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Abstract

This paper studiesinterleaving on two-dimensional tori, which is defined by the property that every connected
subgraph of ordet in the torus is labelled by distinct integers. This is the first time that thanterleaving problem
is solved for graphs of modular structuresinterleaving on tori has applications in distributed data storage and
burst error correction, and is closely related to Lee metric codes. We say that a toruspefebdyt-interleaved
if its ¢-interleaving number — the minimum number of distinct integers neededrierieave the torus — meets
the sphere-packing lower bound. We prove the necessary and sufficient conditions for tori that can be perfectly
interleaved, and present efficient perfednterleaving constructions. The most important contribution of this paper
is to prove that when a torus is large enough in both dimensionsjriterleaving number is at most one more than
the sphere-packing lower bound, and to present an optimal and effiéiietetrleaving scheme for such tori. Then
we prove bounds for theinterleaving numbers of the remaining cases, completing a general characterization of the
t-interleaving problem on 2-dimensional tori.

Index Terms
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I. INTRODUCTION

Interleaving is an important technique used for error burst correction and network data storage. A most common example is
the interleaving of. codewords in the formofl'-2—-3—---—n—-1-2—-3—---—n—-----. " for combatting one-dimensional
error bursts in communication channels [24]. The concept of one-dimensional error burst was generalized to high dimensions
by Blaum, Bruck and Vardy in [11], where an error burst of giie a set of errors confined to a connected subgraph of order
t in a multi-dimensional array. (Therder of a graph is defined to be the number of vertices in that graph.) Accordingly,
the concept ot-interleaving was defined in [11], which is a scheme to label the vertices of a multi-dimensional array with
integers in such a way that every connected subgraph of orddabelled byt distinct integers.t-interleaving schemes on
two- and three-dimensional arrays were presented in [11], with applications in combatting error bursts in holographic storage
systems and optical recording systems. Subsequent wotkirdarleaving includes [30], wherginterleaving on circulant
graphs with two offsets was studied, and [33], where a dual probleameérleaving on two-dimensional arrays was explored.
The problem of two-dimensional interleaving with repetitions was introduced in [10] by Blaum, Bruck and Farrell, and was
extensively studied in [13] by Etzion and Vardy. That problem is to interleave integers on a two-dimensional mesh (array or its
variation) in such a way that in every connected subgraph of eréach integer appears at mestmes. Herg andr are given
parameters, and the concept of interleaving with repetitions is a generalizatiomterfleaving. More work on interleaving with
repetitions includes [25] and [28]. Interleaving schemes on two-dimensional arrays achieving the Reiger bound were studied
by Abdel-Ghaffar in [1], where error bursts of both rectangular shapes and arbitrary connected shapes were considered. More
examples of interleaving for coping with error bursts include [4] and [9], where the error bursts are respectively of ‘circular’
types and rectangular shapes. As to interleaving schemes for network data storage, in [19], an algorithm was presented to



interleaveN integers on a tree whose edges have lengths, in such a way that for every point of the tree (including a vertex or
a point on an edge), the smallest ball centered at the point that contains aY ledegers contains all th&" distinct integers.
That algorithm is useful for distributed data storage in hierarchical networks that minimizes data retrieval delay. A related
interleaving algorithm aiming at the graceful degradation of data-storage performance in faulty environments was presented
in [20]. In [21], a scheme callethulti-cluster interleavingvas studied, which is a scheme to interleave integers on a path
or a cycle such that eveny. disjoint intervals of lengthl. in the path or cycle together contain at le&stdistinct integers,
whereK > L. Multi-cluster interleaving can be used for data storage on array-networks, ring-networks or disks where data are
accessed through multiple access points.

In this paper, we studi-interleavingon two-dimensional tori. It is the first time that thénterleaving problem on graphs
of modular (wrapping-around) structures is solved. Torus is an important network structure for parallel and distributed systems
[12], [26], [29], [31]. t-interleaving on tori has applications in both burst error correction and distributed data storage, in the
same way as introduced in [11], [30], [33], [19] and [20]. (Specifically, for distributed data storagetesleaving on a 2-
dimensional torus ensures that for every vertex, the integers assigned W’Fgﬁmhops are all distinct.}-interleaving on tori
is also closely related to a research topic in coding theory chlednetric codeR], [3], [5], [6], [7], [8], [14], [15], [16], [17],
[18], [22], [23], [27]. In at-interleavedn-dimensional torus, every set of vertices labelled by the same integer is a Lee metric
code of lengtln whose minimum distance is and the set of Lee metric codes corresponding to different integers partition the
whole code space.

Below we present the definitionsinterleaving was originally defined in [11] for arrays. We generalize its notion for general
graphs straightforwardly.

Definition 1.1: Let G be a graph. We say that is interleaved(or there is arinterleavingon G) if every vertex ofG is
labelled by one integer. We say th@ltis t-interleaved(or there is &-interleavingon G) if every connected subgraph 6f of
ordert is labelled by exactly distinct integers. O

The classic vertex coloring problem is clearly alspiaterleaving problem, where= 2. On the other hand;interleaving
a graphG is the same as vertex-coloring the power gréfih Determining the chromatic number of a power graph is difficult
in general. To the best of our knowledge, no result on the type of graphs we are interested in has appeared in the literature.

Definition 1.2: A two-dimensional; x I5 torus is a graph containingl, vertices an@l, [/, edges. We denote its vertices by
(i,j)for0 <i<l; —1and0 < j <y — 1, in the way shown in the figure below:

(0,0) 0,1) |-+ | (0,lb—1)
(1,0) LY |- (k-1
(Ih —'1,0) (Ih —.1, 1) (I, — 1,.z2 —1)

Each vertex, j) is incident to four edges, which connect it to its four neighk{dis— 1) mod I3, 5), ((¢ + 1) mod i1, 5),
(4,(j — 1) mod ly) and(i, (j + 1) mod I3). O
Now we can define the problem tinterleaving on tori.

Definition 1.3: Given at-interleaved torug~, the number of distinct integers used to label the vertice§ @ called the
degreeof this givent-interleaving scheme. The minimum degree of all the possifiieerleaving schemes far is called
the ¢-interleaving numbebof G. A t¢-interleaving on a torus whose degree equals the tarirgerleaving number is called an
optimalt-interleaving O

Example 1.1The following5 x 5 torus is 3-interleaved with degree 6.
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Fig. 1. Six examples of spheres.
0[3|114]|2
114,203
210|13]1]|5
3/1(5(2|0
4121031

If we replace the two integers ‘5’ with ‘4’, we will get a 3-interleaving with degree 5. Consider the v@rtéxand its four
neighbors(0, 1), (2,1), (1,0) and(1, 2), and notice that any two of them are contained in a connected subgraph of order 3 —
therefore any 3-interleaving scheme has to label those 5 vertices with 5 distinct integers. So the 3-interleaving number of this
torus actually equals 5. O

Our objective is to find optimal-interleaving. To do that, it is important to obtain thénterleaving numbers of tori. A
universal lower bound of them, for tori that have at lgastws and: columns, can be obtained as follows. Figure 1 shows six
subgraphs of a torus, which we cappheresS,, Ss, - - -, Sg, respectively. In general, for anty> 3, the spherés; is obtained
by attaching to the spherg_, all the vertices adjacent to it. Any two verticesSip are connected by a path of at mest 1
edges, so &interleaving needs to label them with different integers. So the ordgf,afhich we shall denote b)5,|, sets a
universal lower bound for theinterleaving number. This argument was originally proposed in [11] for studyintgrleaving
on arrays. A direct calculation tells us that| = tQT“ whent is odd, and S| = g whent is even.

We defineperfectt-interleavingto be at-interleaving whose degree equatt|, the universal lower bound, on a torus that
has at least rows andt columns. (A torus that does not satisfy that condition has only a very limited number of rows or
columns; in this paper, we do not discuss the perfectness of interleaving for those tori.) We will show that a torus can be
perfectly interleaved if and only if its sizes in both dimensions are multiples of a certain functiorroen what about tori
of other sizes? Our main result will show that when a torus is sufficiently large in both dimensiarsitédeaving number
exceeds the lower bound;| by at most one.

A more detailed description of our results is as follows:

« We prove that am; x I, torus can be perfectlirinterleaved if and only if the following condition is satisfied: wheis
odd (respectively, even), both andi, are multiples oft2T+1 (respectivelyt). We reveal the close relationship between
perfectt-interleaving and perfect sphere packing, and presentdhepleteset of perfect sphere packing constructions.
Based on that, we obtain a set of efficient perfeiciterleaving constructions, which include the lattice interleaver scheme
presented in [11] as a special case.

» We prove that for any torus that is sufficiently large in both dimensionsiiiteerleaving number is eithéf;| or |S;| + 1
— that is, at most one more than the degree of perféuterleaving. More specifically, there exist integer pdits, 02)
such that whenevdi > 6, andly > 65, thet-interleaving number of ahh x I, torus is at mostS; | + 1. Heref; andé,
depend ort, and naturally, there is a tradeoff between them - ifakes a greater value, then the minimum value #hat
can take decreases or remains the same, and vice versa. We find a sequence of valid valaesfigr which are shown
in Theorem 10 and Theorem 11. We present optitriaterleaving constructions for tori whose sizes exceed the found
pairs(6y,62). (And we comment that those constructions, as a general interleaving method, can also be used to optimally
t-interleave tori of many other sizes.)

« We study upper bounds ferinterleaving numbers, and show that evary I, torus’t-interleaving number igS; | +O(£2).
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Fig. 2. A qualitative illustration of the-interleaving numbers.

That upper bound is tight, evenlif — +oo orl, — +o0o. When bothl; andl, are of the ordef)(¢2), thet-interleaving
number of ariy x Iy torus is|Sy| + O(t).

The results can be illustrated qualitatively as Fig. 2. (The figure is not quantitative. The coordinates of points, such as the
shape of the curve, are not exact.) Fig. 2 shows for any giveow thel; x [ tori can be divided into different classes based
on theirt-interleaving numbers.

The uniform lattice of dots in Fig. 2 are the sizes of all the tori that can be perfeattgrleaved. The region labelled as
Region Iconsists of all the integer pai(é, , 62). The boundary curve of Region | is non-increasing, and symmetric with respect
to the linely = 1. We know the exact-interleaving number of every torus in this region S| if it is one of the lattice dots,
and|S;| + 1 otherwise. The most important contribution of this paper is to prove the existence of Region |, and present the
corresponding optimal interleaving constructions. Region Il is the region whete2(t?) andly, = Q(¢?), in which the tori’s
t-interleaving numbers are upper-bounded 8y + O(t). Region Il includes every torus, where thinterleaving number is
upper-bounded bysS;| + O(¢?). That upper bound for Region IlI is tight, evenlif or [, approaches-co. (So increasing a
torus’ size in only one dimension does not help reduce-inéerleaving number very effectively in general.)

The rest of the paper is organized as follows. In Section II, we show the necessary and sufficient conditions for tori that can
be perfectlyt-interleaved, and present perfedhterleaving constructions based on perfect sphere packing. In Section Ill, we
present &-interleaving method, with which we carnterleave large tori with a degree within one of the optimal. In Section
IV, we improve upon the-interleaving method shown in Section Ill, and present optitviaterleaving constructions for tori
whose sizes are large in both dimensions. As a parallel result, the existence of Region | is proved. In Section V, we prove some
general bounds for theinterleaving numbers. In Section VI, we conclude this paper.

Il. PERFECTt-INTERLEAVING

In this section, we show the close relationship betwsenfiects-interleavingandperfect sphere packingnd use it to prove
the necessary and sufficient condition for tori to have perféaterleaving. We present the complete set of perfect sphere
packing constructions. Based on them, we derive efficient peHiattrieaving constructions.



Fig. 3. Examples of the sphefs.

A. Perfectt-Interleaving and Sphere Packing

Definition 2.1: The Lee distancébetween two vertices in a torus is the number of edges in the shortest path connecting
those two vertices. For two vertices in &nx Iy torus G, (a1,b1) and (az,b2), the Lee distancebetween them is de-
noted byd((ai,b1), (az,b2)). (Therefored((a1,b1), (az,b2)) = min{(a; — a2) mod {1, (az — a1) mod l1 } + min{(b; —
by) mod Iy, (by — by) mod I3 }.) Occasionally, in order to emphasize that the two vertices arg, iwe also denote it by
da((a1,b1), (az,b2)). O

Clearly, an interleaving on a torus ig-anterleaving if and only if the Lee distance between any two vertices labelled by the
same integer is at least
The following is a more detailed definition of spheres, compared to the one in the Introduction section.

Definition 2.2:Let G be ani; x [ torus wherd; > 2|1 ] + 1 andi, > ¢, and let(a, b) be a vertex inG. Whent is odd,
the sphere centered g, b), St(“’b), is defined to be the subgraph induced by all those vertices whose Lee distdack) i
less than or equal té;—l. Whent is even, thesphere left-centered &t, b), St(“’b), is defined to be the subgraph induced by all
those vertices whose Lee distance to eitlaeb) or (a, (b + 1) mod I,) is less than or equal th — 1. (a, ) is called thecenter
of St(“’b) if ¢ is odd, or thdeft-centerof St(“’b) if ¢ is even. If we do not care where the sphere is centered or left-centered, then
the sphere is simply denoted By. The number of vertices in the sphere is denoted%hy O

Example 2.1Fig. 3 (a) shows the spherés to Sg. Fig. 3 (b) shows two sphere§§°72) andSﬁO’z), ina3 x 5torus. O

For anyl; x I, torus wherd; > t andly > t, its t-interleaving number is at leass;|. We call|S;| thesphere packing lower
bound The relationship between this bound and sphere packing will become clearer soon.

Definition 2.3: A torus G is said to have gerfect packing of spheres if spheresS; are packed irG in such a way that
every vertex of7 lies in exactly one of the spheres. O

Lemma 1:(1) Lett be odd. An interleaving on ah x I torus (wherd; > t andl, > t) is at-interleaving if and only if
for any two verticega,, b1) and (a2, b2) that are labelled by the same integer, the two spheres centered aﬁﬁéﬁi,) and
St(az’b”, do not share any common vertex.
(2) Lett be even. An interleaving on dn x I torus (wherd; > ¢t — 1 andi, > t) is at-interleaving if and
only if for any two verticega1, b1) and(az, b) that are labelled by the same integer, the two spheres with them as left-centers,
St(“l’bl) andSt(‘”’bZ), do not share any common vertex and what's mbye# by or (a1 — as) # £(t — 1) mod 1.

Proof: (1) Lett be odd. BothSt(‘“"bl) andSt(“z’bQ) are classic spheres with raditist. If the interleaving is a-interleaving,
then the Lee distance betwegn, b1) and(az, b2) is atleast = 2- 51 +1, soSt(“l’bl) andSt(“Q’bz) must have no intersection.
The converse is also true.

(2) Lett be even. We consider two casesbr— b, andb; # bs.



First consider the casé,' = by’. In this case,St(‘“’bl) andSlf“Q’bQ) have no intersection if and only (a1, b1), (a2, b2)) >
2-(5—1)+1=t—1. Andd((a1,b1), (a2, b)) = t—1ifand only if (a; —az) = +(¢t—1) mod [;. So the Lee distance between
(a1,b1) and(az, bs) is at least if and only if S,f‘“’bl) andSt(‘”’bz) have no intersection an@; — as) # (¢t — 1) mod [y,
which is the conclusion we want.

Now consider the casé; # b2'. In this case, the Lee distance betwden, b;) and(as, b2) is at least <= both the Lee
distance betweefu,, (b; + 1) mod I3) and(as, b2) and the Lee distance betweém,, (b, + 1) mod I3) and(ay,b;) are at
leastt — 1 «= §(»y (1T med ) goes not intersecs( 3" and 5(*% > med 2) goes not intersecs! ") = glo0)
andS{*>") have no intersection. (Note thaf® """ is the union ofs*;**) and §{* (1) med t2) " angdg2:2) is the union
of §{*»"2) andg{*2 P2+ med 12) y 56 we get the conclusion we want.

O

Theorem 1:For anl; x I5 torus wherd; > ¢ andly > t, if an interleaving on it is a perfectinterleaving, then for every
integer, the sphereS, centered or left-centered at the vertices labelled by that integer form a perfect sphere packing in the
torus. The converse is also true wheg 2.

Proof: Let’s say that the torus is interleaved. We udet denote the set of distinct integers used by the interleaving. For
any integeri € I, we useN; to denote the number of vertices labellediby

Let’s firstly prove one direction. Assume that the interleaving is a petfetterleaving. Then!| = |S;|. By Lemma 1, for
anyi € I, the spheres; centered or left-centered at vertices labelled by not overlap. By counting the number of vertices
in the torus and in each sphesg we getN; < % foranyi € I. Since} .., N; = l1lo, we getN; = % foranyi € I. So
for any integeri € I, the spheres; centered or left-centered at the vertices labelled foym a perfect sphere packing in the
torus.

Now let's prove the converse direction. Assume: 2. And assume for every integer, the sphefescentered or left-
centered at the vertices labelled by that integer form a perfect sphere packing in the torusNiTheﬁs% for anyi € I.
Since) ;. Ni = lila, we get|I| = |S;|. What is left to prove is that the interleaving ig-&nterleaving. By Lemma 1, the
interleaving can fail to be &interleaving only if the following situation becomes true:is even, and there exist two vertices
— (a1,b1) and(az, b2) — labelled by the same integer such that= b2 anda; — as =t — 1 mod [;.” We will show that such
a situation cannot happen.

Assume that situation happens. Then it is straightforward to verify that the following four vertides —(% — 1) mod
l1,b1), (a2 + (5 —1) mod Iy, b1), (a1 — (5 —2) mod I1,b; — 1 mod l5), (az+ (£ —2) mod Iy, b; —1 mod I,) — are contained
in eithers(“*") or 5{">*2) while the following two vertices —a; — (£ —1) mod ly,b; — 1 mod I3) and(az + (£ — 1) mod
l1,b1 — 1 mod ly) — are neither contained iﬁt(“l’bl) norin St(“z’b”. The two vertices(a; — (3 — 1) mod Iy, by — 1 mod )
and(as + (% — 1) mod I1,b; — 1 mod I2), cannot both be contained in sphefgghat are left-centered at vertices labelled by
the same integer which labgls;, b;) and (a2, b2), because they are vertically adjacent, and the vertices directly above them,
below them and to the right of them are all contained in two spheres that do not contain them. (To see that, observe the shape
of a sphere.) That contradicts that fact that all the sph&yésft-centered at the vertices labelled by the integer which labels
(a1, 1) form a perfect sphere packing in the torus. So the assumed situation cannot happen. By summarizing the above results,
we see that the interleaving must be a perfdaterleaving.

|

Theorem 2:For anl; x I, torus wherdy, > ¢ andly > t, if it can be perfectlyt-interleaved, then the spher8§gs can be
perfectly packed in it. The converse is also true wheh2.

Proof: Let G be anl; x [, torus. For any, Theorem 1 has shown thatGf can be perfectly-interleaved, then the spheres
S; can be perfectly packed in it. Now we prove the other direction. Assuga@, and the sphereS; can be perfectly packed
in G. Let (x1,y1), (x2,92), -, (xn,yn) be a set of vertices such that the sphefesentered or left-centered at them form a
perfect packing inG. The proof of Theorem 1 has essentially showed that foriaanydj (¢ # j), the Lee distance between



(x:,v:) and(x;,y;) is at least. Now we can interleavé is this way: label each sphefg with |S;| distinct integers such

that every integer is used exactly once in every sphere, and make all the spheres to be labelled in the same way (namely, all the
spheres have the same ‘interleaving pattern’). Clearly, for any two integardb, the two sets of vertices respectively labelled

by a andb are cosets of each other in the torus — therefore the Lee distance between any two vertices labelled by the same

integer is at least SoG has a perfect-interleaving.
a

B. Perfectt-Interleaving and Its Construction

The following lemma is an important property of perfect sphere packing. It will help us derive the necessary and sufficient
condition for perfect-interleaving.

Lemma 2:Let ¢ be even and > 4. When spheres; are perfectly packed in alh x [y torus, there exists an integer
a € {+1,—1}, such that if there is a sphere left-centered at the veitey), then there are two spheres respectively left-
centered af(z — £) mod Iy, (y —a- ) mod Iy) and((z + 5) mod Iy, (y + a - £) mod ly).

Proof: Assume sphereS, are perfectly packed in ah x I, torus, where > 4 andt is even. Firstly, we will show that
l; > t. Sincet is even, a spher§; spanst — 1 rows. Sol; > ¢t — 1. Now we show whyi; # ¢ — 1. Fig. 4 (a) shows two
examples — the first example shows a sphgyrén a torus of 3 rows, and the second example shows a sphagrea torus of
5 rows. (The vertices in the two spheres are indicated by relatively large black dots in the figure.) Considering the shapes of
the spheres, we can easily see that the two adjacent vertices in each dashed circle cannot be both contained in non-overlappin
spheres. Such a phenomenon always happens iwhen — 1. Since here spheres are perfectly packed in the torus, we get
I >t

Clearly, one of the following two cases must be true:

« Case 1: whenever there is a sphere left-centered at a \ertg) there are four spheres respectively left-centered at the
four vertices((z — %) mod Iy, (y — £) mod l3), ((z — £) mod Iy, (y + £) mod l), ((z + %) mod Iy, (y — &) mod I5)
and((z + 5) mod Iy, (y + £) mod ly).

« Case 2: there exists a sphere left-centered at a vérigx,), such that there is no sphere left-centered at at least one
of the following four vertices —{(zo — 5) mod 1, (yo — 5) mod ), ((zo — %) mod I1, (yo + %) mod l3), ((zg +

LY mod Iy, (yo — &) mod ly) and((zo + ) mod Iy, (yo + £) mod ly).

If Case 1 is true, then the conclusion of this lemma obviously holds. From now on, let us assume that Case 2 is true. WLOG
(without loss of generality), we assume that there is one sphere left-centénged@t), but there is no sphere left-centered at
((wo — £) mod Iy, (yo + §) mod I5). (All the other possible instances can be proved with the same method.)

Sincel; > t, the vertex((zg — %) mod /1, (yo + 1) mod I5) — which we shall call ‘vertex4’ — is not contained in the
sphere left-centered &tq, yo). (An example is shown in Fig. 4 (b), where the sphere in consideration & aith ¢t = 8,
whose left-centefz, yo) is labelled by C’. The vertexA is labelled by A’.) The vertexA is contained in one of the perfectly
packed spheres, which we shall call ‘sph&’e The relative position of vertex in sphereB can only be one of the following
two possibilities:

« Possibility 1: the vertex is the right-most vertex in the bottom row of the sph8re(See Fig. 5 (a).)
« Possibility 2: the verted is in the down-left diagonal of the border of the sph&ebut it is not the left-most vertex of
the sphereB. (See Fig. 5 (b), (c) and (d).)

Possibility 1, however, can be easily found to be impossible, since otherwise the neighboring vertex to the right of vertex
A and the vertex below it cannot both be contained in non-overlapping spheres. (See the two vertices in the dashed circle in
Fig. 5 (a).) So only possibility 2 is true. In the following proof we use the exampte-ef8 for illustration, and assume that
the relative position of the sphefgis as shown in Fig. 5 (b). We comment that wheakes other values or when the sphere
B takes other relative positions, the following argument still holds, which will be easy to see.



Fig. 4. A sphere in atorus.
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Fig. 5. Relative positions of spheres and vertices.

Let the sphere left-centered @iy, yo) be the sphere denoted b¥," in Fig. 6, and let spher® be the sphere now denoted
by ‘R;’ in Fig. 6. We immediately see that the vertex denoted Byrhust be the right-most vertex of a sphere, so the sphere
containing the vertexE’ must be the sphere denoted bi,". Then we immediately see that the vertex denotedByrmust
be the right-most vertex in the bottom row of a sphere, so the sphere containing the ¥émaxst be the sphere denoted by
‘Ry’. With the same method we can fix the positions of a series of spligres,, Ls, Ly, - - - and a series of spherég, R,
R3, Ry, - - -. Since the torus is finite, we will get a series of sphdresl,, L3, L4, - - -, L,, such that the relative position &f,
to L, is the same as the relative positioniafto L, (see Fig. 6 for an illustration) — so such a series of spheres form a ‘cycle’
in the torus. Since the spheres are perfectly packed in the torus, no two spheres in this ‘cycle’ overlap. Similarly, the spheres
Ry, Ry, - -+, R, also form a ‘cycle’ in the torus. (Note that we do not make any assumption about whether these two ‘cycles’
overlap or not.)



Fig. 6. The packing of spheres in a torus.

If those two ‘cycles’ contain all the spheres in the torus, then we are already very close to the end of this proof. If those two
‘cycles’ do not contain all the spheres in the torus, then there must be some spheres outside the two ‘cycles’ that are directly
attached to the down-left side of the ‘cycle’ formed by, L., - - -, L,,. (Consider the very regular way the ‘cycle’ is formed,
and the resulting shape of the ‘cycle’ which is invariant to horizontal and vertical shiftsIyLbe a sphere directly attached to
the ‘cycle’ formed byL{, Lo, - - -, L,,, as shown in Fig. 6. (Note that we do not care about the exact positibn,&s long as it
is directly attached to the down-left side of the ‘cycle’.) Then the verféimimediately determines that the sphere containing
it must be Dy’; similarly the vertex J’ determines the position of the sphetes’; andsoon - - - - So we will get a series of
spheresDy, D», Ds, - -+, D, which will again form a ‘cycle’. (It is easy to see that this ‘cycle’ does not overlap the previous
two ‘cycles’.) With the same method as above, we will find more and more ‘cycles’, until they together contain all the spheres
in the torus.

We can easily see that in each of the ‘cycles’ here, if there is a sphere left-centered at dxgriexhen there are two
spheres respectively left-centered @t — %) mod Iy, (y — ) mod l5) and((z + £) mod {1, (y + %) mod I5). When other
instances of Case 2 are true (see the definition of ‘Case 2’ in previous text), it can be shown in the same way that whenever there
is a sphere left-centered at a verfexy), there are two spheres respectively left-centeré¢uat £) mod [y, (y + &) mod I5)
and((z + 5) mod Iy, (y — £) mod l3). By summarizing the above conclusions, we see that this lemma is proved.

|

Definition 2.5: Let ¢t be an even positive integer, letbe either+1 or —1, and letG be ani; x I, torus. Let(z,y) be an
arbitrary vertex in7. We define “thecyclecontaining(x, y) (corresponding to the parametgf to be the set of spheres that
are respectively left-centered at the vertitesy), ((z+%) mod Iy, (y+a-L£) mod l3), ((z+2-£) mod Iy, (y+2a-%) mod ),
((x+3-f)modly, (y+3a-L£)modly),------ O
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The proof of the following lemma is omitted due to its simplicity.

Lemma 3:Lett be an even positive integer, letbe either+1 or —1, and letG be ani; x I torus. For any vertexz, y) in
G, thecyclecontaining it (corresponding to the parametgronsists OM distinct spheres;.
2

The following theorem shows the necessary and sufficient condition for tori that can be periattijyeaved.

Theorem 3:Let G be anl; x I5 torus wherd; > t andi, > t. If ¢ is odd, therG can be perfectly-interleaved if and only if
bothi;, andi, are multiples 0@. If ¢ is even, therG can be perfectly-interleaved if and only if botly, andi, are multiples
of t.

Proof: We consider the following three cases one by one:
o Case 1t =2.

o Case 2t is even but # 2.

« Case 3t is odd.

Case 1:t = 2. In this case, 2-interleaving is equivalent to vertex coloring, so the 2-interleaving numbeea@tialsG’s
chromatic numbeg(G). Let R, and R, be two rings which respectively have and!l, vertices. Ther( is the Cartesian
product of those two rings, namel§, = Ry ® Ro. It is well known [32] that for any two graphf; and Hs, x(H; ® Hs) =
max{x(H1), x(Hz2)}. Sincel; > ¢t = 2 (respectively/s > ¢ = 2), we get thaty(R;) > 2 (respectively,x(R2) > 2); and
x(R1) = 2 (respectivelyx(R2) = 2) if and only if I, (respectively],) is a multiple of 2. So¢(G) = 2 if and only if bothl;
andl, are multiples of 2. Sincg5:| = 2, we get the conclusion in this lemma.

Case 2:t is even butt # 2. Firstly, we prove one direction. Assuniecan be perfectly-interleaved. We will show that
bothi; andi, are multiples of. Leti be an integer used by a perfeéeanterleaving onz. Then by Theorem 1, the sphergs
left-centered at the vertices labelleddfprm a perfect sphere packing@ By Lemma 2, there exists an integee {+1, —1}
such that for angyclecontaining a vertex labelled hy(corresponding to the paramet€r the spheres; in thecycleare all
left-centered at vertices labelled by— and therefore they do not overlap. By Lemma 3,dkielecontaining a vertex labelled
by i consists OM distinct spheres,. So such @ycleconsists oflcm(lg’l*%) 18y = lcm(l;’lz’%) g = lem(ly, la, £)-t
vertices. Let(z, yl)2 and(x2, y2) be any two vertices labelled by We can see that for tfmjclécontaining(xl, y1) and the
cyclecontaining(zs, y2), they either do not overlap, or they are the sayee Therefore, the vertices i can be partitioned
into several sucltycles— sol; - Iy is a multiple oflem(ly, s, %) - t. Sincelem(ly,la, %) is a multiple ofl;, I, must be a
multiple of¢. Similarly, /; must be a multiple of, too. So ifG can be perfectly-interleaved, then both andi; are multiples
of ¢.

Now we prove the other direction. Assume bdthand l; are multiples oft. Let W be such a set of vertices i:

W = {(z,y)lx = 0mod £,y = 0mod %,z +y = 0 mod t}. Itis easy to verify that the Lee distance between any two
vertices inWV is at leastt. Now fori = 0,1,---,% — 1 and forj = 0,1,---,¢t — 1, defineW®J to be W = {((z +

i) mod Iy, (y + j) mod l»)|(z,y) € W}. Clearly thosel - t = |S,| sets —W 00, W1, ... Wz~1t-1 —is a partition of

the vertices inG. For eachiV®7, we label the vertices in it with one distinct integer. Clearly such an interleaving is a perfect
t-interleaving. So if botli; andl, are multiples ot, thenG can be perfectly-interleaved.

Case 3:t is odd. Firstly, we prove one direction. Assume battandl, are multiples oft%“l. Golomb and Welch have
shown in [15] that aﬁ% X t%l torus can be perfectly packed by the sphefigfor odd¢. ThereforeG can also be perfectly
packed bys, because a torus has a toroidal topology &hechn be ‘folded’ into arf% X tQTH torus. LetC be a set of vertices
in G such that the sphere$ centered at the vertices @ form a perfect sphere packing. Then the Lee distance between any
two vertices inC' is at least. We call a set of vertice® a coset ofC' when the following condition is satisfied: “there exist
integerse andb such that a vertege, y) € C'if and only if ((« 4+ a) mod I3, (y +b) mod I2) € D.” C has|S;| different cosets
in total (includingC itself), and those cosets partition the verticeg:ofFor each coset, we label its vertices with one distinct
integer, and we get a perfecinterleaving. So if botli; andi, are multiples oft?T“, thenG can be perfectly-interleaved.
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Now we prove the other direction. Assuniécan be perfectly-interleaved. Leti be an integer used by a perfeet
interleaving onG. Then by Theorem 1, the spherEscentered at the vertices labelled bform a perfect sphere packing in
G. Golomb and Welch presented in [15] a way to perfectly pack sphfgriesa torus whert is odd, which can be described as
“either of the following two conditions is true: (1) whenever there is a spEgoentered at a vertele, y), there are two spheres
respectively centered &tz + 1) mod /1, (y + 51) mod l5) and((z — 552) mod Iy, (y + &%) mod I»); (2) whenever there
is a sphere5; centered at a vertex, y), there are two spheres respectively centerduat- L) mod Iy, (y + £2) mod I5)
and((z — &) mod i1, (y + 151) mod l3)". Itis well known that that way of packing is in fact the only way to perfectly pack
S, for oddt, whose feasibility requires bofh andl, to be multiples oftQT*l. So if G can be perfectly-interleaved, then both
[, andi, are multiples o@.

a

Below we present the complete set of perfect sphere packing constructions. But firstly let’s explain a few concépibe Let

anl; x [, torus that is perfectly packed by sphefgs— there are‘lls—lf| such spheres. Definease = % and let’s say those
spheres are centered (or left-centered) at the vertice%1 ), (z2,y2), - - -, (z¢, y.). By vertically (respectively, horizontally)

shifting the spheres ir, we mean to select some integgrand get a new set of perfectly packed spheres that are centered
(or left-centered) afzy + s mod l1,y1), (x2 + s mod ly,ys), - - -, (xe + s mod Iy, y.) (respectively, atz,y; + s mod Ily),

(z2,y2 + s mod l3), - - -, (ze, ye + s mod l3)). By vertically reversing the spheres (&, we mean to get a new set of perfectly
packed spheres that are centered (or left-centerdelaat mod {1, y1), (—z2 mod Iy, y2), - - -, (—z mod Iy, y.). After such a
‘shift’ or ‘reverse’ operation, technically speaking, the way the spheres are perfectly padkeaténchanged — however, the
‘pattern of the sphere packing’ essentially remains the same.

Construction 2.1: The complete set of perfect sphere packing constructions

Input: A positive integett. Anl; x [, torusG, where (1) botti; andl, are multiples ot if ¢ is even and # 2, (2) I is even
if t = 2, and (3) botH; andi, are multiples oft%rl if ¢ is odd.

Output: A perfect packing of the spherég in G.

Construction:

1. If t is even and # 2, then do the following:

o LetAy, Ay, -+, A 1y 1, beged(l,2) — 1integers, wherel; can be any integer in the sén, 1,---, £ — 1} for
i=1,2, -, ged(l, ) —
l

Tt :
« Find theged(, &2) cyclesin G (corresponding to the parameter 1) respectively containing the vite, (Z;l A;,

Tt

o l2y_ cd(lL 2y .
S+ A)) (2 AL 2 (4 Ay)), e (009G g, 57 g 4 44)). The spheress, in those
gcd(%, %2) cyclesform a perfect sphere packing in the torus.

2. If t = 2, the do the following:

o Thel; x I5 torusG hasi; rows, each of which can be seen as a ring.ofertices. Whernt = 2, the spheres; simply
consists of two horizontally adjacent vertices. Split each row @fto %2 spheres in any way. The resultilﬁéé spheres
form a perfect sphere packing in the torus.

3. If t is odd, then do the following:

« Find such a set of}%j spheresS,: each of the spheres is centered at a veftex + 1) + j - (—m) mod 1,7 - m+ j(m +
1) mod I5) for some integers and;. Those spheres form a perfect sphere packing in the torus.

4. Horizontally shift, vertically shift, and/or vertically reverse the spherés in any way.
a

Theorem 4:Construction 2.1 is theompleteset of perfect sphere packing constructions.

Proof: We consider the following three cases. For each case, we need to prove two things: firstly, the ‘Input’ part of Con-
struction 2.1 sets the necessary and sufficient condition for a torus to have perfect sphere packing; secondly, the ‘Construction’
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part of Construction 2.1 generates perfect sphere packing correctly, and every perfect sphere packing that exists is a possible
output of it.

Case 1:tis even and # 2. In this case, since a sphefe occupiest — 1 rows and¢ columns, for the; x [ torusG
to have perfect sphere packing, it must be that ¢t — 1 andi, > t. We can show thaly # ¢ — 1 in the following way
— assumé; = t — 1 and spheres, are perfectly packed itr; say a spheré; is left-centered afz, y) in G; then the two
vertices,(z — (§ — 1) mod /1,y — 1 mod l5) and(z + (5 — 1) mod I3,y — 1 mod [3), cannot both be contained in spheres
(see the proof of Theorem 1 for a very similar argument), and that contradicts the statement that spheres are perfectly packed
in G. Therefore, ifG can be perfectly packed by sphergs> ¢ andi, > t. Then, from Theorem 2 and Theorem 3, we see
thatG can be perfectly packed by spheres if and only if Hetandl, are multiples of. So the ‘Input’ part of Construction 2.1
correctly sets of the necessary and sufficient condition for a torus to have perfect sphere packing.

Lemma 2 and its proof have shown that when spheres are perfectly packed in a torus, those spheres can be partitioned intc
cycles By observing the shape of the border ofyale we see that two adjacenyclescan freely ‘slide’ along each other’s
border — and there arg possible relative positions between two adjaagmies In Construction 2.1, thg possible relative
positions are determined by;, a variable that can tak? possible values. Now it is easy to see that Step 1 of Construction 2.1
provides a perfect sphere packing (which takes one of many possible forms, depending on the valué;&)ifand its Step
4 changes the positions of the spheres to furthermore cover all the possible cases of perfect sphere packing.

(2) Case 2t = 2. We skip the proof for this case due to its simplicity.

(3) Case 3:t is odd. In this case, Construction 2.1 re-produces the sphere-packing method presented in [15], which is
commonly known as the unique way to pack spheres forio@ée the final paragraph of the proof of Theorem 3 for a more
detailed introduction).

O

Now we present perfectinterleaving constructions that are based on perfect sphere packing.

Construction 2.2: Perfedtinterleaving constructions

Input: A positive integert. An [y x [ torusG, where both; andi, are multiples oft if ¢ is even, and botty, andi, are
multiples of 5 if ¢ is odd.

Output: A perfectt-interleaving onG.

Construction:

(2) If t # 2, then do the following:

» Use Construction 2.1 to get a perfect sphere packin@.ihabel each of those spheres wjf}| distinct integers, in such

a way that all the spheres have the same interleaving pattern, and every integer is used exactly once in each sphere.

(2) If t = 2, then do the following:

« For every vertexi, j) of G, if i + j is even, label it with the integer ‘0’, otherwise label it with the integer ‘1’.

a

The following example illustrates how to use Construction 2.1 to obtain perfect sphere packing, and how to use Construction
2.2 to obtain perfedt-interleaving.

Example 2.2.Lett = 4, and letG be anl12 x 24 torus. Firstly, we use Construction 2.1 to find a perfect sphere packing in
G. Sincet is even, the Step 1 of Construction 2.1 is executed. We chdgsd,, - - -, Agcd(%,%)q tobed; =0, A, = 1.
(Note that hergred(‘t, 2) — 1 = 2.) Then theged(%2, 22) = 3 cyclesin G are as shown in Fig. 7 (a), which are three sets of
spheresS; respectively of three different background shades. The spheres in tiegske&orm a perfect packing idr.

Next, we use Construction 2.2 to perfecthnterleaveG. Let the perfect sphere packing remain as it is; and label all the
spheres with the same interleaving pattern, usifig= 8 distinct integers. The resulting perfeeinterleaving on’ is shown

inFig. 7 (b). O
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Fig. 7. Example of perfect sphere packing using Construction 2.1 and peifgetleaving using Construction 2.2.

We comment that Construction 2.2 provides tloenpleteset of perfect-interleaving constructions that have the following
property: for any two integers, the two sets of vertices respectively labelled by those two integers are cosets of each other in
the torus. What is more, in [11], thrednterleaving constructions for two-dimensional arrays were presented, all based on
lattice interleavers. Those three constructions can also be applied to tori because of their periodic patterns. Our Construction
2.2 generalizes the results in [11] in two ways: firstly, it covers more constructions based on lattice interleavers, with the results
of [11] included as special cases; secondly, whisreven, it also covers constructions that do not use lattice interleavers, which
we can make happen by simply letting afyand A; take different values.

IIl. ACHIEVING AN INTERLEAVING DEGREE WITHIN ONE OF THEOPTIMAL

In this section, we present a noweinterleaving construction, with which we cannterleave any large enough torus with
a degree within one of the optimal. The construction presented here will also be used as a building block in Section IV for
optimalt-interleaving.

A. Interleaving Construction

Definition 3.1:
« Given a positive integer, if ¢ is odd, thenP is defined to be a string of integers,; as, - -+, a:—1’, wherea:—1 =t +1
2 2
anda; =tforl <i< %; if ¢ is even, therP is defined to be a string of integers; as, - - -, a%', wherea% =tand

a; =t—1for1 <i< % (For example, it = 3, thenP ='4;if t = 4, thenP ='3,4’; if t = 5, thenP ='5,6".)

« Given a positive integer, if ¢ is odd, then is defined to be a string of integefls ; bs, - - -, b%', Whereb# =t+1
andb, =tforl <i< %; if t is even, therQ) is defined to be a string of integefis ; bs, - - -, bg+1” Whereb%Jrl =t
andb; =t —1for1 <i<i+1.

« Given a positive integef, anoffset sequends a string of P’s and ‘Q’s. (As an example, an offset sequence consisting
of 1‘P’and 2 ‘Q’'s can be PQQ’, ' QPQ’ or ‘QQP'.) The offset sequence is also naturally seen as a string of integers
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Fig. 8. An example of-interleaving with the three features.

which is the union of the integers in it®'s and ‘@Q’s. (For example, wheh= 3, if an offset sequence consisting of 2"
and 2 Qs is ' PQQ)’, then the offset sequence is also seen as ‘4,3,4,3,4"; whked, if an offset sequence consisting of
3‘P'sand 2 Q'sis ‘PQPPQ’, then the offset sequence is also seen as ‘3,4,3,3,4,3,4,3,4,3,3,4".) The number of integers
in an offset sequence is called igngth

a

In this section, we are particularly interested in one kinttiofterleaving on am; x /5 torus, which has the following features:

« Feature 11; = |S;| + 1. (In other words, if is odd, therl; = tZT“ + 1; if ¢ is even, therd; = % +1)

o Feature 2: The degree of thénterleaving equalg, . And in every column of the torus, each of thantegers is assigned
to exactly one vertex.

« Feature 3: If the vertefa;, b;) and the verteXas, b2) are labelled by the same integer, thendet 1,2,---,1; — 1, the
vertex((a; + ¢) mod Iy, by) and the verteX(az + ) mod [y, by) are labelled by the same integer.

Example 3.1Fig. 8 shows a-interleaving on ar; x I5 torus which has the above three features. Thete3, [; = |S;|+1 =
6 andi; = 8.
Now let’s fixed an integeri', where0 < i < 5, and say the set of vertices labelled Byare ‘(xo, 0), (x1,1), - -, (X13—1,l2—
1)’. Then the following string of integersi(&; — ) mod Iy, (z2 — 1) mod Iy, - - -, (z7 — ) mod Iy, (xg — x7) mod {1,
equals ‘4,4,4,3,4,4,3,4". Since wheén= 3, P =4’ and () ='3,4’, the above string of integers actually equald®? PQ PQ’,
which is an offset sequence of lendth We comment that this phenomenon is not a pure coincidence — offset sequences do
help us findt-interleavings that have the above three features. In fact, we can prove that in many cases (e.g~véhen
7), for anyt-interleaving on a torus that has the above three features, after horizontally shifting and/or vertically reversing the
interleaving pattern, the resulting interleaving will have the same phenomenon as the example shown here.
a

The following construction outputstainterleaving that has the three features.

Construction 3.1:
Input: A positive integert. Anl; x 5 torus, wherd; = |S;| + 1. An integerm that equalqgj. Two integergp andq that
satisfy the following equation setifis odd:

pm+qgm+1) =1
p(2m? +m + 1) + q(2m? + 3m + 2) = 0 mod (2m? + 2m + 2) 1)
p andq are non-negative integens+ q > 0.

and satisfy the following equation settifs even:

pm+q(m+1) =1y
p(2m? —m +1) + ¢(2m? + m) = 0 mod (2m? + 1) 2
p andg are non-negative integens;+ ¢ > 0.
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Output: A t-interleaving on thé;, x [, torus that satisfies Feature 1, Feature 2 and Feature 3.

Construction:Let S ='sg, s1, - - -, s1,—1" be an arbitrary offset sequence consisting 6P's andg ‘Q’s. Forj = 1,2,--- 1y
and fori = 0,1,---,1; — 1, label the vertex( i;é sk + 1) mod Iy, j mod lp) with the integer#'.
a

Example 3.2Lett = 3,1, = 6,1 =8, m =1, p = 4, andg = 2. We use Construction 3.1 teinterleave ari; x [ torus.
Say the offset sequencgis chosen to beP P PQP(Q’. Then Construction 3.1 outputs theénterleaving shown in Fig. 83

We explain Construction 3.1 a little bit. The Equation Set (1) (for jdzhd the Equation Set (2) (for evénensure that the
offset sequence, which consists op ‘ P's andq ‘Q’s, exists. Furthermore, for any intege(0 < j < Iy — 1), if (a,j) and
(b, (j + 1) mod l5) are two vertices labelled by the same integer, thena = s; mod [; — namely, the offset sequenée
indicates thevertical offsetof any two vertices in adjacent columns that are labelled by the same integer. It is simple to verify
that thet-interleaving output by Construction 3.1 satisfies all the three features — Feature 1, 2 and 3 — listed earlier in this
subsection.

The following lemma will be used to prove the correctness of Construction 3.1 and also in future analysis.

Lemma4:Leti € {0,1,---,|S:|} be any of the integers used by Construction 3.1 to interleavé,thel, torus. Let
{(b0,0), (by,1),--,(bi,—1,l2 — 1)} be the set of vertices in the torus that are labelled.byet m and S have the same
meaning as in Construction 3.1 (namely, = L%J, andS ='sg,s1, -+, s1,—1 IS the offset sequence consisting pf P’'s

andg ‘Q's utilized by Construction 3.1). For any two integgiisand jo (0 < ji # j2» < lo — 1), we defineL;, .;, as
Lj,—j, = [(j2 — j1) mod ] + min{(b;, — bj,) mod Iy, (b, — bj,) mod I1}. Then we have the following conclusions:

o Case 1tisodd,jo — ji1 = m mod Iz, aNds;,, S(j,41) mod Is> S(j1+2) mod Is> " " " » S(ja—1) mod 1, 0O NOt all equat. In this
casep;, —bj, = —(m+1) mod [y andL;, ,;, =t.
» Case 2tisodd,jz — j1 =m + 1 mod Iy, and exactly one of;,, s(j, +1) mod is» S(j14+2) mod la» " " * s S(j2—1) mod 1, €QUAIS

t + 1. In this caseb;, — b;, = m mod [ andL;, _;, = t.
. Case 3t isevengs — j; = 1 mod lp, ands;, = ¢ — 1. In this caseb;, — b;, =t — 1 mod l; andL,, _,;, = t.

» Case4tiseven;s —ji = mmod I, ands;, , 5, +1) mod l25 S(j142) mod Iz5" " *» S(ja—1) mod 1, dO NOt all equat — 1. In
this caseb;, — b;, = —m mod l; andL;,_,;, =t.
» Case5tisevengs —ji = m+1mod Iz, and exactly one of;,, $(j,41) mod ls> S(j1+2) mod lo» " * * » S(j2—1) mod 1, €QUAIS

t. Inthis caseb;, — bj, =m — 1 mod {; andL;, _.;, =t.
« If none of the above five cases is true, gad- j; # t mod I, thenL;, _,;, > t. If none of the above five cases is true,
andjg - =t mod [g, thenle_)j2 > t.

Proof: Let A = ¢t + 1if ¢t is odd, and letA = ¢t if ¢ is even. The offset sequeneconsists of P’s and ‘Q’s, so it has
the following property: for anys € {0,1,---,l> — 1} such thats, = A, the followingm — 1 integers —s 1) mod i
S(k+2) mod lar ** s S(k+m—1) mod 1, — all equalA — 1, and eithers 1 41m) mod 1, OF S(k-+m+1) mod 1, €QUAISA. Also note that
bj, = bjy = 85, + 8(j141) mod I T 8(j142) mod is T *** + 8(jo—1) mod 1, Mod [1. Based on those two observations, this lemma
can be proved with straightforward computation.

a

Theorem 5:Construction 3.1 is correct.

Proof: Let (b;,, 1) and(b;,, j2) be any two vertices labelled by the same integer in/the [, torus that was interleaved
by Construction 3.1. The Lee distance between thedt(is;, , j1), (b;,,72)) = min{(j2 — j1) mod Iy, (j1 — j2) mod lo} +
min{(b;, — b;,) mod Iy, (bj, — bj,) mod I3} = min{L;, _;,, L;,—;, }. From Lemma 4, it is clearly that neithér;, _, ;, nor
Lj,—.j, is less thart. Therefored((b;,, 1), (bj,,j2)) > t. So Construction 3.1-interleaved the torus. And as mentioned
before, thig-interleaving satisfies Feature 1, Feature 2 and Feature 3.

O
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B. Existence of Offset Sequences

The feasibility of Construction 3.1 depends only on one thing — whether the two input parampéterd ‘¢’ exist or not.
The following theorem shows that when the width of the totusexceeds a thresholdy‘and ‘¢’ are guaranteed to exist.

Theorem 6:Let be an odd (respectively, even) positive integer. When | £]([ %] +1)(|S¢|+ 1), there exists at least one
solution(p, q) to the equation set (1) (respectively, equation set (2)), which is shown in the ‘Input’ part of Construction 3.1.

Proof: Firstly, let's assume is odd. The equation set (1) is as follows:

pm+gq(m+1) =1y
p(2m? +m + 1) + q(2m? + 3m + 2) = 0 mod (2m? + 2m + 2)
p andg are non-negative integens;+ ¢ > 0.

wherem = L%J. We introduce a new variable and transform the above equation set equivalently to be:

m m+1 P\ Iy
2m?4+m+1 2m? 4 3m + 2 q )\ z@2m?+2m+2)

p andg are non-negative integersjs a positive integer.

which is the same as:

—1
P\ m m+1 lo
¢ ) \2m24+m+1 2m2+3m+2 z(2m? + 2m + 2)

p andq are non-negative integersjs a positive integer.
which equals:

p=2(m+1)(m?+m+1)z — (2m? + 3m + 2)ly
qg=02m?>+m+1)ly —2m(m? +m + 1)z
p andq are non-negative integersjs a positive integer.

There exists a solution for the variablgsq and z in the above equation set if and only if the following conditions can be
satisfied:

2(m+1)(m2+m+1)z — (2m? +3m +2)ly > 0
(2m? +m+ 1)l —2m(m? + m+ 1)z > 0
z is a positive integer.

which is equivalent to:

2(m+1)(m2+m+1) 2m(m24+m+1)

(2m2+37n+2)l2 S . S (27n2+m,+1)l2
z is a positive integer.

To enable a value forto exist that satisfies the above conditions, it is sufficient to @%;%—% >1
—thatis, to makd; > 2m(m +1)(m* + m+1) = [£|(|£] + 1)(|S:| + 1). Therefore wher, > [£]([£] + 1)(|S:| + 1),
there exists at least one solutign ¢) to the equation set (1).

Whent is even, the conclusion can be proved in a very similar way. We skip its details.

O

Corollary 1: Whenly > |
torus.

L1([ 4]+ 1)(]Se|+1), Construction 3.1 can be used to outptiaterleaving on arf| S| +1) x I

Proof: Wheni, > |
O

LI([5] +1)(S:| + 1), all the parameters in the ‘Input’ part of Construction 3.1 exist, inclugiagdyg.
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Fig. 9. Examples dfiling tori

C. Interleaving with Degree within One of the Optimal

In this subsection, we will show how to interleave a large enough torus with the degree within one of the optimal.

We define the simple term diling tori here. By tiling several interleaved tori vertically or horizontally, we get a larger
torus, whose interleaving is the straightforward combination of the interleaving on the smaller tori. It is best explained with an
example.

Example 3.3Three interleaved tori—A, B andC — are shown in Fig.9. The toru3 is a5 x 4 torus, got bytiling A and

B vertically in the form of [ B ] . The torusE is a2 x 8 torus, got bytiling one copy ofd and two copies of’ horizontally

in the form of[ cC A C }
O

The following construction-interleaves a large enough torus with at maést + 2 distinct integers.

Construction 3.2¢-interleave arl; x I, torusG, wherely > |S|(|S;| + 1) andiy > | £]([ 4] 4 1)(]S¢| + 1), using at most
|S¢| + 2 distinct integers.

1. LetG; be an(|S:| + 1) x I torus that ist-interleaved by Construction 3.1, using the integers ‘0’,'2", ‘|S;|. Let
{(co,0),(c1,1),- -+, (c1,—1, 12 — 1)} be the set of vertices i&¥; labelled by the integer ‘0’.

2. LetGy be an(|S¢| +2) x I; torus. Label the vertice§ ¢y, 0), (c1, 1), - -+, (ci,—1,12 — 1) } in G2 with the integer[S;| + 1.

3.Forj=0,1,---,ls —landfori =1,2,---,|S¢| + 1, label the verteX(c; + i) mod (|S¢| + 2), j) in G2 with the integer
-1

4. Letz andy be two non-negative integers such that= z(|.S;| + 1) + y(|S:| + 2). Tile « copies ofG; andy copies ofG»
vertically to get arl; x 5 torusG. (ThenG has been-interleaved using at mog$;| + 2 distinct integers.)

O

Example 3.4\We use Construction 3.2 teinterleave & x 6 torusG, wheret = 2. The first step is to use Construction 3.1
to t-interleave &8 x 6 torusG;. Say the offset sequence selected in Construction 314s‘QQQ" = ‘1,2,1,2,1,2’, then
(1 is as shown in Fig. 10. Then thiex 6 torusGs is as shown in the figure. By tiling one copy Gf and one copy of7
vertically, we get the-interleaved toruss. |S;| + 2 = 4 distinct integers are used to interleave

|

Theorem 7:Construction 3.2 is correct.

Proof: Itis a known fact that for any two relatively prime positive integdrand B, any integeC no less thatA—1)(B—1)
can be expressed @ = xA + yB wherex andy are non-negative integers. Therefore in Construction 3.2, gince
|S¢|(|S¢| + 1), 11 indeed can be expressedias= x(|S:| + 1) + y(|S:| + 2), as shown in the last step of Construction 3.2. So
the construction can be executed from beginning to end successfully. Now we prove that the constructiantddeaveG
— that is, for any two verticesay, b;) and(aq, b2) labelled by the same integéin G, the Lee distance between them is at
leastt. We consider three cases.
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Fig. 10. Examples of Construction 3.2.

Case 1b; = be, which means thata,, b1 ) and(as, b2) are in the same column 6f. We see every column & as a ring of
lengthl; (because itis toroidal). Then, observe the integers labelling a coludinarfd we can see that on the column, the inte-
gers following an integet.S;|+1’ and before the next integellS;|+1' mustbe 0,1, - - - [ |.S¢], 0,1, -+, |Se|, -+« -+ ,0,1, -+ 1S
where the patterf, 1, - - -, |.S;| appears at least once. Therefore sifice b;) and(as, b2) are labelled by the same integer, the
Lee distance between them must be at l68gt+ 1 > ¢.

Case 2b; # by, andi # |S¢| + 1. In this case, let’s first observe two conclusions:

« The interleaving orGy; is t-interleaving. (See Construction 3.2 for the definition®f.) This can be proved as follows:
any two vertices labelled by the same integeiGin can be expressed #éc;, + i) mod (|S¢| + 2),71) and ((¢;, +
ip) mod (]S¢| +2), j2) (see the Step 2 and Step 3 of Construction 3.2); tien(((c;, +i0) mod (|S¢| +2), j1), ((¢j, +
io) mod (S| +2),52)) = da (¢, 1), (¢, 52)) = da (¢, 1), (¢, 2)) > £
o Let(w,j)and(g, ) be two vertices respectively ifi; andG, both of which are labelled by the same integer. Then it is
simple to see that = o or § = a+ 1. SinceG; has|S;|+ 1 rows andG4 has|S;|+ 2 rows, we havels, ((5, 7), (0,7)) >
da, (o, 7),(0,7)) anddg, ((8,7), (|Se] + 1,4)) > da, ((«, 5), (|Se], 7)) Thatis, ifu andv are two vertices respectively
in G; andG4 both of which are in thg-th column and labelled by the same integer, the vertical distance:ftorthe two
‘borders’ of G5 is no less than the vertical distance franto the two ‘borders’ of7;.
According to Construction 3.27 is got by vertically tilingx copies ofG, andy copies ofGy. Let's call each of those
x + y tori acomponent torusf G. Now, if (a1, b1) and(ag, b2) are in the same component torus@f we know the Lee
distance between them @ is no less than the Lee distance between them in that componentwdriah is at least because
that component torus isinterleaved. If(aq,b;) and(az, b2) are not in the same component torughfwe do the following.
We firstly construct a toru&” which is got by vertically tilingz: 4y copies ofG;. Itis simple to see that’ is ¢-interleaved. We
call each of the: + y copies ofG; in G’ acomponent torusf G’. Let's say(a1,b;) and(az, b2) are respectively in the,-th
andk,-th component torus aff. Let(¢q,b1) and(cz, b) be the two vertices labelled by the integénat are respectively in the
k1-th andk,-th component torus af’. Observe the shortest path betwéen, b;) and(as, b2) in G, and we see that it can be
split into such three intervals: froifa, b1) to a border of thé:; -th component torus, from the border of theth component
torus to the border of thé,-th component torus, and from the border of theth component torus téas, b2). There is a
corresponding (not necessarily shortest) path connetting; ) and(cs, b2) in G’, which can be split into such three intervals
similarly. And each of the three intervals of the first path is at least as long as the corresponding interval of the sec6fid path.
is t-interleaved, so the second path’s length is at leaSb the Lee distance betwegén , b;) and(az, b2) in G is at least.

Case 3:b; # by, andi = |S¢| + 1. In this case, it is simple to see that the two vertice§sin(a; + 1 mod [y,b;) and
(az + 1 mod Iy, by), are both labelled by the integer 0. Based on the conclusion of Cakg(@&; + 1 mod Iy,b1), (ag +
1 mod ll, bg)) Z t. SOdG((CLl, bl), (ag, bg)) = dG((al +1 mod ll, bl), (ag +1 mod ll, bg)) Z t.

So Construction 3.2 correctlyinterleaveds.

O
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As a result of Construction 3.2, we get the following theorem.

Theorem 8:Whenl; > |S|(|S¢|+1) andly > [ ]([5]+1)(|S¢|+1), anly x5 (or equivalently/, x I1) torus’ ¢-interleaving
number is at mostS;| + 2.

By combining Construction 2.2 (the construction for perfegiterleaving) and Construction 3.2, we cainterleave any
sufficiently large torus with a degree within one of the optimal.

IV. OPTIMAL INTERLEAVING ON LARGE TORI

In the previous section, it is shown that whigris large enough, afjS;| + 1) x I3 torus can be-interleaved usingS;| + 1
integers. In this section, we will construct gr{|S;| + 1) — 1] x I3 torus which is alse-interleaved usingS,| + 1 integers, by
using an operation we calfémoving a zigzag row (‘ £’ is some integer.) Those two tori have a special property: when they
(or multiple copies of them) are tiled vertically to get a larger torus, the larger torus is-aiterleaved with degregs,| + 1.
|S:] + 1 andk(]S¢| + 1) — 1 are relatively prime, so a large enoughmust be a linear combination of those two numbers
with non-negative integral coefficients — thereforelarx 5 torus can be-interleaved usingS;| + 1 integers in this way.
We present constructions to optimathmterleave such tori; and as a parallel result, the existence of Region | (see Section I:
Introduction) is proved.

All the results of this section can be split into two parts: one for the das®dd’, and the other for the cagds even’. Those
two cases can be analyzed with very similar methods; however their analysis and results differ in details. For succinctness, in
this section, we only analyze in detail the casis‘odd’, which should suffice for illustrating all the ideas. So in the first three
subsections here — Subsection A, B, and C, we always assumeishadd In Subsection D, we present just the final result
for the caset is even’. We list the major intermediate results for the caseéven’ in Appendix Il.

A. Removing a Zigzag Row in a Torus

Definition 4.1: A zigzag rowin anl; x [s torus is a set ofy vertices of the torus{(ao, 0), (a1,1),- -, (al,—1,l2 — 1)},
where0 < a; < l; —1fori =0,1,---,ls — 1. (For example{(2,0),(3,1),(0,2),(0,3),(3,4)} is a zigzag row in & x 5
torus.) O

Definition 4.2: Let T’ be ani; x I torus. Let{(ao,0), (a1,1),--, (a;,—1,l2 — 1)} be a zigzag row iff". Let there be an
interleaving oI, which labelsIs vertex(b, ¢) with the integed (b, ¢), forb = 0,1,---,1; —landc =0,1,---,ls — 1. Then
a torusG is said to be ‘got by removing the zigzag rduo, 0), (a1,1),-- -, (a1,—1,12 — 1)} in T if and only if these two
conditions are satisfied:

e Gisan(l; — 1) x I torus.

e« FOri=0,1,---,ly —2andj = 0,1,---,ly — 1, the vertex(z, j) in G is labelled by the integek(i, j) if i < a;, and by

theinteged (i +1,j)if i > a;. O

Example 4.1:n Fig. 11, a6 x 5 torusT is shown. A zigzag row(3,0), (2,1),(1,2),(3,3),(1,4)} in T is circled in the
figure. Fig. 11 shows a torus got by removing the zigzag roy(3,0), (2, 1), (1,2), (3,3),(1,4)} in T.

It can be readily observed th&tcan be seen as being derived fr@hin the following way: firstly, delete the zigzag row in
T that is circled in Fig. 11; then in each column®f move the vertices below the circled vertex upwardO

In order to get our final results, we present three rules to follow for devising a zigzag rou® hetanl, x I, torus which
is t-interleaved by Construction 3.1. (That medgs= |S:| + 1.) LetS ='so,s1,---,s1,—1" be the offset sequence utilized
by Construction 3.1 when it wasinterleavingB. Let H be anl; x [, torus got by tiling several copies @ vertically. Let
m = | ]. Then the three rules for devising a zigzag rowHn— {(ao,0), (a1,1),-- -, (a1,—1,lo — 1)} — are:
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T G
113|524 113|524
214 3| 2/41|3]|6
38 1|46 3/6(2/4]1
@|6|2|(B) 1 5/1(3|6]2
5/1(3]6]2 612|413
6|12|4|1|3
Fig. 11. Removing a zigzag ro{(3, 0), (2,1), (1,2), (3,3), (1,4)}in T.
« Rule 1: For anyj such tha0) < j <y — 1, if the integerss;, s(j+1) mod to» " * » S(j+m—1) mod 1, d0 NOt all equat, then

Qj 2 a(j+m) mod lo +m.

« Rule 2: For anyj such that < j <, — 1, if exactly one of the integers;, s(;11) mod is»* - * » S(j+m) mod 1, €QUAlSt + 1,
thenaj < A(j+m+1) mod Iy — (m — 1)

e Rule3: Foranyjsuchthab < j <l —1,m<a; <1 —m—1.

Lemma 5:Let B be a torug-interleaved by Construction 3.1. L&t be a torus got by tiling copies @8 vertically, and let
T be a torus got by removing a zigzag rowfih where the zigzag row iy follows the three rules — Rule 1, Rule 2 and Rule
3. LetG be a torus got by tiling copies d® andT vertically. Then, botl” andG aret-interleaved.

Proof: Whent = 1, the proof s trivial. So we assunie> 3 in the rest of the proof. Itis simple to see tHats t-interleaved,
becaused is got by tiling B, at-interleaved torus. We assunigis aniy x Iy torus (wherdy = |S;| + 1), H is anly x Iy
torus (wherd; is a multiple ofly), T"is anly x I, torus (wherd, = [; — 1), andG is anlg x I, torus. Letm = [£]. Let
S ="sp,s1, -, S1,—1" be the offset sequence utilized by Construction 3.1 when itdagerleaving.

(1) In this part, we will prove thal is t-interleaved. Letz,y;) and(z2, y2) be two vertices iril” both labelled by some
integer r’. We need to prove thatr((z1,y1), (z2,y2)) > t.

Let {(ao,0), (a1,1),---, (a;,—1,12 — 1)} denote the zigzag row removed i to getT. If a,, < z;, thenletz; = z; + 1;
otherwise letz; = x;. Similarly, if a,, < x5, then letzy = x5 + 1; otherwise letz; = x. Clearly, the two vertices i,
(21,y1) and(za,y2), are also labelled by-'.

We only need to consider the following three cases:

Case 1y, = y». Inthis casedy ((z1,91), (22,92)) is a multiple of|S;| + 1 (the number of rows iB); anddr((z1, y1), (2,
1) = dir((21,31), (22,92) — 1> |Si] = £52 > 1.

Case 2:y1 # yo anddr((x1,y1), (z2,92)) < du((z1,y1), (22,¥2)) — 2. Without loss of generality (WLOG), we assume
x1 > x9. Then, based on the definition of the ‘removing a zigzag row’, it is simple to verify that the following must be true:
dr((z1,y1), (2, ¥2)) = du((21,y1), (22,¥2)) — 2, ay, < 22 < 21 < ay,, (22 — 21 mod l;) < (21 — 22 mod [;). By Rule 3,
any vertex in the removed zigzag row is neither in the fitgows nor in the lastn rows of H, s0(z3 — 21 mod 1) > 2m + 3.
Sodr((z1,y1), (x2,y2)) = dug((21,¥1), (22,¥2)) =2 > (22 —z1mod l;) =2 > 2m + 1 =t.

Case 31 # y2 anddr((z1,41), (v2,92)) > du((21,1), (22,92)) — 1. We know thatdy ((21, 1), (22,y2)) > t. Soto
show thatdy ((z1,y1), (z2,y2)) > t, we just need to prove that ify ((z1,41), (22,y2)) = ¢, thendr((x1,y1), (x2,y2)) >
dy((z1,91), (22,y2)). By Lemma 4, there are only two non-trivial sub-cases to consider WLOG:

Sub-case 3.1y; — y1 = mmod lg, 20 — 21 = —(m + 1) mod Iy, dg((21,¥1), (22,y2)) = (y2 — y1 mod ls) + (21 —
zgmod 1) = t, andsy,, 5(y,41) mod la» S(y1+2) mod s+ ** "+ S(y1+m—1) mod I, 40 NOt all equat. If z; > zo (Which means; =
z9+(m+1)), then from Rule 1, itis simple to see that—xzs = z; —20 — s0dr((x1,41), (x2,92)) = du((21,y1), (22,y2)) =
t. If 21 < 2y (which means thafz,y1) and (22, y2) are respectively in the first and last + 1 rows of H), since the
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first and lastm rows of H andT must be the same, we get thaty — zo mod I7) = (21 — 22 mod ;) = m + 1 —so
dr((z1,y1), (2, y2)) = du((21,y1), (22, 92)) = L.

Sub-case 3.2y —y; = m+1 mod ls, 20—21 = m mod l1,dg ((21,91), (22,92)) = (y2—y1 mod l2)+(22—21 mod ;) =
t, and exactly one of,,, S(y,+1) mod is» S(y14+2) mod Lo+ " * *» S(y1+m) mod 1, €QUAIE+1. If 21 < 29 (Which means; = 25 —m),
then from Rule 2, it is simple to see that — 1 = 2o — 21 — sodr((z1,v1), (z2,92)) = du((z1,11), (22,92)) = t. If
z1 > z9 (Which means thatz;,y;) and(z2,y2) are respectively in the last and first rows of H), since the first and last
rows of H andT must be the same, we get thHat, — 21 mod Ir) = (22 — 21 mod 1) = m — sodr((z1,y1), (z2,y2)) =

dr((z1,91), (22,92)) = t.
SoT is t-interleaved.

(2) In this part, we will prove thaf7 is t-interleaved. First let's have an observation: whenimterleaved toruds is tiled
with other tori vertically to get a larger torus, for any two verticeg: andv in K (which are now also irt7) labelled by the
same integer, the Lee distance between t@,id@(g, v), is clearly no less than Let’s also notice that the torus got by
tiling one copy ofB and one copy of" vertically ist-interleaved, which can be proved with exactly the same proof as in part
(2).

G is got by tiling multiple copies oB andT. Let's call each copy oB or T' in G a component toruslLet (z1,y;) and
(z2,y2) be two vertices irG labelled by the same integer. Assumg((z1, 1), (z2,y2)) < t. Then since bottB andT have
more thart rows, (z1, y1) and(z2, y2) must be either in the same component torus or in two adjacent component tori. Now if
(z1,y1) and(xs,y2) are in the same component torus, #étdenote that component torus;(if;, y1) and(x2, y2) are in two
adjacent component tori, Iéf be the torus got by vertically tiling those two component torigidbe the same a8. By using

the observation in the previous paragraph, we can readily provediét:, y1), (x2,y2)) > t. SOG is t-interleaved.
O

B. Constructing the Zigzag Row

We presented three rules on devising a zigzag row in the previous subsection. But specifically, how to construct a zigzag row
that follow all those rules? In this subsection, we present such constructions.

Before the formal presentation, let us go over a few concepts. An offset sequence is a stRfsganfd ‘Q’s, whereP and
Q are strings of integers depending bnFor example, wheh = 5, P ='5,6" and Q ='5,5,6". Then an offset sequence
‘PPQ’ can also be written as5;6,5,6,5,5,6". Let's also express the offset sequené&’Q’ as ‘sg, s1, So2, $3, S4, S5, S6 s
wheresg = 5,1 =6, -+, s = 6. Thenfori =0,1,---,6, s; is called the (i 4+ 1)-th element’ of the offset sequence, is
also called the ‘first element of &', because it is the first element of the secdnih the offset sequence. For the same reason,
sp is the first element of & (the firstP in the offset sequencey; is the second (or last) element oPa(the first P in the offset
sequence)s, is the first element of g) (the first/last/only in the offset sequence), and so on.

Now we begin the formal presentation of the constructions.B bt an/; x I torus that ig-interleaved by Construction 3.1.
(Thereforely = |S;| + 1.) Let H be ani; x [, torus got by tilingz copies ofB vertically. (Thereford, = zly = 2(|S¢| +1).)
LetS ='sg,s1,-- -, s1,—1" be the offset sequence utilized by Construction 3.1 when it fsiaterleavingB. We say that the
offset sequencé consists ofp ‘ P’s andq ‘Q’s, where we require > 0 andqg > 0. We require that in the offset sequence,
the ‘P's and ‘Q’s are interleaved very evenly — to be specific, in the offset sequence, between any two EEayciuding
between the lastP’ and the first P’, because we see the offset sequence as being toroidal, so the’last the first P’ are
also nearby P’s), there are eithef%] or L%J consecutive@’s; and between any two nearb§’s (including between the last
‘@’ and the first ), there are eithelfgl or ng consecutive P's. Also, we require the offset sequence to start withPa *
and to end with a@’. (For example, an offset sequence consisting oP3 ‘and 5 Q’s that satisfies the above requirements
is ‘PQQPQQPQ') Letm = 1. LetL = m + m[E]if p > ¢, and letL = m + (m —1)[ L] if p < ¢. We require that
i > ([B] +1)m? +2m + 1if p > ¢, and require that; > ([£] + 1)m* +m + (2 — [1]) if p < ¢q. Below we present
two constructions for constructing a zigzag rowHn applicable respectively whem > ¢ and whenp < ¢. Note that the
constructed zigzag row is denoted pfuo, 0), (a1,1),- -, (a,—1,l2 — 1)}. Also note that both constructions require- 3.
(The analysis for the case = 3’, as asomewhaspecial case, will be presented in Appendix I.)
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Construction 4.1: Constructing a zigzag rowih, whent is odd,t > 3, andp > ¢ > 0
1. Lets,,, Spyr s 82,,, DE the integers such that= o1 < zp < -+ < @pyq =1l —m—1,andeach,, (1 <i<p+q)
is the first element of aP’ or * Q" in the offset sequencs.
Leta,, = L. Fori =2top+ g, if s,,_, is the first element of &', let a,,, = L.
Fori =2top+ g, if s,,_, is the first element of aP’, then leta,, = a,, , — m.
2. Fori =2tomandforj =1top+q,leta,, ;i1 = az,yi—2 + L.
3. Letsy,, sy,, -+, 5y, b€ the integers such that < y, < --- <y, = [> — 1, and eacly,, (1 < i < g) is the last element
of a ‘@’ in the offset sequencs.
Fori =1togq, leta,, = mL + m.
Now we have fully determined the zigzag ro{{qo, 0), (a1,1),-- -, (a;,—1, 12 — 1)}, in the torusH.
O

The zigzag row constructed by Construction 4.1 has a quite regular structure. We show it with an example.

Example 4.2\We use this example to illustrate Construction 4.1. In this exampie;, andB is an14 x 18 torus as shown in
Fig. 12(a).B ist-interleaved by Construction 3.1 by using the offset sequéheéPPPQPPPQ’ ='5,6,5,6,5,6,5,5,6,5, 6,
5,6,5,6,5,5,6". The torusH is shown in Fig. 12(b)H is an28 x 18 torus got by tiling 2 copies aB vertically. The rest of the
parameters used by Construction 4.1are 6, ¢ = 2, m = 2 andL = 8. Itis not difficult to verify that the zigzag row &/
constructed by Construction 4.1{$8,0), (16, 1), (6,2), (14,3), (4,4), (12,5), (2,6), (10,7), (18,8), (8,9), (16, 10), (6, 11),
(14,12), (4,13), (12, 14), (2,15), (10, 16), (18,17) }. In Fig.12(b), the vertices in the zigzag row are shown in solid-line circles,
solid-line hexagons, or dashed-line circles.

Now we briefly analyze the structure of the zigzag rowHn Let us write the offset sequenéeasS ='sg, s1,- -, 817 .
Then fori = 0,1,---,17, we can see that; actually shows the ‘offset’ between tli¢h column and th€i + 1)-th column
of H — in other words, if we shift the integers in tlieh column of H down (toroidally) bys; units, we get théi 4+ 1)-th
column of H. So we can think o§, as ‘spanning from théth column to thgi + 1)-th column of H’. And let’s say aP or @
in the offset sequence spans the columns that all its elements span. Then, since the offset sequenderhe@rs*PQ)’,
the ranges each of them spans is as indicated in Fig. 12(b).

Let us observe the vertices in the zigzag row that are in solid-line circles. If we indicate thém,by1), (az,,x2), -,

(Azpyy Tptq), Wherex; < xo--- < x,4,, then we can see that,, s.,,- - -, s,,,, are the ‘first elements’ of theP’s and
‘@Q’s in the offset sequence (namely, each of them is the first element®far‘a ‘Q’ in the offset sequence). And we can
see that the vertices in solid-line circles have a regular structure — basically, it climesmip=bg units from one vertex to
the next, and drops to a base-position if it is between the spanned rangésafcaaP. Now let us observe the vertices in
solid-line hexagons. We can see that they correspond to those ‘second elementdd tred' ‘Q)’s in the offset sequence’,
and they also have a regular structure. To be specific, the positions of the vertices in solid-line hexagons can be got by shifting
the positions of the vertices in solid-line circles horizontally by 1 unit and then downy8 units. In general, those vertices
in a zigzag row that correspond to thie+ 1)-th elements of P's and ‘Q’s can be got by shifting the positions of the vertices
that correspond to thieth elements of P's and ‘Q’s horizontally by 1 unit and down by, unit (here0 < i < m). As for the
vertices in dashed-line circles, they correspond to the ‘last elements aphe'the offset sequence’, and they are all in the
same row. The above observations can be extended in an obvious way to the general outputs of Construction 4.1.

O

Now we present the second construction.

Construction 4.2: Constructing a zigzag rowfh, whent is odd,t > 3, and0 < p < ¢

1. Letsy,, Suys -y Sa,,, DE the integers such that= z; < 22 < --- <2y =l —m—1,and each,, (1 <i <p+q)
is the first element of aP’ or * )" in the offset sequencs.
Leta,, = L.

Fori = 2top + ¢, if s,, is the first element of aP’, let a,, = L; if s,,_, is the first element of aP’, let a,, =
L —[1](m — 1); otherwise, leti,;; = aq,_, + (m — 1).
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@ 5 ®) "
I L L L L B
I I I I I I I I |
olo|s|12|e|1]o|al13|7]2]10]5]13]8]2]11]6 olo|3|12|6|1]9|al13|7]2]0]5]13]8]2]11]6
1/10/4 137 |2|10|5|0|8|3|11|6|0|9]3]12]7 1/10/413)7|2|10|5|0|8|3|11|6|0|0]3]12]7
2|n|s5|o|s|3|u|6|1|9|4a|12|7]1]10]4]13]8 2|1|s5|o|s|3|@ 6|1|9]|4|12|7]1]10|@]13]8
3|12/6|1|9|4|12|7|2|10|5]13]8|2|11]5]0]9 3|12/6|1|9|412|7|2|10|5]13]8|2|11]5]0]9
413/ 7|2|10|5[13/8|3]11]6]0|9|3|12]6|1 |10 413/ 7|2 |©|5[13/8|3]11]6|0|9|@)]12] 6|1 |10
5|o|s|3|1|6|o|9|al12|7|1]|10|413]7]|2]|1 5|o|s|3|1n|6|o|9|al12|7|1]|10|413]7]|2]|1
6|1/9/4al12|7|110|5]|13|8|2|11|5|0]|8]|3]12 6/1|@|412/7|1]10|5]|13/8|@|11|5|0]|8]|3]12
7|2]10|5 13|82 |11|6|0|9|3|12|6|1|9]|4]13 7|2]10|5 13|82 |11|6|0|9|3|12|6|1|9]|4]13
8|3|11|6|o|9|3|12|7|1]10|413]7]2]0]5]0 ®|3]11]6]0]9|3 12| 7 |®|10]4[13[ 7] 2]10]5]0
9/a12/7|110|4 13|82 |1|5|08|3]11]6]2 9/a12/7|110|4 13|82 |11|5|0]8|3]11]6]2
10/5]13]8]2]11|5]0]|9|3]12]6]|1]|9]4a]12|7]2 10]5]13]8]2]11|5(0)9|3]12]6]|1]9]4]|12(7)2
1]/6]0]9|3]12|6]1]10[4]13]7]2]10|5]13|8|3 1]6]0]9|3]12|6]1]10]4]13]7]2]10|5]13|8|3
12|7]1]10]4]138]7]2]|1[s5]|0]8|3|11|6|0|9]4 12|7]1]10]4{a3)7|2|1|5]0]8|3|11f6)o|9]4
13[8]2]1|5]0|8|3]12]6]1]9]4]12]/7]|1]10|5 13[8]2]1|5]0|8|3]12]6]|1]9]4a]12]7]|1]10|5
ol9|3a2)6|1]9|4|13]7]2]10(5)13]8]|2]11]6
1/10/4 137 |2|10|5|0|8|3|11|6|0|9]3]12]7
2farys|o|s|aju|6]|1|9o{af12|7|1]10]4]13|8
3|12/6|1|9|4|12/7|2|10|5]13]8|2|11]5]0]9
4(13|7|2|10|5 |13 8 |3)|11]|6| 0|9 |3 (12|61 |10
5|o|s|3|1n|6|o|o|al12|7|1]|10|413]7]|2]|1
6|1/9/4l12|7|110|5]13|8|2|11|5|0]|8]|3]12
7|2]10|5 13|82 |11|6|0|9|3|12|6|1|9]|4]13
8|3|1|6|o|9|3|12|7|1]10]413]7]2]0]5]0
9/a12/7|110|4 13|82 |11|5|08|3]11]6]2
10]5(13]8]2]11|5]|0|9|3]12]6]|1]|9]a]12|7]2
1]6]0]9|3]12|6]1]10]4]13]7]2]10|5]13|8]|3
12|7]1]10]4]138]7]2|1|5]|0|s|3|11|6|0|9]4
13[8]2]1|5]0|8|3]12]6]|1]9]4a]12]7]|1]10|5

Fig. 12. An example of Construction 4.1.

2. Fori=2tomandforj =1top+q,leta,, ;i1 = az,yi—2 + L.
3. Letsy,, sy,, -+, sy, be the integers such that < y» < --- <y, = l2 — 1, and each,, (1 < i < q) is the last element
of a ‘Q’ in the offset sequencs.
Fori=1tog, leta,, = ay,—1 + L.
Now we have fully determined the zigzag rof¢qo, 0), (a1,1),-- -, (a;,—1,l2 — 1)}, in the torusH.
O

Like Construction 4.1, the zigzag row constructed by Construction 4.2 also has a regular (and similar) structure.

Theorem 9:The zigzag rows constructed by Construction 4.1 and Construction 4.2 follow all the three rules — Rule 1, Rule
2 and Rule 3.

The above theorem can be proved with straightforward verification. So we skip its proof.

C. Optimal Interleaving Whehis Odd

In this subsection, we prove that whers odd, for a torus whose size is large enough in both dimensionsintsrleaving
number is at most one more than the sphere packing lower bogyhdWe also present the corresponding optitaislterleaving
construction.
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Lemma 6:In Equation Set (1) (the equation set in Construction 3.1), let the valugsroéndi; be fixed. Letp = pg,q =
qo’ be a solution that satisfies the Equation Set (1). Then, another solutierp’, ¢ = ¢,’ also satisfies the Equation Set (1) if
and only if there exists an integesuch thap; = pg +c(m +1)(2m? +2m +2) > 0 andq; = qo — cm(2m? +2m+2) > 0.

Proof: We can easily prove that$' = p1,q = ¢’ is a solution that satisfies the Equation Set (1pif= py + ¢(m +
1)(2m? +2m +2) > 0 andg; = qo — cm(2m? + 2m + 2) > 0 for some integer”, by plugging » = p1,q = ¢’ into the
Equation Set (1). Now let’s prove the other direction.

Assume p = p1,q = ¢1’ is a solution that satisfies the Equation Set (1). ket p; — py andy = ¢; — qo. By the first
equation in Equation Set (I);m+ ¢ (m+1) = Iy = pom+ go(m + 1) — therefore(py — po)m = —(q1 — qo) (m + 1), which
iszm = —y(m + 1). Sox is a multiple ofm + 1 andy is a multiple ofm. So there exists an integeisuch thatr = a(m + 1)
andy = —am.

Now let us look at the second equation in Equation Set{l()2m? + m + 1) + ¢1(2m? + 3m + 2) = 0 mod (2m? +
2m + 2). Note that2m? + m + 1 = —(m + 1) mod (2m? + 2m + 2) and2m? + 3m + 2 = m mod (2m? + 2m + 2).
So—pi(m+1) + @gm = 0mod (2m? + 2m + 2). Sincep; = po+2 = po +a(m + 1) andg; = qo +y = qo — am,
we get—[po + a(m + D)](m + 1) + (go — am)m = [—po(m + 1) + gom] — [a(m + 1)? + am?] = —a(2m? + 2m + 1) =
0 mod (2m? + 2m + 2). Since2m? + 2m + 1 and2m? + 2m + 2 must be relatively prime, we géin? + 2m + 2|a. So there
exist an integee such thaty = ¢(2m? + 2m + 2). Thenp; = po+z = po +a(m +1) = po + c(m +1)(2m? +2m +2) > 0
andq; = qo +y = qo — am = qo — em(2m? + 2m + 2) > 0.(The two inequalities come from the last condition in Equation
Set (1).) That completes the proof of the other direction of this lemma.

a

Lemma 7:In Equation Set (1) (the equation set in Construction 3.1), let the valuesmefandl, be fixed. LetAp =
(m +1)(2m? + 2m + 2) andAg = m(2m? + 2m + 2). If there exists a solution of andq that satisfies the Equation Set
(1), then there exists a solutiop = p*, ¢ = ¢*’ that satisfies not only the Equation Set (1) but also one of the following two
inequalities:

Iy Ao ) Ap

. < p* =
omt1 2 9 SP S5t (3)

12 AP 2 AQ
e * * 2@ 4
omt1 2 =P <9 S5 771 )

Proof: Assume there is a solutiop = pg, ¢ = g’ that satisfies Equation Set (1). Trivially, eithgy > qo orpg < qqo. Firstly,

2
letus assume that > qo. If po > 52 +Ap, thengy = =2 < ZZ*[ZZ/QTTLU*AP]’” - 12*[12/(2’”“)*(;’511)(2’” +2m+2)jm

= m — Ag (and vice versa) —so then by Lemmap,= po — Ap,q = qo + AQ is also a solution to Equation Set (),

and what's morep, — Ap >
AqQ

‘D=p,q=q suchthat2 +1—AQ<q1 <p1< +1+Ap pr1<2 +1+AP thenq1>2 H—T—thenwe

can simply lep* = p; and let¢* = ¢;. If py > 525 +1 + 4 =5 thenq1 < +1 — AT — then we will letp* = p; — Ap and
letg* = ¢1 + Ag, in which case we will havgnlffr AP <pt < 5 +1 <q* < 2”22“ + ATQ. So wherpy > qo, this lemma
holds. The case thap; < g0’ can be analyzed S|m|larly.
a
Theorem 10:Lett be a positive odd integer. Let = % DefineA as
_ lo+(m+1)(2m~+1)(m?+m+1)
A = ma,X{ (|— 2 To— m(2m+lgg 2+m+1§ -| + 1)m2 + 2m + 17 ( . , :
lo+m(2m+1)(m 2 im+1 lo+m(2m+1)(m*+m-+1
([lg 2(m—&-l )(2m+1)(m 2—}-777.+1)W + 1)m2 +m+2 - [l2—2(7n+1)(2m.+1)(m2+m+1)—I}
. Then when
lo>(m+1D)2m+D(m* +m+1)+1
and N
l 2 2 D [———=]2m?+2 2) — 2
1= (m+m+)<|—2m2+2m+2~|(m+m+> )
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, anly x Iy (or equivalently], x I;) torus’ t-interleaving number is eithe6;| or |S;| + 1.

Proof: This theorem is trivially correct wheh= 1. Whent = 3, by the result of Appendix | (Theorem 13), we can also
easily verify that this theorem is correct. So in the following analysis, we assume:that

Let's first define a few variables for the ease of expressionAet= (m+1)(2m?+2m+2), Ag = m(2m?+2m+2), B =
), 0 = G e D = (B4 Dm? +2m+1, andE = ([C1+1)m? +m+2-[C].
Then clearlyA = max{D, E}.

Whenly > (m+1)(2m+1)(m*+m+1)+1 = (m+3)(m+1)(2m*+2m+2)+1 > m(m+1)(2m2+2m+2) = [§](| L]+
1)(|S:] + 1), by Theorem 6, there exists at least one solutiop @fidq that satisfies Equation Set (1). Then by Lemma 7, there
exists a solutionp = p*, ¢ = ¢*’ to Equation Set (1) that satisfies either the condilag;.:,éj@gr—1 - % <@ <pt< - 4 Ae

2m—+1 2
i l A * * l Ag
or the condition 25 — 5P < p* < ¢" < 525 + =*. We analyze the two cases below.

A

o Case 1: there is a solutiop ‘= p*, g = ¢*’ to Equation Set (1) that satisfies the conditi% -2 < <pt<

infH +4%. We use Construction 3.1 tenterleave arf|.S;|+1) x> torusG. Note that whet, > (m-+1)(2m~+1)(m?+

m+1)+1, z2 — 52 > 0,s0¢* > 0. Also note that2- < % = B,s0D > ([E] + 1)m? + 2m + 1.
Let G, be an[[%} (|St] + 1)] x I5 torus got by tiling[%] copies ofGG; vertically. We use Construction 4.1 to find
a zigzag row inG2; then by removing the zigzag row (s, we get a torugss whose size i$[%1 (|Se] + 1) = 1] x l2.
Clearly the number of rows i1, |S;| + 1, and the number of rows i@'s, [ﬁ} (|S¢|+1) — 1, are relatively prime. So
for anyly x I3 torusG wherely > (|S¢| +1— 1)([%1 (|Se]+1)—1-1) = |St|([%1 (|S¢|+1) —2), it can be got

by tiling copies ofG; andGj; vertically — and by Lemma 55 is t-interleaved, with the-interleaving degree df5;| + 1.

o Case 2: there is a solutiop = p*,q = ¢*’ to Equation Set (1) that satisfies the conditi% — AQ—P <pf<qgt <

27rl7,2+1 +%. We use Construction 3.1 teinterleave arf|S;|+1) x5 torusG. Note that wher, > (m+1)(2m+1)(m?+
m+1)+1, 525~ 4 > 0,50p* > 0. Alsonote thatl: < PLEREIReE — €, S0F > ([£]+1)m2+m+(2—[£]).
LetGs be an[[ﬁl (ISt + 1)] x I3 torus got by tiIing[ﬁ} copies ofGG; vertically. We use Construction 4.2 to find
a zigzag row inGo; then by removing the zigzag row @., we get a torugss whose size i$[#1 (1S¢| 4+ 1) — 1] x L.
Clearly the number of rows i1, |S;| + 1, and the number of rows i@'s, (ﬁ} (|Se|+1) — 1, are relatively prime. So
for anyly x I, torusG wherely > (S +1—1)([ g (1S +1) = 1= 1) = |Se|([ 1571 1(1S: +1) — 2), it can be got

by tiling copies ofG; andGj5 vertically — and by Lemma 55 is t-interleaved, with the-interleaving degree df5;| + 1.

Now letG be anl; x I, torus wherd, > (m+1)(2m+1)(m?+m+1)+1andl; > (2m?*+2m+1)([ mzrsmrs | (2m* +

2m +2) —2) = \SA([%MSA + 1) — 2). Based on the analysis for Case (1) and Case (2), we knowGteat
interleaving number is at mogt;| + 1. By the sphere packing lower bour@'s ¢-interleaving number is at leak$,;|. SoG’s
t-interleaving number is eithes,| or |S;| + 1.

O

For easy reference, we show the method for optiméailyterleaving a large torus as a construction below. Note that the
construction below is applicable only whe» 5 (and by defaultt is odd). Whent = 1, any torus can béinterleaved with 1
integer in a trivial way. Whemn = 3, the torus can beinterleaved with the construction to be presented in Appendix .

Construction 4.3: Optimal-Interleaving on a Large Torus
Input: An odd integett such that > 5. An integerm such thatn = % Anl; x Iy torus, where

lo>(m+1D)2m+D(m* +m+1)+1

and
A

I1 > (2m? +2 1 —_—
1> (2m° 4+ 2m + )<[2m2+2m+2

1(2m2+2m+2)—2>

. (The parameteA is as defined in Theorem 10.)
Output: An optimal¢-interleaving on thé; x [, torus.
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Construction:

1. If bothl; andl; are multiples ofS;|, then the; x I5 torus’¢-interleaving number i5S;|. In this case, we use Construction
2.2 tot-interleave thé, x I, torus with|S; | distinct integers.

2. If eitherl; orls is not a multiple of.S;|, then the; x 5 torus’¢-interleaving number isS;| + 1. In this case, we-interleave
the torus with|S¢| + 1 integers in the following way: firstly, weinterleave ar{|S;| 4+ 1) x I3 torus, B, by using Construction
3.1 (note thatS;| + 1 = 2m? + 2m + 2); secondly, letd be an[[ 577 |+1](|St| + 1)] x I torus which is got by tiIing{ﬁ}
copies ofB vertically, and use Construction 4.1 or Construction 4.2 (depending on which is applicable) to find a zigzag row in
H; thirdly, remove the zigzag row ifl to get a[[ﬁ} (|S¢] + 1) — 1] x I torusT; finally, find non-negative integersand
y such thaty = =(|S:| +1) + y[(ﬁmst\ + 1) — 1], and get ar; x I torus by tilingx copies of B andy copies ofT’
vertically. The resulting interleaving on tlg x I, torus is a-interleaving.

O

D. Optimal Interleaving Whetls Even

Whent is even, the optimal-interleaving on large tori can be analyzed in a very similar way as in the case of dda
main result for evemn is shown in the following theorem. For succinctness, we leave the major steps and intermediate results of
the corresponding analysis in Appendix II.

Theorem 11:Lett be a positive even integer. Let = % DefineA as

21+ (m~+1)(2m~+1)(2m3+1 25+ (m+1)(2m~+1)(2m3+1
A = max{ (( 22%2(—mg2)7(n+1§Ez)q(n§+1; )W + 1)m2 + (3 o [ 22%2( mg2)7(n+1322)7(n2+1§ )])m -3
2lo4+m(2m~+1)(2m~+1 2la+m(2m+1 2m? —+1
((2lgfz(m+1)(2m+1)(27n2+1)—I + 1> ( |—212 2(m+1) 2m+1)(2m2+1)~|)m -1
_2" 2la+m(2m+1)(2m2+1) -|}
205 —(m+1)(2m+1)(2m2+1)

. Then when
(m+1)(2m + 1)(2m?* + 1)

2

Iy >

and

A

, anly x Iy (or equivalently], x I;) torus’ t-interleaving number is eithe6;| or |S;| + 1.

V. GENERAL BOUNDS ONINTERLEAVING NUMBERS

We have shown that for a torus whose size is large enough in both dimensions (Theorem 10 and Theorem-11), its
interleaving number is at mogt;| + 1. If the requirement on the torus’ size is loosened to some extent (Theorem 8), then its
t-interleaving number is at mo$$;| + 2. Does that mean for a torus of any size,tiisiterleaving number is always at most
|S¢| plus a small constant? The answer is no. The following theorem shows boundsterieaving numbers.

Theorem 12:(1) Thet-interleaving numbers of two-dimensional tori d&| + O(¢?) in general. And that upper bound is
tight, even if the following restriction is enforced on the tori — the number of rows or the number of columns of the torus
approaches infinity. (2) When bothandl, are of the ordef2(¢?), thet-interleaving number of ah x I, torus is|S;| + O(t).

Proof: (1) Firstly, let's show that the-interleaving numbers of two-dimensional tori 68| + O(¢?) in general. LetG be
anl; x lp torus. First we assume thais even and; > ¢, Iy > t. Let K; = Llﬂ, Ky, = L%j. We see(F as being tiled
by small blocks in the way shown in Fig. 13, where the blocks are labelled by ‘A" or ‘B’. (Note that two blocks both labelled
as ‘A’ are not necessary of the same size. And two blocks both labelled as ‘B’ are not necessary of the same size, either.)
For every block labelled as ‘A’ (respectively, ‘B’), the four blocks around it (to its left, right, up and down) are all labelled as
‘B’ (respectively, ‘A’). Each block consists of eithérz%l] or Lgﬁj rows, and eitheifz?(ﬂ or |52 -] columns. (Note that
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Fig. 13. SedZ as being tiled by small blocks.

Kyt+(1 dt
] = [Kemet ] = § ¢ ggedd], ) = 4+ |0t [ofe] = £+ [29000), Lol ] = § + Lot

We see each block as a torus of its corresponding size. (So for a block whosesizedsit vertices are denoted hy, ;)

fori =0,1,---,aa—1andj = 0,1,---, 3, in the same way a torus’ vertices are normally denoted.) Now we interleave all
the blocks following these two rules: (i) only integers in the Eet2, - (2?{11 . [Qi,z]} are used to interleave any block

‘A, and only integers in the seﬂi;(l : ngﬂ +1, [ZKl] : (QKQ] +2,--4,2- [2?(1} : [Qi,gz]} are used to interleave any
block ‘B’; (i) for all the blocks labelled by ‘A’ (respectively, ‘B’) and for anyandj, the vertices denoted by, j) in them
(provided they exist) are all labelled by the same integer. It is very easy to se€ tikat-interleaved in this way, using
2- [5=1 Tos] = 205 + [B3RE ) (4 + [1295dt]) < 2(5 + [5ED)(5 + [554]) = 2¢% = [ S,| + 3¢2 distinct integers. So
G’s t-interleaving number iS;| + O(£2).

Now we assume is even, and; < t orly < t. Without loss of generality, let's saly < ¢. Then we se&- as being
tiled horizontally by smaller torid,, Ao, ---, A,, where eacd; — fori = 1,2,---,n — 1 —is anl; x t torus, andA,,
is anly x (I mod t) torus. We interleavel;, Ao, -+, A,_; in exactly the same way, and assignx ¢ distinct integers to
each of them. We interleavé,, with a disjoint set of; x (l2 mod t) integers. Clearly7 is t-interleaved in this way, using
I1-t+1; - (Ia mod t) = |S;| + O(¢?) distinct integers. So agaii’s t-interleaving number i§S;| + O(¢?).

Finally we assumeis odd. We carft+ 1)-interleaveG using|S;.1|+O((t+1)%) = #-&-O((t—‘rl)% = ’FTHJrO(tQ) =
|S;| + O(t?) distinct integerst + 1 is even, and & + 1)-interleaving is also &interleaving. Sa:’s t-interleaving number is
still | S| + O(#?).

Now let’s show that the above bound tinterleaving numbersS;| + O(t?), is tight, no matter it is even or odd. Consider
anl; x Il torus wherd; is the largest even integer that is no greater t[‘@nj, andl, is any integer greater than or equal to
[%tJ. We are firstly going to show thattainterleaving can place an integer at most twice in ggnyj consecutive columns of
the torus.

Assume al-interleaving places an integer on three verticeg m| consecutive columns of the torus. Without loss of
generality, let's say those three vertices €1€0), (i1, j1) and (is, j2), where0 < j; < |3t] —1and0 < j, < [3¢] — 1.
Since the interleaving is @interleaving, the Lee distance between any two of those three vertices is &t least = % and
b = |3t] — 1. Itis not difficult to see that the Lee distance betwéan;;) and(a, b) is at mostmin{(a — ;) mod Iy, (i; —
a)mod l1} + (b —71) = % — min{(0 — 41) mod I, (i1 — 0) mod I} + (b — j1) = % + b — [min{(0 — i1) mod Iy, (i —

0) mod I1 } + j1]. Since the Lee distance betwe@n0) and(i1, j1) is at mostmin{(O—zl) mod Iy, (i1 —0) mod I; } + j1, we
know thatmin{(0 — 4;) mod Iy, (4 — 0) mod I1 } + j1 > t. Therefore the Lee distance betweén j;) and(a, b) is at most
Lpb—t<|3t)/2+ |3t] —1—t < L. Similarly, the Lee distance betweén, j») and(a, b) is also less thaf. Therefore
the Lee distance betweén , j1) and(iz, j2) is less thart, which is a contradiction. Sotainterleaving can place every integer
on at most two vertices ih2t| consecutive columns of the torus.
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Any [3t]| consecutive columns of the x I, torus containy x [3t] > (2t — 2) x (3t — 1) = 2¢* — 3t + 2 vertices,
where each integer is placed at most twice btyiaterleaving Therefore theinterleaving number of the torus is at least
w =942 B3pqp 1= L2 3 L6 4 g2 344 L — |5, 4 ©(t2), which matches the upper bound
|S;| + O(t?). Since heré, can beanyinteger that is no less tha&t , the upper bound is tight even if the number of columns

(or equivalently, the number of rows) of the torus approaches infinity. The first part of this theorem has been proved by now.

(2) Let’s prove the second part of this theorem. In the previous part of this proof, a methedtierdeaving ari; x I torus
has been proposed for the casés‘even and; > ¢, [, > t'. That method use8(% + [112“}?]‘1 D&+ (%}) distinct
integers. (Note thak’;, = Uﬂ andK, = lej ) When bothl; andl, are of the ordef)(¢?), both K; and K, are of the order
of Q(t) — and ther2 (£ + [Lemed t])(£ 4 [lamedt]) — o(L + O(1)) (4 +O(1)) = § +O(t) = S| + O(t). Whent i odd,
we cant-interleave ari; x I torus, wherd; = Q(t%) = Q((t + 1)?) andly = Q(¢%) = Q((t + 1)?), by (¢ + 1)-interleaving
itusing|Si+1] +O(t+ 1) = (t“ +0(t) = tZT“ + O(t) = |S¢| + O(t) distinct integers. So no mattertifis even or odd,
when both; andl; are of the ordeﬂ(tZ), thet-interleaving number of ah x I5 torus is|S;| + O(t).

O

VI. DISCUSSIONS

In this paper, we study theinterleaving problem for two-dimensional tori. It has applications in both distributed data storage
and burst error correction. This is the first time that thieterleaving problem is studied for graphs with modular structures,
and consequently, novel interleaving methods different from traditional techniques (e.g., the widely used lattice-interleaver
schemes in early works [11], [13], [25]) are developed for optitriaterleaving. The necessary and sufficient condition for
tori that can be perfectly-interleaved is proven, and the corresponding perfécterleaving construction is presented, based
on the method of sphere packing. The most important contribution of this paper is to prove that for tori whose sizes are large
in both dimensions, which constitute by far the majority of all existing cases, ttiierleaving numbers are at most one more
than the sphere packing lower bound. Optimaiterleaving constructions for such tori are presented, based on the method of
removing-a-zigzag-row and tori-tiling. Then, some additional bounds ofrithterleaving numbers are shown. Those results
together give a general characterization of tteterleaving problem for two-dimensional tori.

The importance of the-interleaving method based on removing-a-zigzag-row and tori-tiling is not limited to the results in
Theorem 10 and Theorem 11. Those two theorems should be seen as a lower bound for the performandetefléazing
method. By analyzing the performance of the correspondingerleaving constructions more carefully, and furthermore, by
keeping the main idea of theinterleaving method but tuning its specific parameters on a case-by-case basis, we can improve
the bounds derived in Theorem 10 and Theorem 11. The content of Appendix | can serve as an example in this aspect. What'’s
more, thet-interleaving method can be used to optimaHinterleave some tori whose sizes do not fall within the derived
bounds.

We are interested in studying thenterleaving problem for higher-dimensional tori, as well as finding mergerleaving
methods. Those remain as our future research.

APPENDIX |

The optimalt-interleaving construction for odt] Construction 4.3, if applicable only when> 5. In this appendix, we
present the optimatinterleaving construction wheh= 3, thus completing the result farinterleaving on large tori while
being odd. We also use this cage= 3, as an example to show how previous results can be improved ifititerleaving
problem is analyzed case by case and more carefully.



29

We will show that wheri; > 20 andl, > 15 (or equivalently, wher; > 15 andly > 20), anl; x I torus’ 3-interleaving
number is either 5 or 6. (Note thgds| = 5.) Below we present an construction that can optimally 3-interleave$,aryi,
torus wherd; > 20 andl, > 15, except whery, = 19.

Construction 4.40ptimally 3-Interleave afy x I5 torus, wherd; > 20, I, > 15, andl, # 19.
1. If bothl; andl, are multiples of 5, then thig x [, torus’ 3-interleaving number iS;| = 5. In this case, 3-interleave the
l; x I torus with 5 integers by using Construction 2.2.

If I; orls is not a multiple of 5, then use the following three steps to 3-interleavh tkd, torus with 6 integers.

2. Find non-negative integens andz, such that; = 5x; + 6x2. Find non-negative integerngs, y» andys such that
lo = by1 + 8y + 12ys.

3. There are six tori shown in Fig. 14(a)— arx 5 torus ‘A’, an5 x 8 torus ‘B’, an5 x 12 torus ‘C", an 6 x 5 torus ‘A",
an6 x 8 torus ‘B’ and an6 x 12 torus ‘C"".

Get a5 x [, torus M; by tiling horizontallyy; copies of ‘A’, ¢, copies of B’ and y5 copies of C” (whose order can be
arbitrary).

Get a6 x Iy torus M, by tiling horizontallyy; copies of ‘A", 4, copies of B’ and i3 copies of C”’, whose order needs
to satisfy this rule: fori = 1 to y; + y2 + ys3, if the i-th module-torus in\/; is an ‘A’ (respectively, a B’ or a ‘C"), then the
i-th module inM; is an ‘A”” (respectively, aB” ora ‘C").

4. Get anl; x [, torus by tilingz; copies ofM; andx, copies of My vertically (whose order can be arbitrary). The
interleaving on thé; x I, torus is a 3-interleaving.
a

Example:We use Construction 4.4 to 3-interleavelarx 5 torus wherd; = 11 andly = 25. [; is not a multiple of S|, so
the torus’ 3-interleaving number is greater than 5. Since 5+ 6 andl, = 5+ 8+ 12, the variables in Construction 4.4 can be
set as followszy = 1,29 = 1,91 = 1, 32 = 1 andys = 1. And we can let the torusd/, have the form of ABC], and let the
A B C

torus M, have the form of A’ B’C’]. We then tileM; and M to get thel; x 5 torus, which is of the forrr{ VB

This 3-interleaved torus is shown in Fig. 14(b). The interleaving Bsed Ss| + 1 integers.
A A A A

Clearly, since25 =5 x 5+ 8 x 0 + 12 x 0, another choice to tile thil x 25 torus is WA oA oA

O

Construction 4.4 constructs a 3-interleavedk [ torus by tiling copies of 6 module-tori — the 6 tori shown in Fig. 14(a).
It can be readily verified that when those 6 tori are tiled following the rule in Construction 4.4, the resulting interleaving on
thel; x I, torus is indeed a 3-interleaving. There are only a limited number of cases to analyze for the verification, so we skip
the details. We comment that Construction 4.4 does not work for thelgasel9, because 19 cannot be written as a linear
combination of 5, 8 and 12 with non-negative coefficients — therefoilg anl9 torus cannot be got by tiling the module-tori.
We present the construction for the case- 19 below.

Construction 4.50ptimally 3-Interleave af, x 19 torus, wherd; > 20.

Construction:Find non-negative integers andzs such that; = 5x; + 6xz2. There are 2 tori shown in Fig. 15 —bax 19
torusF and a6 x 19 torusF’. Get anl; x 19 torus by tilingz; copies off” andz, copies ofF’ vertically (whose order can be
arbitrary). The resulting interleaving on thex 19 torus is a 3-interleaving.

a

The correctness of Construction 4.5 can be easily verified, so we skip the details. Based on the previous two constructions,
we readily get the following conclusion for 3-interleaving.

Theorem 13:Wheni; > 20 andl, > 15, or whenl; > 15 andly > 20, anl; x I torus’ 3-interleaving number is eithgf|
or|Ss| + 1.
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(b) Tiling of modules

0/2/4(1|3J0|2{4|0|3|5|1(3)J0(2|5|1(4|0|3|5[|2|4|1|3
1/3(0|2|5)1|3|5(2|4|0|2|5)1|3|0|2|5]1(/4|0(3|5|2]|4
2|/5(1|3|0)2|4|1|3|5|1|{4/0)J2(5|1(4|0|3|5|2|4|1|3|0
4/0/2(5{113|0(2|4|0|3|5(1}J4|0|3|5(2|4|1|3|0|2]|5|1
5/1(3/0]2)5[1[3[5]2]4[0/2})5[1/4]0|3[5]2][4]1|3[0]|2
0/2/4(1|3J0|2|4|0|3|5|1(3)J0|2|5|1(4|0|3|5[|2|4|1,|3
1/3(5|2|4})1|3|5(1/4|0(2|4)1|3|0|2|5]1/4|0(3|5|2]|4
2|/4(0|3|5)2|4/0|2|5|1|3|5)2(4|1|3|0|2|5|1]4|0|3|5
3/5/1(4|03|5{1|3|0|2|4|0}3|5|2|4|1|3|0|2|5|1|4|0
4/0/2|5|114|0(2|4|1|3|5(1})J4|0|3|5(2|4]1|3|0|2]|5|1
5/1(3/0]2)5[1[3[5]2]/4[0/2}5[1/4]0|3[5]2[4]1|3[0]|2

Fig. 14. Using modules for 3-interleaving. (a) The 6 modules; (b) Tiling the modules.

0/2(4|1/3|5/1(3|0(2|4|0|2|5|1|3|5|14
1/3|{0({2/4|0|2|5|1|3|5(1|{4/0]|2]4|0|3|5
2/5/1|3|5/1/4]0/2|4|0|3|5/1|3|5|2|4|0
4/0(2(4|0(3|5{1|3|5|2|4/012]4|1|3|5]|1

5/1/3|5|2|4|0(2]4|1|3|5/1/3|0|2|4|0|3

0/2/4|@|3|5|1|/3|®|2|4]|0]|2|@|1|3|5|1]|4

1(3|®|1]4|0|2|@|o|3|5[1|®)|5]|2|4]0|@|5
2/@ol2|5[1|®|5]|1]4|0|@]4|0|3|5|@D|3]|0
®|s|1]/3|0|@|4lo]2|5|@|3|5]|1|4|@|2|4]1

4lo0(2/4|@|3|5|1|3|@|2|4]|0]2|®|1]3]|5|®@

5/1(3|5/2/4/0(2|4]1|3|5(1|3|0|2|4|03

Fig. 15. Two modules used for 3-Interleavinglanx 19 torus, wheré; > 20.
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We comment that the result we got here is comparatively better than the result derived in Section IV. (For example, if
Theorem 10 is applied for the case- 3, then the bound fok, would be 19. However here our bound feris 15.) However,
we should notice that theinterleaving method used here is the same as the method used-f8rper se (We can see that
the module-tori 4’ * B”, * C" in Fig. 14(a) and F" in Fig. 15 are got by removing a zigzag row froM”, * B”, *C”" and ‘F"".
The zigzag rows are shown in circles in those two figures. Both the interleaving method here and the method in Section IV are
based on torus tiling.) The improvement is made by better tuning of construction parameters and more careful analysis of the
bounds. The construction used for 3 does not follow all the requirements used in Section IV. (For example, the zigzag row
in Fig. 15 does not follow Rule 3.) In Section IV, while endeavoring to optimally tune all the parameters, we also need to ensure
that the construction will work for all the casestof 3. If the interleaving problem is analyzed case by case (specifically, for
each value of, [; andls), the interleaving construction has room for further optimization.

APPENDIX I

In this appendix, we show how to optimatyinterleave large tori whehis even. The process is similar to the case whése
odd, differing only in details. For this reason, we just present a succinct description of the process and results. This appendix’s
content is parallel to that of the first three subsections of Section IV, so comparative reading should help the understanding
greatly.

We assume is even throughout the remainder of this appendix. The definitiona pfgzag rowand ‘removing a zigzag
row’ are the same as in Definition 4.1 and 4.2.

Let B be aniy x l» torus which ist-interleaved by Construction 3.1 utilizing the offset sequefice *sg, s1,-- -, Si,—1'-
Let H be anl; x I torus got by tiling several copies &f vertically. Letm = % There are four rules to follow for devising a
zigzag row — denoted b{(ag,0), (a1,1),- -, (ai,—1,lo — 1)} —in H:

 Rule 1: For anyj suchthah < j <, — 1, if the integerss;, s(j41) mod s> " * * » S(j+m—1) mod 1, 0 NOt all equat — 1,
thenaj > Q(j4+m) mod Iy +m — 1.
« Rule 2: For anyj such that) < j < I, — 1, if exactly one of the integers;, s(j41) mod 15> * * » S(j+m) mod 1, €QUAISL,

thena; < a(j4m+1) mod 1, — (M — 2).
« Rule 3: Foranyj suchthat < j <y —1,if s; =t — 1, thena; < a(j11) mod 1, — (2m — 2).
e Rule4: Foranyjsuchthat <j<ly—1,2m—2<a; <l —1—(2m —2).

Lemma 8:Let B be a torug-interleaved by Construction 3.1. L&t be a torus got by tiling copies d8 vertically, and let
T be a torus got by removing a zigzag row#ih where the zigzag row i/ follows the four rules — Rule 1, Rule 2, Rule 3
and Rule 4. Let7 be a torus got by tiling copies @ andT vertically. Then, botl¥" andG aret-interleaved.

Now we present two constructions for finding a zigzag row, which are the counterparts of Construction 4.1 and B.2. Let

be anly x [, torus which ist-interleaved by Construction 3.1 utilizing the offset sequefice ‘sg, s1,-- -, s1,—1". Let H be

anl; x Iy torus got by tilingz copies ofG vertically. We say the offset sequengeonsists ofp ‘' P's andq ‘ Q’s, wherep > 0

andq > 0. We require that irf, the ‘P’s and ‘Q’s are interleaved very evenly, and thastarts with aP and ends with &).

Letm = L. LetL = (2m —2) + (m — D[E]if p > ¢, and letL = (2m — 2) 4+ (m — 2)[ 1] + 1 if p < q. We require that

Lo > ([21+1)m? + (3~ [2])m — 3if p > ¢, and require thaly > ([1]+1)m* + (3~ [1])m — (2[4] +1) if p < ¢. Below

we present two constructions for constructing a zigzag row, which is denotéthby0), (a1,1),- - -, (ai,—1,l12 — 1)}, in H,
applicable respectively when> ¢ andp < gq.

Construction 4.6: Constructing a zigzag rowih, whent is evenf > 2, andp > ¢ > 0
1. Letsy,, Sgys -y Sz,,, DE theintegers such that= z1 < 23 < --- < 2p4y =l —m —1,and each,, (1 <i <p+q)
is the first element of aP’ or ‘ Q" in the offset sequencs.
Leta,, = L. Fori=2top+gq, if s,,_, is the first element of &', let a,,, = L.
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Fori =2top+ ¢, if s;,_, isthe first element of aP’, then leta,, = a,, , — (m —1).
2. Fori=2tomandforj=1top+gq,letas;yi 1 =az; 452+ L—m+1.
3. Letsy,, sy,, -, 5y, be the integers such that < y» < --- <y, =l — 1, and eacly,, (1 <i < g)is the last element
of a ‘@’ in the offset sequencs.
Fori=1toq,ay, =L+ (m—1)(L—m+1)+ (m—1).
Now we have fully determined the zigzag rof¥so, 0), (a1,1),- -, (a;,—1,12 — 1)}, in the torusH.
O

Construction 4.7: Constructing a zigzag rowih, whent is even{ > 2, and0 < p < ¢
1. Letsy,, Sgyy -+ Sa,,, DE theintegers such that= 21 < 23 < --- < 2p4y =l —m —1,and each,, (1 <i <p+q)
is the first element of aP’ or ‘ Q" in the offset sequencs.
Leta,, = L. Fori = 2t0op+ g, if s, is the first element of aP’, then leta,,, = L; if s,,_, is the first element of a”’,
then leta,, = L — [1](m — 2) — 1; otherwise, leti,, = as,_, + (m — 2).
2. Fori=2tom and forj=1top+gq,leta,, i1 =az,yi2+L—m+1
3. Lets,y,, 5y,, -+, 54, b€ the integers such that <y, < --- <y, = [» — 1, and eachy,, is the last element of &)’ in
the offset sequenceg.
Fori=1togq, ay, = ay,—1 +L—m+1.
Now we have fully determined the zigzag rof¥ao, 0), (a1,1),- - -, (a,—1,l2 — 1)}, in the torusH.
a

Theorem 14:The zigzag rows constructed by Construction 4.6 and Construction 4.7 follow all the four rules — Rule 1, Rule
2, Rule 3 and Rule 4.

Lemma 9:In Equation Set (2) (which is in Construction 3.1), let the values of andl, be fixed. Letp = py, ¢ = qo’ be
a solution that satisfies the Equation Set (2). Then, another solytienp, ¢ = ¢;’ also satisfies the Equation Set (2) if and
only if there exists an integersuch thap;, = po + c¢(m + 1)(2m? + 1) > 0 andq; = qo — cm(2m? + 1) > 0.

Lemma 10:In Equation Set (2) (which is in Construction 3.1), let the values, of andl, be fixed. LetAp = (m +
1)(2m? + 1) andAg = m(2m? + 1). If there exists a solution gf andg that satisfies the Equation Set (2), then there exists a
solution ‘p = p*, ¢ = ¢*' that satisfies not only the Equation Set (2) but also one of the following two inequalities:

12 AQ lg AP
om+1 2 9 SP <51t )

Iy Ap ) Ao
_ 2P ¢ * < 2@ 6
om+1 2 =P <4 S5, 1T (6)

Theorem 111 et¢ be a positive even integer. Let = £. DefineA as

_ 2o+ (m+1)(2m+1)(2m2+1) s+ (m+1)(2m+1)(2m2+1)
A = max{ (] 22[277n(2m+1)(2m§+1) T+ Dm? + @3~ PP m(2m+1)(2m?+1) Dm
2ls+m(2m+1)(2m~+1) 2la4+m(2m+1)(2m?> +1)
(s —minEntDE@ m2+1)-| +1)m? + 3 — [ 20 @m it 2m2+1)1)
2" 2l2+m(2m+1)(2m +1 ‘I}
25— (m+1)(2m+1)(2m2+1)

. Then when
(m+1)(2m +1)(2m? + 1)
log >
2
and
Iy > 2m? [L](zmQ +1) -2
b= 2m? + 1

, anly x Iy (or equivalently], x I;) torus’ t-interleaving number is eithe6,| or |S;| + 1.

We skip the specific construction of optimalyinterleaving large tori here, because of its similarity to Construction 4.3.
But we present its sketch. Basically, if the torus can be perfesityerleaved, then it can be optimallyinterleaved using
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Construction 2.2; if the torus cannot be perfectipterleaved and > 4, then it can be optimally-interleaved using the tori-

tiling method. The only remaining case is ‘the torus cannot be perfeatherieaved and = 2. In that case, we can optimally
t-interleave the torus (say it is dn x I3 torus) usingS;| + 1 = 3 distinct integers in the following way: interleave a ring of

l; vertices and a ring o, vertices using 3 integers — 0, 1 and 2 — such that no two adjacent vertices in those two rings are
assigned the same integer; for 1,2, - - -, [; (respectively, foi = 1,2, ---, 1), usel(i) (respectively, usd (i)) to denote the
integer assigned to theth vertex in the ring of; (respectively]s) vertices; fori = 0,1,---,l; — 1 andj = 0,1,---,ls — 1,

label the vertex(i, j) in thel; x Iy torus with the integefZ(i + 1) + J(j + 1)) mod 3 — and then the torus is optimally
2-interleaved.
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