil\frac{l_{1}}{2 K_{1}}\right\rceil \cdot\left\lceil\frac{l_{2}}{2 K_{2}}\right\rceil+2, \cdots, 2 \cdot\left\lceil\frac{l_{1}}{2 K_{1}}\right\rceil \cdot\left\lceil\frac{l_{2}}{2 K_{2}}\right\rceil\right\}$ are used to interleave any block 'B'; (ii) for all the blocks labelled by 'A' (respectively, 'B') and for any i and j, the vertices denoted by (i, j) in them (provided they exist) are all labelled by the same integer. It is very easy to see that G is t-interleaved in this way, using $2 \cdot\left\lceil\frac{l_{1}}{2 K_{1}}\right\rceil \cdot\left\lceil\frac{l_{2}}{2 K_{2}}\right\rceil=2\left(\frac{t}{2}+\left\lceil\frac{l_{1} \bmod t}{2 K_{1}}\right\rceil\right)\left(\frac{t}{2}+\left\lceil\frac{l_{2} \bmod t}{2 K_{2}}\right\rceil\right) \leq 2\left(\frac{t}{2}+\left\lceil\frac{t-1}{2}\right\rceil\right)\left(\frac{t}{2}+\left\lceil\frac{t-1}{2}\right\rceil\right)=2 t^{2}=\left|S_{t}\right|+\frac{3}{2} t^{2}$ distinct integers. So G 's t-interleaving number is $\left|S_{t}\right|+O\left(t^{2}\right)$.

Now we assume t is even, and $l_{1}<t$ or $l_{2}<t$. Without loss of generality, let's say $l_{1}<t$. Then we see G as being tiled horizontally by smaller tori $A_{1}, A_{2}, \cdots, A_{n}$, where each A_{i} - for $i=1,2, \cdots, n-1-$ is an $l_{1} \times t$ torus, and A_{n} is an $l_{1} \times\left(l_{2} \bmod t\right)$ torus. We interleave $A_{1}, A_{2}, \cdots, A_{n-1}$ in exactly the same way, and assign $l_{1} \times t$ distinct integers to each of them. We interleave A_{n} with a disjoint set of $l_{1} \times\left(l_{2} \bmod t\right)$ integers. Clearly G is t-interleaved in this way, using $l_{1} \cdot t+l_{1} \cdot\left(l_{2} \bmod t\right)=\left|S_{t}\right|+O\left(t^{2}\right)$ distinct integers. So again, G 's t-interleaving number is $\left|S_{t}\right|+O\left(t^{2}\right)$.

Finally we assume t is odd. We can $(t+1)$-interleave G using $\left|S_{t+1}\right|+O\left((t+1)^{2}\right)=\frac{(t+1)^{2}}{2}+O\left((t+1)^{2}\right)=\frac{t^{2}+1}{2}+O\left(t^{2}\right)=$ $\left|S_{t}\right|+O\left(t^{2}\right)$ distinct integers. $t+1$ is even, and a $(t+1)$-interleaving is also a t-interleaving. So G 's t-interleaving number is still $\left|S_{t}\right|+O\left(t^{2}\right)$.

Now let's show that the above bound on t-interleaving numbers, $\left|S_{t}\right|+O\left(t^{2}\right)$, is tight, no matter if t is even or odd. Consider an $l_{1} \times l_{2}$ torus where l_{1} is the largest even integer that is no greater than $\left\lfloor\frac{3}{2} t\right\rfloor$, and l_{2} is any integer greater than or equal to $\left\lfloor\frac{3}{4} t\right\rfloor$. We are firstly going to show that a t-interleaving can place an integer at most twice in any $\left\lfloor\frac{3}{4} t\right\rfloor$ consecutive columns of the torus.

Assume a t-interleaving places an integer on three vertices in $\left\lfloor\frac{3}{4} t\right\rfloor$ consecutive columns of the torus. Without loss of generality, let's say those three vertices are $(0,0),\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$, where $0 \leq j_{1} \leq\left\lfloor\frac{3}{4} t\right\rfloor-1$ and $0 \leq j_{2} \leq\left\lfloor\frac{3}{4} t\right\rfloor-1$. Since the interleaving is a t-interleaving, the Lee distance between any two of those three vertices is at least t. Let $a=\frac{l_{1}}{2}$ and $b=\left\lfloor\frac{3}{4} t\right\rfloor-1$. It is not difficult to see that the Lee distance between $\left(i_{1}, j_{1}\right)$ and (a, b) is at $\operatorname{most} \min \left\{\left(a-i_{1}\right) \bmod l_{1},\left(i_{1}-\right.\right.$ a) $\left.\bmod l_{1}\right\}+\left(b-j_{1}\right)=\frac{l_{1}}{2}-\min \left\{\left(0-i_{1}\right) \bmod l_{1},\left(i_{1}-0\right) \bmod l_{1}\right\}+\left(b-j_{1}\right)=\frac{l_{1}}{2}+b-\left[\min \left\{\left(0-i_{1}\right) \bmod l_{1},\left(i_{1}-\right.\right.\right.$ $\left.\left.0) \bmod l_{1}\right\}+j_{1}\right]$. Since the Lee distance between $(0,0)$ and $\left(i_{1}, j_{1}\right)$ is at most $\min \left\{\left(0-i_{1}\right) \bmod l_{1},\left(i_{1}-0\right) \bmod l_{1}\right\}+j_{1}$, we know that $\min \left\{\left(0-i_{1}\right) \bmod l_{1},\left(i_{1}-0\right) \bmod l_{1}\right\}+j_{1} \geq t$. Therefore the Lee distance between $\left(i_{1}, j_{1}\right)$ and (a, b) is at most $\frac{l_{1}}{2}+b-t \leq\left\lfloor\frac{3}{2} t\right\rfloor / 2+\left\lfloor\frac{3}{4} t\right\rfloor-1-t<\frac{t}{2}$. Similarly, the Lee distance between $\left(i_{2}, j_{2}\right)$ and (a, b) is also less than $\frac{t}{2}$. Therefore the Lee distance between $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ is less than t, which is a contradiction. So a t-interleaving can place every integer on at most two vertices in $\left\lfloor\frac{3}{4} t\right\rfloor$ consecutive columns of the torus.

Any $\left\lfloor\frac{3}{4} t\right\rfloor$ consecutive columns of the $l_{1} \times l_{2}$ torus contain $l_{1} \times\left\lfloor\frac{3}{4} t\right\rfloor \geq\left(\frac{3}{2} t-2\right) \times\left(\frac{3}{4} t-1\right)=\frac{9}{8} t^{2}-3 t+2$ vertices, where each integer is placed at most twice by a t-interleaving. Therefore the t-interleaving number of the torus is at least $\frac{\frac{9}{t} t^{2}-3 t+2}{2}=\frac{9}{16} t^{2}-\frac{3}{2} t+1=\frac{t^{2}+1}{2}+\frac{1}{16} t^{2}-\frac{3}{2} t+\frac{1}{2} \geq\left|S_{t}\right|+\frac{1}{16} t^{2}-\frac{3}{2} t+\frac{1}{2}=\left|S_{t}\right|+\Theta\left(t^{2}\right)$, which matches the upper bound $\left|S_{t}\right|+O\left(t^{2}\right)$. Since here l_{2} can be any integer that is no less than $\left\lfloor\frac{3}{4} t\right\rfloor$, the upper bound is tight even if the number of columns (or equivalently, the number of rows) of the torus approaches infinity. The first part of this theorem has been proved by now.
(2) Let's prove the second part of this theorem. In the previous part of this proof, a method for t-interleaving an $l_{1} \times l_{2}$ torus has been proposed for the case ' t is even and $l_{1} \geq t, l_{2} \geq t$ '. That method uses $2\left(\frac{t}{2}+\left\lceil\frac{l_{1} \bmod t}{2 K_{1}}\right\rceil\right)\left(\frac{t}{2}+\left\lceil\frac{l_{2} \bmod t}{2 K_{2}}\right\rceil\right)$ distinct integers. (Note that $K_{1}=\left\lfloor\frac{l_{1}}{t}\right\rfloor$ and $K_{2}=\left\lfloor\frac{l_{2}}{t}\right\rfloor$.) When both l_{1} and l_{2} are of the order $\Omega\left(t^{2}\right)$, both K_{1} and K_{2} are of the order of $\Omega(t)$ — and then $2\left(\frac{t}{2}+\left\lceil\frac{l_{1} \bmod t}{2 K_{1}}\right\rceil\right)\left(\frac{t}{2}+\left\lceil\frac{l_{2} \bmod t}{2 K_{2}}\right\rceil\right)=2\left(\frac{t}{2}+O(1)\right)\left(\frac{t}{2}+O(1)\right)=\frac{t^{2}}{2}+O(t)=\left|S_{t}\right|+O(t)$. When t is odd, we can t-interleave an $l_{1} \times l_{2}$ torus, where $l_{1}=\Omega\left(t^{2}\right)=\Omega\left((t+1)^{2}\right)$ and $l_{2}=\Omega\left(t^{2}\right)=\Omega\left((t+1)^{2}\right)$, by $(t+1)$-interleaving it using $\left|S_{t+1}\right|+O(t+1)=\frac{(t+1)^{2}}{2}+O(t)=\frac{t^{2}+1}{2}+O(t)=\left|S_{t}\right|+O(t)$ distinct integers. So no matter if t is even or odd, when both l_{1} and l_{2} are of the order $\Omega\left(t^{2}\right)$, the t-interleaving number of an $l_{1} \times l_{2}$ torus is $\left|S_{t}\right|+O(t)$.

VI. Discussions

In this paper, we study the t-interleaving problem for two-dimensional tori. It has applications in both distributed data storage and burst error correction. This is the first time that the t-interleaving problem is studied for graphs with modular structures, and consequently, novel interleaving methods different from traditional techniques (e.g., the widely used lattice-interleaver schemes in early works [11], [13], [25]) are developed for optimal t-interleaving. The necessary and sufficient condition for tori that can be perfectly t-interleaved is proven, and the corresponding perfect t-interleaving construction is presented, based on the method of sphere packing. The most important contribution of this paper is to prove that for tori whose sizes are large in both dimensions, which constitute by far the majority of all existing cases, their t-interleaving numbers are at most one more than the sphere packing lower bound. Optimal t-interleaving constructions for such tori are presented, based on the method of removing-a-zigzag-row and tori-tiling. Then, some additional bounds on the t-interleaving numbers are shown. Those results together give a general characterization of the t-interleaving problem for two-dimensional tori.

The importance of the t-interleaving method based on removing-a-zigzag-row and tori-tiling is not limited to the results in Theorem 10 and Theorem 11. Those two theorems should be seen as a lower bound for the performance of the t-interleaving method. By analyzing the performance of the corresponding t-interleaving constructions more carefully, and furthermore, by keeping the main idea of the t-interleaving method but tuning its specific parameters on a case-by-case basis, we can improve the bounds derived in Theorem 10 and Theorem 11. The content of Appendix I can serve as an example in this aspect. What's more, the t-interleaving method can be used to optimally t-interleave some tori whose sizes do not fall within the derived bounds.

We are interested in studying the t-interleaving problem for higher-dimensional tori, as well as finding more t-interleaving methods. Those remain as our future research.

APPENDIX I

The optimal t-interleaving construction for odd t, Construction 4.3, if applicable only when $t \geq 5$. In this appendix, we present the optimal t-interleaving construction when $t=3$, thus completing the result for t-interleaving on large tori while t being odd. We also use this case, $t=3$, as an example to show how previous results can be improved if the t-interleaving problem is analyzed case by case and more carefully.

We will show that when $l_{1} \geq 20$ and $l_{2} \geq 15$ (or equivalently, when $l_{1} \geq 15$ and $l_{2} \geq 20$), an $l_{1} \times l_{2}$ torus' 3-interleaving number is either 5 or 6 . (Note that $\left|S_{3}\right|=5$.) Below we present an construction that can optimally 3-interleaves any $l_{1} \times l_{2}$ torus where $l_{1} \geq 20$ and $l_{2} \geq 15$, except when $l_{2}=19$.

Construction 4.4: Optimally 3-Interleave an $l_{1} \times l_{2}$ torus, where $l_{1} \geq 20, l_{2} \geq 15$, and $l_{2} \neq 19$.

1. If both l_{1} and l_{2} are multiples of 5 , then the $l_{1} \times l_{2}$ torus' 3-interleaving number is $\left|S_{t}\right|=5$. In this case, 3-interleave the $l_{1} \times l_{2}$ torus with 5 integers by using Construction 2.2.

If l_{1} or l_{2} is not a multiple of 5 , then use the following three steps to 3 -interleave the $l_{1} \times l_{2}$ torus with 6 integers.
2. Find non-negative integers x_{1} and x_{2} such that $l_{1}=5 x_{1}+6 x_{2}$. Find non-negative integers y_{1}, y_{2} and y_{3} such that $l_{2}=5 y_{1}+8 y_{2}+12 y_{3}$.
3. There are six tori shown in Fig. 14(a)— an 5×5 torus ' A ', an 5×8 torus ' B ', an 5×12 torus ' C ', an 6×5 torus ' A ', an 6×8 torus ' B ' ' and an 6×12 torus ' C '.

Get a $5 \times l_{2}$ torus M_{1} by tiling horizontally y_{1} copies of ' A ', y_{2} copies of ' B ' and y_{3} copies of ' C ' (whose order can be arbitrary).

Get a $6 \times l_{2}$ torus M_{2} by tiling horizontally y_{1} copies of ' A^{\prime} ', y_{2} copies of ' B^{\prime} ' and y_{3} copies of ' C^{\prime} ', whose order needs to satisfy this rule: for $i=1$ to $y_{1}+y_{2}+y_{3}$, if the i-th module-torus in M_{1} is an ' A ' (respectively, a ' B ' or a ' C '), then the i-th module in M_{2} is an ' A ', (respectively, a ' B^{\prime} ' or a ' C^{\prime} ').
4. Get an $l_{1} \times l_{2}$ torus by tiling x_{1} copies of M_{1} and x_{2} copies of M_{2} vertically (whose order can be arbitrary). The interleaving on the $l_{1} \times l_{2}$ torus is a 3-interleaving.

Example: We use Construction 4.4 to 3 -interleave an $l_{1} \times l_{2}$ torus where $l_{1}=11$ and $l_{2}=25 . l_{1}$ is not a multiple of $\left|S_{t}\right|$, so the torus' 3 -interleaving number is greater than 5 . Since $l_{1}=5+6$ and $l_{2}=5+8+12$, the variables in Construction 4.4 can be set as follows: $x_{1}=1, x_{2}=1, y_{1}=1, y_{2}=1$ and $y_{3}=1$. And we can let the torus M_{1} have the form of $[A B C]$, and let the torus M_{2} have the form of $\left[A^{\prime} B^{\prime} C^{\prime}\right]$. We then tile M_{1} and M_{2} to get the $l_{1} \times l_{2}$ torus, which is of the form $\left[\begin{array}{cc}A & B \\ A^{\prime} & C \\ B^{\prime} & C^{\prime}\end{array}\right]$. This 3-interleaved torus is shown in Fig. 14(b). The interleaving used $6=\left|S_{3}\right|+1$ integers.

Clearly, since $25=5 \times 5+8 \times 0+12 \times 0$, another choice to tile the 11×25 torus is $\left[\begin{array}{lllll}A & A & A & A & A \\ A^{\prime} & A^{\prime} & A^{\prime} & A^{\prime} & A^{\prime}\end{array}\right]$.

Construction 4.4 constructs a 3 -interleaved $l_{1} \times l_{2}$ torus by tiling copies of 6 module-tori - the 6 tori shown in Fig. 14(a). It can be readily verified that when those 6 tori are tiled following the rule in Construction 4.4, the resulting interleaving on the $l_{1} \times l_{2}$ torus is indeed a 3 -interleaving. There are only a limited number of cases to analyze for the verification, so we skip the details. We comment that Construction 4.4 does not work for the case $l_{2}=19$, because 19 cannot be written as a linear combination of 5,8 and 12 with non-negative coefficients - therefore an $l_{1} \times 19$ torus cannot be got by tiling the module-tori. We present the construction for the case $l_{2}=19$ below.

Construction 4.5: Optimally 3-Interleave an $l_{1} \times 19$ torus, where $l_{1} \geq 20$.
Construction: Find non-negative integers x_{1} and x_{2} such that $l_{1}=5 x_{1}+6 x_{2}$. There are 2 tori shown in Fig. $15-\mathrm{a} 5 \times 19$ torus F and a 6×19 torus F^{\prime}. Get an $l_{1} \times 19$ torus by tiling x_{1} copies of F and x_{2} copies of F^{\prime} vertically (whose order can be arbitrary). The resulting interleaving on the $l_{1} \times 19$ torus is a 3-interleaving.

The correctness of Construction 4.5 can be easily verified, so we skip the details. Based on the previous two constructions, we readily get the following conclusion for 3-interleaving.

Theorem 13: When $l_{1} \geq 20$ and $l_{2} \geq 15$, or when $l_{1} \geq 15$ and $l_{2} \geq 20$, an $l_{1} \times l_{2}$ torus' 3 -interleaving number is either $\left|S_{3}\right|$ or $\left|S_{3}\right|+1$.
(a) Modules

A					B									C											
0	2	4	1	3	0	2	4	0	3	5	1	3	3	0	2	5	1	4	0	3	5	2	4	1	3
1	3	0	2	5	1	3	5	2	4	0	2	5	5	1	3	0	2	5	1	4	0	3	5	2	4
2	5	1	3	0	2	4	1	3	5	1	4	0	0	2	5	1	4	0	3	5	2	4	1	3	0
4	0	2	5	1	3	0	2	4	0	3	5		1	4	0	3	5	2	4	1	3	0	2	5	1
5	1	3	0	2	5	1	3	5	2	4	0	2	2	5	1	4	0	3	5	2	4	1	3	0	2
A'					B ${ }^{\text {, }}$									C'											
0	2	4	1	3	0	2	4	0	3	5	1	3	3	0	2	5	1	4	0	3	5	2	4	1	3
1	3	(5)	2	(4)	1	3	5	(1)	4	0	2		(4)	1	3	0	2	5	1	4	0	3	5	2	4
2	(4)	0	3	5	2	4	(0)	2	5	1	(3)	5	5	2	(4)	1	(3)	0	(2)	5	(1)	4	(0)	3	(5)
(3)	5	1	(4)	0	3	(5)	1	3	0	(2)	4		0	(3)	5	(2)	4	(1)	3	(0)	2	(5)	1	(4)	0
4	0	2	5	1	(4)	0	2	4	(1)	3	5		1	4	0	3	5	2	4	1	3	0	2	5	1
5	1	3	0	2	5	1	3	5	2	4	0		2	5	1	4	0	3	5	2	4	1	3	0	2

(b) Tiling of modules

0	2	4	1	3	0	2	4	0	3	5	1	3	0	2	5	1	4	0	3	5	2	4	1	3
1	3	0	2	5	1	3	5	2	4	0	2	5	1	3	0	2	5	1	4	0	3	5	2	4
2	5	1	3	0	2	4	1	3	5	1	4	0	2	5	1	4	0	3	5	2	4	1	3	0
4	0	2	5	1	3	0	2	4	0	3	5	1	4	0	3	5	2	4	1	3	0	2	5	1
5	1	3	0	2	5	1	3	5	2	4	0	2	5	1	4	0	3	5	2	4	1	3	0	2
0	2	4	1	3	0	2	4	0	3	5	1	3	0	2	5	1	4	0	3	5	2	4	1	3
1	3	5	2	4	1	3	5	1	4	0	2	4	1	3	0	2	5	1	4	0	3	5	2	4
2	4	0	3	5	2	4	0	2	5	1	3	5	2	4	1	3	0	2	5	1	4	0	3	5
3	5	1	4	0	3	5	1	3	0	2	4	0	3	5	2	4	1	3	0	2	5	1	4	0
4	0	2	5	1	4	0	2	4	1	3	5	1	4	0	3	5	2	4	1	3	0	2	5	1
5	1	3	0	2	5	1	3	5	2	4	0	2	5	1	4	0	3	5	2	4	1	3	0	2

Fig. 14. Using modules for 3-interleaving. (a) The 6 modules; (b) Tiling the modules.
F

0	2	4	1	3	5	1	3	0	2	4	0	2	5	1	3	5	1	4
1	3	0	2	4	0	2	5	1	3	5	1	4	0	2	4	0	3	5
2	5	1	3	5	1	4	0	2	4	0	3	5	1	3	5	2	4	0
4	0	2	4	0	3	5	1	3	5	2	4	0	2	4	1	3	5	1
5	1	3	5	2	4	0	2	4	1	3	5	1	3	0	2	4	0	3

F'

0	2	4	0	3	5	1	3	5	2	4	0	2	4	1	3	5	1	4
1	3	5	1	4	0	2	4	0	3	5	1	3	5	2	4	0	2	5
2	4	0	2	5	1	3	5	1	4	0	2	4	0	3	5	1	3	0
3	5	1	3	0	2	4	0	2	5	1	3	5	1	4	0	2	4	1
4	0	2	4	1	3	5	1	3	0	2	4	0	2	5	1	3	5	2
5	1	3	5	2	4	0	2	4	1	3	5	1	3	0	2	4	0	3

Fig. 15. Two modules used for 3-Interleaving an $l_{1} \times 19$ torus, where $l_{1} \geq 20$.

We comment that the result we got here is comparatively better than the result derived in Section IV. (For example, if Theorem 10 is applied for the case $t=3$, then the bound for l_{2} would be 19 . However here our bound for l_{2} is 15 .) However, we should notice that the t-interleaving method used here is the same as the method used for $t>3$ per se. (We can see that the module-tori ' A ', ' B ', ' C ' in Fig. 14(a) and ' F ' in Fig. 15 are got by removing a zigzag row from ' A^{\prime}, ' B^{\prime} ', ' C^{\prime} ' and ' F^{\prime} '. The zigzag rows are shown in circles in those two figures. Both the interleaving method here and the method in Section IV are based on torus tiling.) The improvement is made by better tuning of construction parameters and more careful analysis of the bounds. The construction used for $t=3$ does not follow all the requirements used in Section IV. (For example, the zigzag row in Fig. 15 does not follow Rule 3.) In Section IV, while endeavoring to optimally tune all the parameters, we also need to ensure that the construction will work for all the cases of $t>3$. If the interleaving problem is analyzed case by case (specifically, for each value of t, l_{1} and l_{2}), the interleaving construction has room for further optimization.

APPENDIX II

In this appendix, we show how to optimally t-interleave large tori when t is even. The process is similar to the case where t is odd, differing only in details. For this reason, we just present a succinct description of the process and results. This appendix's content is parallel to that of the first three subsections of Section IV, so comparative reading should help the understanding greatly.

We assume t is even throughout the remainder of this appendix. The definitions of 'a zigzag row' and 'removing a zigzag row' are the same as in Definition 4.1 and 4.2.

Let B be an $l_{0} \times l_{2}$ torus which is t-interleaved by Construction 3.1 utilizing the offset sequence $S={ }^{\prime} s_{0}, s_{1}, \cdots, s_{l_{2}-1}$ '. Let H be an $l_{1} \times l_{2}$ torus got by tiling several copies of B vertically. Let $m=\frac{t}{2}$. There are four rules to follow for devising a zigzag row - denoted by $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}-$ in H :

- Rule 1: For any j such that $0 \leq j \leq l_{2}-1$, if the integers $s_{j}, s_{(j+1)} \bmod l_{2}, \cdots, s_{(j+m-1)} \bmod l_{2}$ do not all equal $t-1$, then $a_{j} \geq a_{(j+m)} \bmod l_{2}+m-1$.
- Rule 2: For any j such that $0 \leq j \leq l_{2}-1$, if exactly one of the integers $s_{j}, s_{(j+1) \bmod l_{2}}, \cdots, s_{(j+m) \bmod l_{2}}$ equals t, then $a_{j} \leq a_{(j+m+1) \bmod l_{2}}-(m-2)$.
- Rule 3: For any j such that $0 \leq j \leq l_{2}-1$, if $s_{j}=t-1$, then $a_{j} \leq a_{(j+1) \bmod l_{2}}-(2 m-2)$.
- Rule 4: For any j such that $0 \leq j \leq l_{2}-1,2 m-2 \leq a_{j} \leq l_{1}-1-(2 m-2)$.

Lemma 8: Let B be a torus t-interleaved by Construction 3.1. Let H be a torus got by tiling copies of B vertically, and let T be a torus got by removing a zigzag row in H, where the zigzag row in H follows the four rules - Rule 1, Rule 2, Rule 3 and Rule 4. Let G be a torus got by tiling copies of B and T vertically. Then, both T and G are t-interleaved.

Now we present two constructions for finding a zigzag row, which are the counterparts of Construction 4.1 and 4.2. Let B be an $l_{0} \times l_{2}$ torus which is t-interleaved by Construction 3.1 utilizing the offset sequence $S=$ ' $s_{0}, s_{1}, \cdots, s_{l_{2}-1}$ '. Let H be an $l_{1} \times l_{2}$ torus got by tiling z copies of G vertically. We say the offset sequence S consists of p ' P 's and q ' Q 's, where $p>0$ and $q>0$. We require that in S, the ' P 's and ' Q 's are interleaved very evenly, and that S starts with a P and ends with a Q. Let $m=\frac{t}{2}$. Let $L=(2 m-2)+(m-1)\left\lceil\frac{p}{q}\right\rceil$ if $p \geq q$, and let $L=(2 m-2)+(m-2)\left\lceil\frac{q}{p}\right\rceil+1$ if $p<q$. We require that $l_{1} \geq\left(\left\lceil\frac{p}{q}\right\rceil+1\right) m^{2}+\left(3-\left\lceil\frac{p}{q}\right\rceil\right) m-3$ if $p \geq q$, and require that $l_{1} \geq\left(\left\lceil\frac{q}{p}\right\rceil+1\right) m^{2}+\left(3-\left\lceil\frac{q}{p}\right\rceil\right) m-\left(2\left\lceil\frac{q}{p}\right\rceil+1\right)$ if $p<q$. Below we present two constructions for constructing a zigzag row, which is denoted by $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$, in H, applicable respectively when $p \geq q$ and $p<q$.

Construction 4.6: Constructing a zigzag row in H, when t is even, $t>2$, and $p \geq q>0$

1. Let $s_{x_{1}}, s_{x_{2}}, \cdots, s_{x_{p+q}}$ be the integers such that $0=x_{1}<x_{2}<\cdots<x_{p+q}=l_{2}-m-1$, and each $s_{x_{i}}(1 \leq i \leq p+q)$ is the first element of a ' P ' or ' Q ' in the offset sequence S.

Let $a_{x_{1}}=L$. For $i=2$ to $p+q$, if $s_{x_{i-1}}$ is the first element of a ' Q ', let $a_{x_{i}}=L$.

For $i=2$ to $p+q$, if $s_{x_{i-1}}$ is the first element of a ' P ', then let $a_{x_{i}}=a_{x_{i-1}}-(m-1)$.
2. For $i=2$ to m and for $j=1$ to $p+q$, let $a_{x_{j}+i-1}=a_{x_{j}+i-2}+L-m+1$.
3. Let $s_{y_{1}}, s_{y_{2}}, \cdots, s_{y_{q}}$ be the integers such that $y_{1}<y_{2}<\cdots<y_{q}=l_{2}-1$, and each $s_{y_{i}}(1 \leq i \leq q)$ is the last element of a ' Q ' in the offset sequence S.

For $i=1$ to $q, a_{y_{i}}=L+(m-1)(L-m+1)+(m-1)$.
Now we have fully determined the zigzag row, $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$, in the torus H.

Construction 4.7: Constructing a zigzag row in H, when t is even, $t>2$, and $0<p<q$

1. Let $s_{x_{1}}, s_{x_{2}}, \cdots, s_{x_{p+q}}$ be the integers such that $0=x_{1}<x_{2}<\cdots<x_{p+q}=l_{2}-m-1$, and each $s_{x_{i}}(1 \leq i \leq p+q)$ is the first element of a ' P ' or ' Q ' in the offset sequence S.

Let $a_{x_{1}}=L$. For $i=2$ to $p+q$, if $s_{x_{i}}$ is the first element of a ' P ', then let $a_{x_{i}}=L$; if $s_{x_{i-1}}$ is the first element of a ' P ', then let $a_{x_{i}}=L-\left\lceil\frac{q}{p}\right\rceil(m-2)-1$; otherwise, let $a_{x_{i}}=a_{x_{i-1}}+(m-2)$.
2. For $i=2$ to m and for $j=1$ to $p+q$, let $a_{x_{j}+i-1}=a_{x_{j}+i-2}+L-m+1$.
3. Let $s_{y_{1}}, s_{y_{2}}, \cdots, s_{y_{q}}$ be the integers such that $y_{1}<y_{2}<\cdots<y_{q}=l_{2}-1$, and each $s_{y_{i}}$ is the last element of a ' Q ' in the offset sequence S.

For $i=1$ to $q, a_{y_{i}}=a_{y_{i}-1}+L-m+1$.
Now we have fully determined the zigzag row, $\left\{\left(a_{0}, 0\right),\left(a_{1}, 1\right), \cdots,\left(a_{l_{2}-1}, l_{2}-1\right)\right\}$, in the torus H.

Theorem 14: The zigzag rows constructed by Construction 4.6 and Construction 4.7 follow all the four rules - Rule 1, Rule 2, Rule 3 and Rule 4.

Lemma 9: In Equation Set (2) (which is in Construction 3.1), let the values of t, m and l_{2} be fixed. Let ' $p=p_{0}, q=q_{0}$ ' be a solution that satisfies the Equation Set (2). Then, another solution ' $p=p_{1}, q=q_{1}$ ' also satisfies the Equation Set (2) if and only if there exists an integer c such that $p_{1}=p_{0}+c(m+1)\left(2 m^{2}+1\right) \geq 0$ and $q_{1}=q_{0}-c m\left(2 m^{2}+1\right) \geq 0$.

Lemma 10: In Equation Set (2) (which is in Construction 3.1), let the values of t, m and l_{2} be fixed. Let $\Delta_{P}=(m+$ 1) $\left(2 m^{2}+1\right)$ and $\Delta_{Q}=m\left(2 m^{2}+1\right)$. If there exists a solution of p and q that satisfies the Equation Set (2), then there exists a solution ' $p=p^{*}, q=q^{*}$ ' that satisfies not only the Equation Set (2) but also one of the following two inequalities:

$$
\begin{align*}
& \frac{l_{2}}{2 m+1}-\frac{\Delta_{Q}}{2}<q^{*} \leq p^{*}<\frac{l_{2}}{2 m+1}+\frac{\Delta_{P}}{2} \tag{5}\\
& \frac{l_{2}}{2 m+1}-\frac{\Delta_{P}}{2} \leq p^{*}<q^{*} \leq \frac{l_{2}}{2 m+1}+\frac{\Delta_{Q}}{2} \tag{6}
\end{align*}
$$

Theorem 11: Let t be a positive even integer. Let $m=\frac{t}{2}$. Define A as

$$
\begin{aligned}
A=\max \{ & \left(\left\lceil\frac{2 l_{2}+(m+1)(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-m(2 m+1)\left(2 m^{2}+1\right)}\right\rceil+1\right) m^{2}+\left(3-\left\lceil\frac{2 l_{2}+(m+1)(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-m(2 m+1)\left(2 m^{2}+1\right)}\right\rceil\right) m-3, \\
& \left(\left\lceil\frac{2 l_{2}+m(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-(m+1)(2 m+1)\left(2 m^{2}+1\right)}\right\rceil+1\right) m^{2}+\left(3-\left\lceil\frac{2 l_{2}+m(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-(m+1)(2 m+1)\left(2 m^{2}+1\right)}\right\rceil\right) m-1 \\
& \left.-2\left\lceil\frac{2 l_{2}+m(2 m+1)\left(2 m^{2}+1\right)}{2 l_{2}-(m+1)(2 m+1)\left(2 m^{2}+1\right)}\right\rceil\right\}
\end{aligned}
$$

. Then when

$$
l_{2}>\frac{(m+1)(2 m+1)\left(2 m^{2}+1\right)}{2}
$$

and

$$
l_{1} \geq 2 m^{2}\left(\left\lceil\frac{A}{2 m^{2}+1}\right\rceil\left(2 m^{2}+1\right)-2\right)
$$

, an $l_{1} \times l_{2}$ (or equivalently, $l_{2} \times l_{1}$) torus' t-interleaving number is either $\left|S_{t}\right|$ or $\left|S_{t}\right|+1$.
We skip the specific construction of optimally t-interleaving large tori here, because of its similarity to Construction 4.3. But we present its sketch. Basically, if the torus can be perfectly t-interleaved, then it can be optimally t-interleaved using

Construction 2.2; if the torus cannot be perfectly t-interleaved and $t \geq 4$, then it can be optimally t-interleaved using the toritiling method. The only remaining case is 'the torus cannot be perfectly t-interleaved and $t=2$ '. In that case, we can optimally t-interleave the torus (say it is an $l_{1} \times l_{2}$ torus) using $\left|S_{t}\right|+1=3$ distinct integers in the following way: interleave a ring of l_{1} vertices and a ring of l_{2} vertices using 3 integers - 0,1 and $2-$ such that no two adjacent vertices in those two rings are assigned the same integer; for $i=1,2, \cdots, l_{1}$ (respectively, for $i=1,2, \cdots, l_{2}$), use $I(i)$ (respectively, use $J(i)$) to denote the integer assigned to the i-th vertex in the ring of l_{1} (respectively, l_{2}) vertices; for $i=0,1, \cdots, l_{1}-1$ and $j=0,1, \cdots, l_{2}-1$, label the vertex (i, j) in the $l_{1} \times l_{2}$ torus with the integer $(I(i+1)+J(j+1)) \bmod 3-$ and then the torus is optimally 2-interleaved.

References

[1] K. A. S. Abdel-Ghaffar, "Achieving the Reiger bound for burst errors using two-dimensional interleaving schemes," in Proc. IEEE Int. Symp. Information Theory, Germany, 1997, pp. 425.
[2] B. F. AlBdaiwi and B. Bose, "On resource placements in 3D tori," Journal of Parallel and Distributed Computing, vol. 63, pp. 838-845, 2003.
[3] B. F. AlBdaiwi and B. Bose, "Quasi-perfect Lee distance codes," IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1535-1539, 2003.
[4] C. Almeida and R. Palazzo, "Two-dimensional interleaving using the set partition technique," in Proc. IEEE International Symposium on Information Theory, Trondheim, Norway, 1994, pp. 505.
[5] J. Astola, "A note on perfect Lee-codes over small alphabets," Discrete Applied Mathematics, vol. 4, pp. 227-228, 1982.
[6] J. Astola, "An Elias-yype bound for Lee codes over large alphabets and its applications to perfect codes," IEEE Transactions on Information Theory, vol. IT-28, no. 1, pp. 111-113, 1982.
[7] M. M. Bae and B. Bose, "Resource placement in torus-based networks," IEEE Transactions on Computers, vol. 46, no. 10, pp. 1083-1092, 1997.
[8] E. R. Berlekamp, Algebraic coding theory, Aegean Park Press, 1984.
[9] M. Blaum and J. Bruck, "Correcting two-dimensional clusters by interleaving of symbols," in Proc. IEEE International Symposium on Information Theory, Trondheim, Norway, 1994, pp. 504.
[10] M. Blaum, J. Bruck and P. G. Farrell, "Two-dimensional interleaving schemes with repetitions," electronic technical report ETR-016, Parallel and Distributed Systems Lab, California Institute of Technology, http://www.paradise.caltech.edu/papers/etr016.pdf, 1997.
[11] M. Blaum, J. Bruck and A. Vardy, "Interleaving schemes for multidimensional cluster errors," IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 730-743, 1998.
[12] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore, C. Perterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski and J. Webb, "iWarp: an integrated solution to high-speed parallel computing," in Proc. IEEE Supercomputing'88, 1988, pp. 330-339.
[13] T. Etzion and A. Vardy, "Two-dimensional interleaving schemes with repetitions: constructions and bounds," IEEE Transactions on Information Theory, vol. 48, no. 2, pp. 428-457, 2002.
[14] S. W. Golomb and E. C. Posner, "Rook domains, Latin squares, affine planes, and error-distributing codes," IEEE Transactions on Information Theory, vol. 10, pp. 196-208, 1964.
[15] S. W. Golomb and L. R. Welch, "Perfect codes in the Lee metric and the packing of polyominoes," SIAM J. Appl. Math., vol. 18, no. 2, pp. 302-317, 1970.
[16] S. Gravier, M. Mollard and C. Payan, "On the non-existence of 3-dimensional tiling in the Lee metric," Europ. J. Combinatorics, vol. 19, pp. 567-572, 1998.
[17] S. Gravier, M. Mollard and C. Payan, "Variations on tilings in the Manhattan metric," Geometriae Dedicata, vol. 79, pp. 265-273, 1999.
[18] D. B. Holdridge and J. A. Davis, "Comment on 'A note on perfect Lee-codes'," Discrete Applied Mathematics, vol. 3, pp. $221,1981$.
[19] A. Jiang and J. Bruck, "Diversity coloring for distributed data storage in networks," submitted to IEEE Transactions on Information Theory, 2003.
[20] A. Jiang and J. Bruck, "Network file storage with graceful performance degradation," to appear in ACM Transactions on Storage.
[21] A. Jiang and J. Bruck, "Multi-cluster interleaving on paths and cycles," to appear in IEEE Transactions on Information Theory.
[22] T. Lepisto, "A note on perfect Lee-codes over small alphabets," Discrete Applied Mathematics, vol. 3, pp. 73-74, 1981.
[23] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier Science B. V., 1977.
[24] R. J. McEliece, The Theory of Information and Coding, Cambridge University Press, 2002.
[25] Y. Merksamer and T. Etzion, "On the optimality of coloring with a lattice," in Proc. IEEE International Symposium on Information Theory, Chicago, USA, 2004, pp. 21.
[26] W. Oed, "Massively parallel processor system CRAY T3D," Cray Research GmbH, November 1993.
[27] A. I. Riihonen, "A note on perfect Lee-codes," Discrete Applied Mathematics, vol. 2, pp. 259-260, 1980.
[28] M. Schwartz and T. Etzion, "Optimal 2-dimensional 3-dispersion lattices," Lecture notes in Computer Science 2643, pp. 216-225, 2003.
[29] C. L. Seitz et al., "Submicron systems architecture project semi-annual technical report," Caltech-CS-TR-88-18, California Institute of Technology, November 1988.
[30] A. Slivkins and J. Bruck, "Interleaving schemes on circulant graphs with two offsets," to appear in IEEE Transactions on Information Theory.
[31] Tera Computer Systems, "Overview of the Tera parallel computer," 1993.
[32] D. B. West, Introduction to Graph Theory, Englewood Cliffs, NJ: Prentice-Hall, 1996.
[33] W. Xu and S. W. Golomb, "Optimal interleaving schemes for correcting 2-d cluster errors," in Proc. IEEE International Symposium on Information Theory, Chicago, USA, 2004, pp. 23.

