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The Statistical Computation Underlying Contrast
Gain Control
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The Smith-Kettlewell Eye Research Institute, San Francisco, California 94115

In the early visual system, a contrast gain control mechanism sets the gain of responses based on the locally prevalent contrast. The
measure of contrast used by this adaptation mechanism is commonly assumed to be the standard deviation of light intensities relative to
the mean (root-mean-square contrast). A number of alternatives, however, are possible. For example, the measure of contrast might
depend on the absolute deviations relative to the mean, or on the prevalence of the darkest or lightest intensities. We investigated the
statistical computation underlying this measure of contrast in the cat’s lateral geniculate nucleus, which relays signals from retina to
cortex. Borrowing a method from psychophysics, we recorded responses to white noise stimuli whose distribution of intensities was
precisely varied. We varied the standard deviation, skewness, and kurtosis of the distribution of intensities while keeping the mean
luminance constant. We found that gain strongly depends on the standard deviation of the distribution. At constant standard deviation,
moreover, gain is invariant to changes in skewness or kurtosis. These findings held for both ON and OFF cells, indicating that the measure
of contrast is independent of the range of stimulus intensities signaled by the cells. These results confirm the long-held assumption that
contrast gain control computes root-mean-square contrast. They also show that contrast gain control senses the full distribution of
intensities and leaves unvaried the relative responses of the different cell types. The advantages to visual processing of this remarkably
specific computation are not entirely known.
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Introduction
In the early visual system, two fast-acting adaptation mechanisms
control the gain of responses based on the locally prevalent image
statistics, reducing gain as the stimuli become stronger, and in-
creasing it as they become weaker. One is light adaptation, which
operates in retina and adjusts gain based on the local mean inten-
sity (Shapley and Enroth-Cugell, 1984). The other is contrast gain
control, which operates in retina (Shapley and Victor, 1978, 1981;
Chander and Chichilnisky, 2001; Baccus and Meister, 2002;
Zaghloul et al., 2005), is strengthened in thalamus and visual
cortex (Kaplan et al., 1987; Sclar, 1987; Sclar et al., 1990; Cheng et
al., 1995), and adjusts gain based on a measure of local stimulus
contrast.

The measure of contrast that underlies contrast gain control is
not entirely known. It is commonly thought to be the root-mean-
square contrast, the local standard deviation of intensities relative
to the mean intensity (Shapley and Victor, 1978, 1981; Bonin et
al., 2005). Consistent with this hypothesis, gain is independent of
the exact stimulus position within a local region (Shapley and
Victor, 1978; Benardete and Kaplan, 1999) and decreases with

stimulus area (Shapley and Victor, 1981; Sclar et al., 1990; Bonin
et al., 2005). However, contrast gain control could use approxi-
mate statistics, which do not require summing the squared inten-
sity of each point in a patch of image. For example, Victor (1987)
proposed that contrast gain control might sense the mean abso-
lute deviations from the mean, not the squared deviations. Alter-
natively, contrast gain control might measure the prevalence of
the darkest and/or of the lightest pixels in the image. This and
other computations would not require processing of the whole
distribution of light intensities. They would generally make con-
trast gain control dependent not only on the standard deviation
of light intensities but also on higher moments of the distribution
such as skewness (the asymmetry in the prevalence of particularly
light or dark intensities) or kurtosis (the relative prevalence of
particularly light or dark pixels).

In particular, there are at least two reasons to expect the mea-
sure of contrast to be sensitive to asymmetries in the distribution
of light intensities. First, the early visual system employs separate
pathways, ON and OFF, to encode light increments and decre-
ments (Kuffler, 1953; Schiller, 1992), and the measure of contrast
of each pathway may be biased by the range of intensities that is
signaled by that pathway. Second, there is psychophysical evi-
dence for a mechanism sensitive to higher moments of the light
intensity distribution (Chubb et al., 1994, 2004). When viewing
static texture stimuli, human subjects not only discriminate stim-
uli of different standard deviation (Fig. 1A, the root-mean-
square contrast) but also stimuli of different skewness (Fig. 1B)
or kurtosis (Fig. 1C). This performance can be explained by in-
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voking three perceptual mechanisms: one sensitive to mean in-
tensity (e.g., light adaptation), one sensitive to standard deviation
(e.g., contrast gain control), and one sensitive to higher moments
of the light intensity distribution. A physiological correlate for the
latter mechanism has not yet been identified. A simple explana-
tion would be contrast gain control: for instance, if the measure
of contrast were sensitive to skewness, the responses of the early
visual system to textures of different skewness would be different,
and the textures would be easy to discriminate.

Does contrast gain control measure root-mean-square con-
trast? Is it sensitive to higher moments of the light intensity dis-
tribution? We addressed these questions in the cat’s lateral genic-
ulate nucleus (LGN), which relays signals from retina to cortex.
Borrowing the ingenious methods of Chubb et al. (1994, 2004),
we characterized the computation underlying contrast gain con-
trol using white noise stimuli whose statistics were precisely con-
trolled. We separately varied the standard deviation, the skew-
ness, and the kurtosis and measured their individual effects on
response gain.

Materials and Methods
We characterized the responses of 25 well isolated neurons recorded in
lateral geniculate nucleus of three anesthetized, paralyzed cats. These
neurons were held long enough (�2 h, commonly 4 h) to perform a
series of more than six experiments.

Adult cats were anesthetized with ketamine (20 mg/kg) mixed with
acepromazine (0.1 mg/kg) or xylazine (1 mg/kg). Anesthesia was main-
tained with a continuous intravenous infusion of pentothal (0.5– 4
mg � kg �1 � h �1). Animals were paralyzed with pancuronium bromide
(0.15 mg � kg �1 � h �1) and artificially respired with a mixture of O2 and
N2O (typically 1:2). EEG, electrocardiogram, and end-tidal CO2 were
continuously monitored. Extracellular signals were recorded with
Quartz-coated platinum/tungsten microelectrodes (Thomas Recording,
Giessen, Germany), sampled at 12 kHz, and stored for off-line spike
discrimination. A craniotomy was performed above the right LGN

(Horsley–Clarke, coordinates �9 mm lateral and �6 mm anterior).
Electrodes were lowered vertically until visual responses were observed.
The location of LGN was determined from the sequence of ocular dom-
inance changes during penetration. Most cells (19 of 25) were located
either in the first contralateral layer (presumably lamina A) or in the first
ipsilateral layer (presumably lamina A1).

Visual stimuli were displayed using the Psychophysics Toolbox (Brai-
nard, 1997; Pelli, 1997) and presented monocularly on a calibrated mon-
itor with mean luminance of 32 cd/m 2 and refresh rate of 124 Hz.

We classified cells into X and Y types using responses to large moving
gratings of different spatial frequencies. Experiments included 14 loga-
rithmically spaced frequencies. Cells were classified as Y type if the mean
firing rate measured at high spatial frequencies was significantly higher
than that expected from linear spatial summation (inferred by fitting
responses to a difference of Gaussians followed by a rectification). All
units presented here were of X type, which is consistent with the known
laminar distribution of LGN cells (Wilson et al., 1976).

Stimuli were grids of uniform squares whose light intensities were
drawn at random. Stimuli had 5–10 elements in width, covered the re-
ceptive field center and surround, were presented at a rate of 124 Hz, and
lasted 20 –30 s. Stimulus conditions were presented in randomized order
and repeated 5–10 times. We varied the statistics of the stimulus across
stimulus conditions.

We considered three statistics: standard deviation, skewness, and kur-
tosis. Let the random variable xi denote the light intensity of any square in
a stimulus. Standard deviation � is the square root of the second central
moment or variance � 2 � E(xi � x̄) 2, where E() denotes the expected
value operator, and x̄ is mean light intensity. Skewness is the third central
moment: E(xi � x̄) 3/�3, and kurtosis is the fourth central moment
E(xi � x̄) 4/� 4.

We used the method developed by Chubb et al. (1994) to synthesize
the distribution from which the light intensities of the stimulus were
drawn. Briefly, we devised a set of orthogonal basis functions to modulate
the moments of the distribution. Let index � � {0,1, . . . , M�1} denote
one of the M different gray levels the stimuli can take. We computed the
set of vectors fi(�) � �i, where i � {0, 1, . . . , 4}. We then orthogonalized
fi(�) using the Gram–Schmidt algorithm and normalized the result to an
absolute maximum of 1/M. We used the resulting basis functions �i(�) to
synthesize the distributions. Each function �i has distinct effects on the
stimulus statistics. Translating the distribution along �2 changes its stan-
dard deviation and therefore by definition its kurtosis. Translations
along �3 vary skewness but do not affect standard deviation or kurtosis.
Translations along �4 vary kurtosis but do not change standard deviation
or skewness.

Each experiment had seven conditions. In the control condition, gray
levels were drawn from the uniform distribution U (with probability
1/M ). In the low and high standard deviation conditions intensities were
drawn from U � ��2 and U � ��2. In the low and high skewness condi-
tions the stimuli followed U � ��3 and U � ��3. In the low and high
kurtosis conditions the stimuli followed U � ��4 and U � ��4. We used
� � 0.9 to ensure that all gray levels have nonzero probabilities. We used
M � 5 gray levels to maximize the differences between the low and high
conditions.

We modeled responses with a linear filter followed by a static nonlin-
earity (Chichilnisky, 2001). First, we estimated a separate filter for each
stimulus by computing the average stimulus preceding a spike. We then
estimated a separate nonlinearity for each stimulus by convolving the
filter with the stimulus and scattering the resulting linear response
against the measured response. We fixed the nonlinearity to the average
measured response for a given linear response. At this stage, we had one
linear filter and one nonlinear function for each stimulus. In a final step,
we rescaled the linear filters obtained for the test condition so as to
minimize the mean square error between the nonlinear functions ob-
tained in the test conditions and that in the control condition.

We measured the amplitude of the linear filter for each stimulus. We
considered the component of the filter that corresponds to the receptive
field center and measured its amplitude. We defined amplitude as the
standard deviation calculated across time. Other measures, such as peak-
to-peak amplitude, yielded similar results.

Figure 1. White noise textures differing in standard deviation, skewness, and kurtosis. Each
rectangle contains two squares, one for each value of the statistic being considered. The histo-
grams on the top and bottom indicate the associated distribution of light intensities, i.e., the
probability of having a pixel of a certain intensity as a function of intensity. A, Textures differing
in standard deviation (root-mean-square contrast) and kurtosis. B, Textures differing only in
skewness. C, Textures differing only in kurtosis. The methods to synthesize these textures were
introduced by Chubb et al. (1994).
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To estimate the true gain of the neurons, we performed simulations.
We simulated the response of a fixed linear filter followed by a static
nonlinearity and a Poisson generator. We set for each cell the linear filter
and nonlinearity to the average calculated across stimuli. We ran our
analysis on the simulated responses. Because the filter in the model is
fixed, changes in amplitudes can be ascribed to biases in the estimation
procedure. To estimate true gain, we normalized the changes in ampli-
tudes observed in the neurons by data observed in the simulations.

Results
We estimated the gain of 25 LGN neurons in three anesthetized,
paralyzed cats using white noise stimuli (Fig. 2). The stimuli con-
sisted of grids of uniform squares whose light intensities were
drawn at random (Fig. 2A) from a chosen distribution (Fig. 2B).
The stimuli covered both the receptive field center and surround
and elicited strong and reliable responses (Fig. 2C).

We summarized the observed responses with a classical mod-
el: a linear filter followed by a static nonlinearity (Fig. 3). The
linear filter specifies the weights that the neuron applies when
summing light intensities (Fig. 3A). The static nonlinearity con-
verts the output of the linear filter into positive firing rates (Fig.
3B). We estimated the linear filter by computing the average
stimulus that preceded a spike (Hunter and Korenberg, 1986;
Sakai, 1992). We estimated the static nonlinearity by convolving
the stimulus with the estimated filter and comparing the output
of the filter with the observed firing rate (Chichilnisky, 2001)
(Fig. 3B). As expected from previous studies (Dan et al., 1996;
Chander and Chichilnisky, 2001; Baccus and Meister, 2002;
Mante et al., 2005; Zaghloul et al., 2005), at a given mean lumi-
nance and contrast, this simple model, a linear filter feeding into
a static nonlinearity, captures the main features of the firing rate
responses (Fig. 3D).

To compare linear filters across conditions, we considered the
amplitude of the filter in the center of the receptive field. The
filter consists of a collection of temporal weighting functions, one

for each square in the stimulus. We selected the square placed on
the receptive field center, which elicited the strongest response
(Fig. 3A, dashed contours) and considered the amplitude of the
associated weighting function (Fig. 3C). We asked how this am-
plitude is affected by the statistics of the stimulus.

We studied the effect of three statistics: standard deviation,
skewness, and kurtosis. Each experiment included a control stim-
ulus, in which intensities were drawn from a uniform distribu-
tion (Fig. 2B), and a set of test conditions, in which we precisely
varied the standard deviation, skewness, and kurtosis of the dis-
tribution (Chubb et al., 1994) (Fig. 4A). We measured the effects
of these variations by estimating a temporal weighting function
for each condition (Fig. 4B).

We first describe the effects of these manipulations in stimulus
statistics on the amplitude of the temporal weighting function
and then, after correcting for biases introduced by our estimation
method, interpret these effects in terms of neuronal gain.

Effects of standard deviation
Neural gain is well known to depend on stimulus standard devi-
ation (Shapley and Victor, 1978, 1981; Victor, 1987; Baccus and
Meister, 2002). To quantify this effect, we varied the standard
deviation of our stimuli. In the control condition, the standard
deviation of the stimulus was 23 cd/m 2, amounting to approxi-
mately one-third of the dynamic range of the display (64 cd/m 2,
with a mean luminance of 32 cd/m 2). In the test conditions, we
held the mean constant and reduced standard deviation to 13.7
cd/m 2 (Fig. 4Ai) or increased it to 28.9 cd/m 2 (Fig. 4Aii).

As expected, varying standard deviation strongly affected the
amplitude of the estimated weighting function. To assess the ef-
fects of standard deviation across neurons, we expressed the am-

Figure 2. Measuring LGN responses to the white noise textures. This figure illustrates re-
sponses to the control texture, which has uniform distribution. A, Some frames of the texture
stimulus. B, Distribution of light intensities. C, Responses of an example LGN neuron (cell 51.3.1)
to the texture stimulus. The raster plot indicates spike response in individual trials. The histo-
gram shows firing rate response averaged across trials.

Figure 3. A simple linear filter followed by a static nonlinearity describes the operation and
the responses of the neuron. For the same neuron as in Figure 2, we here illustrate responses to
the control texture, which has uniform distribution. A, Estimated linear filter. The dashed con-
tour indicates the location at which the filter has maximal amplitude. B, Estimated static non-
linearity; measured mean firing rate for a given filter output. Error bars (barely visible) indi-
cate � 1 SE. C, Time course of filter component with maximal amplitude. Error bars (barely
visible) indicate � 1 standard deviation calculated across trials. D, Shaded areas indicates
measured firing response. The solid lines indicates model predictions.
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plitudes of the weighting functions in the test conditions as mul-
tiples of the amplitude in the control condition. In the example
neuron, dividing the standard deviation by 1.6 (to 14 cd/m 2)
multiplied the amplitude by a factor of 1.44 � 0.04 (mean �
standard deviation) (Fig. 4Bi). Conversely, multiplying standard
deviation by 1.3 (to 29 cd/m 2) divided amplitude by 1.43 � 0.05
(Fig. 4Bii).

We obtained comparable results in the population (Fig.
5Ai,ii). On average, multiplying standard deviation by 1.3 di-
vided amplitude by 1.29 � 0.02 (median, bootstrap estimates,
n � 25) (Fig. 5Aii) and dividing standard deviation by 1.6 mul-
tiplied amplitude by 1.40 � 0.03 (Fig. 5Ai).

Effects of skewness
Neural gain might also depend on the balance between the
amounts of whiteness and blackness in the stimulus. This balance
is unaffected by changes in standard deviation, which vary the
prevalence of white and black pixels in equal amounts. To test this
possibility, we varied the asymmetry in the intensity distribution,

or skewness, and measured the associated weighting functions.
We did this without changing the stimulus mean and standard
deviation. The control stimulus followed a uniform distribution
of light intensities and was therefore not skewed (skewness, 0). In
the test conditions, we skewed the stimulus toward either darker
intensities (skewness, �0.4) (Fig. 4Aiii) or lighter intensities
(skewness, 0.4) (Fig. 4Aiv).

Varying stimulus skewness has weak but significant effects on
the estimated weighting function. For the example neuron, the
weighting functions obtained when varying skewness resemble
the one obtained in the control condition, but there are signifi-
cant differences (Fig. 4Biii,iv, solid vs dashed curves). The
weighting function was reduced by the skew toward dark inten-
sities (Fig. 4Biii) but was unaffected by the skew toward lighter
intensities (Fig. 4Biv).

Such weak effects were observed in most cells and depended
on the relation between the stimulus and the polarity of the re-
ceptive field of the neuron (Fig. 5Aiii,iv). Skewing the stimulus
toward the darker intensities typically reduced the amplitude of
the weighting functions in ON cells by a factor of 0.94 � 0.04

Figure 4. Distribution of light intensities in the test conditions, and results for the example
neuron. A, Distribution of light intensities in the six test conditions: low and high standard
deviation (i, ii), low and high skewness (iii, iv), and low and high kurtosis (v, vi). B, Results for the
example neuron from Figures 2 and 3. The solid curves show the temporal weighting functions
measured for each of the test conditions. The dashed curve indicates the time course measured
in the control condition (Fig. 3C).

Figure 5. Changes in response amplitude for the population of neurons (n � 25) and for
simulated neurons in which gain is constant. A, Amplitude of responses in the six test condi-
tions, relative to amplitude in the control condition. Open and closed histograms show gain of
ON and OFF cells. Stars denote medians across cells. Amplitude is defined as the standard
deviation of the temporal weighting function as estimated by spike-triggered averaging. B,
Shaded areas show distribution of amplitude changes predicted by a linear–nonlinear Poisson
model with fixed temporal weighting function. The dashed histograms are replotted from A.
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(median � standard deviation, bootstrap, n � 13) but did not
affect (1.00 � 0.02, n � 12) that of OFF cells (Fig. 5Aiii). Skewing
the stimulus toward the lighter intensities increased the ampli-
tude of the weighting function of ON cells by 1.06 � 0.03 and
decreased that of OFF cells by 0.88 � 0.02 (Fig. 5Aiv).

Effects of kurtosis
Neural gain might also depend on the prevalence of the extreme
intensity values in the image. Varying standard deviation or
skewness does not isolate the effect of these extreme values: stan-
dard deviation determines both the extreme intensities and the
intensities that are closer to the mean, and skewness determines
the imbalance between dark and light intensities. To test the effect
of intensities far away from the mean, we varied stimulus kurtosis
without changing stimulus mean, standard deviation, and skew-
ness. In the control condition, the stimulus had a kurtosis of 1.7
(for comparison, a Gaussian distribution has a kurtosis of 3). In
the test conditions, we reduced stimulus kurtosis to 1.5 (Fig. 4Av)
or increased it to 1.9 (Fig. 4Avi).

Varying kurtosis had weak effects on the estimated weighting
functions. In the example neuron, for instance, decreasing kur-
tosis had little effect on the weighting function (Fig. 4Bv),
whereas increasing kurtosis slightly reduced its amplitude (Fig.
4Bvi).

Similar results were obtained in the population (Fig. 5Av,vi).
Across cells, decreasing kurtosis had no significant effect on the
weighting functions (median normalized amplitude of 0.99 �
0.02 and 1.02 � 0.03 for ON and OFF cells) (Fig. 5Av). Increasing
kurtosis, however, did somewhat reduce the amplitude of the
weighting function (median normalized amplitudes of 0.93 �
0.02 for both ON and OFF cells) (Fig. 5Avi).

Estimating true gain
We have seen strong effects of standard deviation and weak ef-
fects of skewness and kurtosis on the amplitude of the estimated
temporal weighting function. Are some of these effects attribut-
able to biases in our estimation method or do they reflect true
changes in neuronal gain?

Spike-triggered averaging yields the true temporal weighting
function of a neuron only under specific assumptions (Chichilni-
sky, 2001; Paninski, 2003). First, the responses of the neuron have
to be well described by a linear receptive field followed by a static
nonlinearity. Second, the white noise stimuli have to be drawn
from a Gaussian distribution. When the light intensities of the
stimulus are drawn from other distributions, instead, the method
can show significant biases (Victor and Knight, 1979; Simoncelli
et al., 2004).

To assess the biases in our estimation procedure, we simulated
the spike responses of neurons with fixed gain and ran our anal-
ysis on these responses (Fig. 5B, shaded histograms). The model
consisted of a fixed linear filter followed by a static nonlinearity
and a Poisson generator. For each cell, we set the linear filter and
the nonlinearity to the average filter and nonlinearity calculated
across stimuli for that cell. We then calculated the responses of
the model cells to our stimuli and estimated a temporal weighting
function for each stimulus condition. Because the filter in the
model is fixed, systematic changes in the temporal weighting
functions measure the biases in the estimation procedure.

This analysis of the bias suggests that the large changes in
amplitude observed when varying standard deviation reflect true
gain changes, whereas the small changes observed when varying
skewness and kurtosis do not reflect true gain changes (Fig. 5B,
dashed vs shaded histograms). Both reducing and increasing

standard deviation reduced the amplitudes of the estimated
weighting functions of the model neurons by 0.91 � 0.01 and
0.93 � 0.01 (median, n � 25) (Fig. 5Bi,ii, shaded histograms).
These effects, however, were small compared with the changes in
estimated gain seen in the real neurons (Fig. 5Bi,ii, dashed histo-
grams). The effects of standard deviation, therefore, are far from
being fully explained by biases in the estimation procedure. In
contrast, the biases seen when varying skewness and kurtosis re-
semble the changes in amplitude observed in real neurons, sug-
gesting that the latter do not reflect true changes in gain (Fig.
5Biii–vi). Just as in the real neurons, changing skewness or kur-
tosis with the model cells had small but significant effects on the
amplitude of the estimated weighting functions, often with op-
posite effects in simulated ON cells and OFF cells. The distribu-
tions of amplitude for the data and for the simulations are very
similar (Fig. 5Biii–vi), suggesting that the effects of skewness and
kurtosis seen in the real data are entirely explained by biases in the
estimation procedure.

To compensate for the biases in the estimation procedure and
thereby estimate the true gain of the neurons, we normalized the
changes in amplitude observed in the neural responses by the
changes observed in the simulations with model neurons that
have fixed gain (Fig. 6).

Changes in standard deviation elicited strong changes in gain
(Fig. 6i,ii). Consistent with an almost perfect mechanism of gain
control, the changes in gain almost entirely counteracted the
changes in standard deviation: dividing standard deviation by 1.6
(Fig. 6i) multiplied gain by 1.54 � 0.04, and multiplying standard
deviation by 1.3 divided amplitude by 1.20 � 0.05 (Fig. 6ii). As
expected from studies in retina (Chander and Chichilnisky, 2001;
Zaghloul et al., 2005) and in LGN (Bonin et al., 2005), these
changes in gain were more pronounced in ON cells than in OFF
cells. Increasing standard deviation by a factor of 2.1 (from the
low to the high standard deviation condition) decreased the gain
of ON cells by a factor 2.13 � 0.13 (median, n � 12) (Fig. 6, open
histograms) and that of OFF cells by 1.63 � 0.07 (n � 13) (Fig. 6,
closed histograms).

Neuronal gain, in contrast, was unaffected by changes in
skewness (Fig. 6iii,iv) or in kurtosis (Fig. 6v,vi). For both ON and
OFF cells, the estimates of gain do not differ significantly from 1
(medians, two-sided sign tests, p � 0.05). Thus, the changes in

Figure 6. Changes in neuronal gain for the population of neurons (n � 25), the same as in
Figure 5 except that open and closed histograms show for ON and OFF cells the ratios of observed
amplitude changes over those predicted by the linear nonlinear Poisson model.
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amplitudes observed when varying skewness and kurtosis (Fig.
5Aiii–vi) entirely reflect biases in the estimation procedure (Fig.
5Biii–vi). These results are summarized in Table 1.

Model performance
The comparisons that we have made between the linear filters,
and thus the gains, measured with the different stimulus statistics
are meaningful only if the static nonlinearity at the output of the
model remains constant across these manipulations (Fig. 7)
(Chichilnisky, 2001; Baccus and Meister, 2002; Zaghloul et al.,
2005). In our analysis, we imposed that the nonlinearity be ex-
actly the same across conditions. Doing so is appropriate because,
as illustrated for the example cell, the nonlinearities obtained in
the test conditions (Fig. 7A, symbols) are indistinguishable from
the one measured in the control condition (Fig. 7A, gray curves).

Similarly, the comparisons that we have made across stimulus
conditions would be inappropriate if the simple model used to
describe the responses (the linear filter followed by the static
nonlinearity) were to work better for some stimulus conditions
than for others. Indeed, the model is not perfect: it captures the
main features of the responses but also exhibits deviations, often
failing to capture the precise size of the firing events (Fig. 3D).

We addressed this concern in three ways. First, when estimat-
ing the static nonlinearity we plotted actual response as a function
of predicted response in the various stimulus conditions (Figs.
3B, 7). The size of the error bars is constant across conditions (the
error bars are in most cases invisible), suggesting that fit quality
does not depend on the statistics of the stimulus. Second, we
measured the percentage of stimulus-driven variance in the data
that is explained by the model (Sahani and Linden, 2003; Ma-
chens et al., 2004). We found that this measure barely depends on
the statistics of the stimulus (Table 1). Percentage of variance
depended weakly on stimulus standard deviation, ranging from
79.3 � 2.0% (mean � SE, n � 25) at low standard deviation to
77.6 � 1.7% and 75.4 � 1.8% as standard deviation is increased.
In the remaining conditions, explained variance also shows weak
dependencies, with values ranging from 74.5 � 2.0% to 77.3 �
1.7%. Third, we computed the distribution of deviations from
the model predictions and found it to be nearly independent of
the statistics of the stimulus. We estimated the distribution of
deviations for the test conditions and for the control condition
and used quantile analysis to compare them (Fig. 7B). In all
graphs, the quantiles of deviations in the test conditions resemble
the quantiles in the control (the data points fall near the diagonal
line). This identity indicates that model deviations for the test
conditions and for control have nearly identical distributions.

Discussion
We have used white noise stimuli and a simple model of re-
sponses to measure the gain of neurons in lateral geniculate nu-

cleus. Our analysis revealed that gain is set by the standard devi-
ation of light intensities and is independent of higher moments
such as skewness and kurtosis.

Previous studies used stimuli whose statistics cannot be varied
independently. These stimuli include sine waves (Shapley and
Victor, 1978, 1981; Victor, 1987; Benardete et al., 1992; Bonin et

Figure 7. Model performance. A, The nonlinearity is approximately constant across stimulus
conditions. Results for the example neuron of Figures 2, 3, and 4. Data points indicate the
nonlinearities measured in the test conditions. The gray curve indicates the nonlinearity mea-
sured in the control condition (Fig. 3B). B, The quality of model predictions is similar across
conditions. Results for the population of neurons (n � 25) are shown. Data points indicate
quantiles of deviations in test conditions as a function of quantiles observed in the control
condition. The dashed lines indicate unity relationship.

Table 1. Summary of stimulus statistics and results

Standard
Deviation
(cd/m2)

Skewness
(unitless)

Kurtosis
(unitless)

Absolute deviation
(cd/m2)

Firing rate (spikes/s) Gain (%) Explained variance (%)

ON cells OFF cells ON cells OFF cells ON cells OFF cells

mean (SE) mean (SE) median (SD) median (SD) mean (SE) mean (SE)
Control 22.6 0.0 1.7 19.2 19.2 (4.2) 19.9 (3.1) 100 (2.8) 100 (2.0) 76.8 78.3
Tests 13.7 0.0 2.2 10.6 17.8 (4.5) 16.4 (2.8) 162 (6) 147 (7) 79.1 (3.2) 79.5 (2.6)

28.9 0.0 1.2 27.8 19.2 (4.2) 21.1 (3.2) 77 (3) 88 (3) 74.4 (2.7) 75.6 (2.2)
22.8 �0.4 1.7 19.3 18.4 (4.3) 19.6 (3.1) 101 (2) 105 (2) 76.2 (3.0) 78.0 (2.4)
22.6 0.4 1.7 19.2 19.4 (4.1) 19.3 (3.1) 101 (3) 99 (2) 78.0 (2.8) 76.6 (2.4)
22.8 0.0 1.5 21.1 19.0 (4.2) 19.8 (3.2) 102 (3) 102 (2) 76.9 (2.6) 77.6 (2.3)
22.6 0.0 1.9 17.3 18.9 (4.2) 19.5 (3.1) 101 (3) 102 (3) 74.7 (3.5) 75.1 (2.4)

Bonin et al. • Statistics of Contrast Gain Control J. Neurosci., June 7, 2006 • 26(23):6346 – 6353 • 6351



al., 2005; Zaghloul et al., 2005) and Gaussian noise (Chander and
Chichilnisky, 2001; Kim and Rieke, 2001; Baccus and Meister,
2002; Zaghloul et al., 2005). The stimuli have an intensity distri-
bution of fixed shape, so that varying their amplitude varies the
standard deviation, but does not vary higher moments. Studies
using more complex stimuli (Victor, 1987) did not explicitly test
the role of the various intensity statistics in setting gain.

Our results directly confirm the long-standing hypothesis that
the statistic driving contrast gain control is root-mean-square
contrast (Shapley and Victor, 1978, 1981; Benardete et al., 1992;
Benardete and Kaplan, 1999; Baccus and Meister, 2002; Bonin et
al., 2005; Zaghloul et al., 2005). In particular, they argue against
the proposal that contrast gain control might compute the abso-
lute deviations of light intensities rather than the square devia-
tions (Victor, 1987). Indeed, this measure of contrast is changed
from the control value of 19.2 cd/m 2 to the values of 21.1 or 17.3
cd/m 2 in the stimuli in which kurtosis is decreased or increased
(Table 1). If contrast gain control measured absolute deviations,
gain should have decreased when kurtosis was decreased and
increased when kurtosis was increased. Similarly, the results ar-
gue against the possibility that contrast gain control might mea-
sure the prevalence of the darkest and/or of the lightest pixels in
the image. This and other alternative computations would have
predicted a dependence of gain not only on standard deviation
but also on skewness or kurtosis.

Our results were similar for ON and OFF cells; we found no
bias for the positive and negative deviations from the mean that
are signaled by these cells. Rather than adapting to the limited
range of intensities that it signals, each cell adapts to the full range
of stimulus intensities. Therefore, the adaptive mechanism main-
tains without corruption the relative responses of the different
cell types. This is surprising because each pathway only has access
to a subset of the stimulus features and because there is limited
cross talk between the two pathways (Schiller, 1992; but see
Zaghloul et al., 2003). To compute root-mean-square contrast
without bias, the mechanism of contrast gain control might need
to integrate signals between the ON and OFF pathways.

The advantages to visual processing of this remarkably specific
computation are not known. Contrast gain control is thought to
help map the distribution of contrasts in natural scenes onto a
limited range of firing rates (Laughlin, 1981; Tadmor and Tol-
hurst, 2000; Schwartz and Simoncelli, 2001). Consistent with this
hypothesis, and in agreement with recent studies in retina
(Chander and Chichilnisky, 2001; Zaghloul et al., 2005) and LGN
(Bonin et al., 2005), we found the effects of contrast gain control
to be more pronounced in ON than in OFF cells. This asymmetry
might reflect ecological constraints because the distribution of
contrasts in the visual world is asymmetric (Ruderman, 1994;
Tadmor and Tolhurst, 2000; Frazor and Geisler, 2006). Still, it is
not entirely clear why the visual system would require a precise
computation of standard deviation.

Our results remove an important obstacle on the road to pre-
dicting LGN responses to arbitrary, complex stimuli, including
stimuli that would be encountered in nature. Although models
based on a fixed linear filter can predict the gist of LGN responses
to some complex stimuli (Dan et al., 1996), a fixed linear filter is
unlikely to perform well in predicting responses to natural im-
ages. Indeed, these images contain local variations in mean lumi-
nance and in contrast that must strongly engage the gain control
mechanisms (Mante et al., 2005; Frazor and Geisler, 2006). We
have recently characterized these gain control mechanisms, and
we have shown that incorporating them into a model of LGN
responses allows one to predict responses to a variety of stimuli,

such as gratings and sums of gratings (Bonin et al., 2005; Mante et
al., 2005). These previous results clarify the spatial extent of con-
trast gain control (Bonin et al., 2005) and the effect of contrast
gain control on response amplitude (Bonin et al., 2005) and time
course (Mante et al., 2005). They also clarify the spatial filtering
properties of contrast gain control, which differ strikingly from
those of the receptive field (Bonin et al., 2005). The measure of
contrast used to set gain is influenced by a broad range of spatial
frequencies, including very low frequencies to which LGN neu-
rons barely respond. To obtain a model that can be applied to
arbitrary images, however, one needs to know how to compute
the measure of contrast that drives the contrast gain control
mechanism. The results obtained here indicate that this quantity
is proportional to the local standard deviation of light intensities.

Our finding that the processing in LGN is invariant to stimu-
lus skewness indicates that the psychophysical results of Chubb et
al. (1994, 2004) are not attributable to contrast gain control in the
early visual system. As mentioned in the Introduction, from dis-
crimination tests such as the one illustrated in Figure 1, these
authors found evidence for three perceptual mechanisms, one
sensitive to the mean luminance, one sensitive to the standard
deviation, and one sensitive to asymmetries in the distribution of
light intensities (and in particular to the prevalence of the darkest
intensities). Our results indicate that contrast gain control in the
early visual system does not contribute to the third mechanism. A
possibility is that a neural correlate for such a mechanism is not
visible at the level of single cell responses. Another possibility is
that it is only visible in higher visual areas.

A limitation of our work is that we have concentrated on
contrast gain control, and therefore we have not considered the
effects of varying mean luminance. The effects of light adaptation
and contrast gain control, however, are functionally independent
(Mante et al., 2005); thus, the two mechanisms can be safely
studied separately. Our results, therefore, are likely to hold for a
range of mean light levels.

Another limitation of our work is that we have not considered
how the statistics of the stimulus influence the time course of the
responses. Contrast gain control not only affects the gain of the
responses but also their temporal dynamics (Shapley and Victor,
1978, 1981; Mante et al., 2005). We have looked for changes of
integration time accompanying the changes in gain but found no
significant effect. A possible explanation is that our estimates of
integration time are too coarse to reveal these variations (Pillow
and Simoncelli, 2003). Another possibility is that the changes in
dynamics occur at lower contrasts than could be tested with our
stimuli.

Moreover, we have not considered the dynamics of contrast
gain control, i.e., how a change in contrast at a given time can
influence gain at a later time. We cannot study these dynamics
here because in our stimuli, contrast was fixed through time. In
particular, we cannot distinguish fast components of contrast
gain control (Victor, 1987; Baccus and Meister, 2002; Zaghloul et
al., 2005) from slower components of contrast adaptation
(Chander and Chichilnisky, 2001; Kim and Rieke, 2001; Baccus
and Meister, 2002; Solomon et al., 2004).

Finally, our results leave open an important question: whether
the gain of LGN neurons depends on the phase spectrum of the
stimulus. Studies in retina (Smirnakis et al., 1997) and primary
visual cortex (Mechler et al., 2002; Felsen et al., 2005) suggest the
existence of nonlinear mechanisms sensitive to structure in the
spatial phase spectrum, e.g., as associated with edges or more
complex features. Our white noise stimuli are not ideal to test for
such mechanisms because they have a flat amplitude spectrum
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and a random phase spectrum and therefore do not allow inves-
tigation of the effects of second-order spatial statistics. The am-
plitude spectrum solely depends on second-order statistics such
as the standard deviation. The phase spectrum, instead, depends
on higher-order statistics such as skewness and kurtosis. By
changing skewness or kurtosis while holding standard deviation
constant, we have varied the phase spectrum from one random
distribution to another, while holding the amplitude spectrum
constant. Although response gain was not affected by these vari-
ations, it might be affected by manipulations that introduce spa-
tial structure, i.e., a nonrandom phase spectrum. This issue re-
mains open and thus requires further investigation.
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