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Abstract

New experiences can be memorized by modifying the synaptic efficacies. Old memories are partially
overwritten and hence forgotten when new memories are stored. The forgetting rate depends on the
number of synapses which are modified: networks in which many synapses are highly plastic and hence
change following each experience, are good at storing new memories but bad at retaining old ones. On
the contrary a small number of synaptic changes (rigid synapses) means good memory retention, but
poor performance at storing new memories. Recently Fusi, Drew and Abbott (2005), introduced a model
of a synapse which has a cascade of states, each characterized by a different degree of plasticity. Each
stimulus can modify the synaptic efficacy or induce a transition to a different state (metaplasticity). Such
a synapse combines the advantages of plastic synapses with those of more rigid synapses, outperforming
the models in which each synapse is characterized by a single predefined degree of plasticity. In that
work the authors assumed that each synapse was modified independently. Moreover, they estimated
the memory capacity by measuring the correlation between the synaptic configuration right after a
particular experience was stored, i.e. when the memory was still vivid, and the synaptic configuration
obtained after the synapses were exposed to a certain number of new experiences. The problem of how
this information is actually retrieved in a dynamic network of neurons was ignored. Here we consider a
two layer network in which input neurons are connected to output neurons through cascade synapses. In
our case and in the case of every network, different synapses turn out to be correlated even when storing
random and uncorrelated input and the output patterns. We analyze how the memory performance
depends on the statistics (sparseness) of the patterns to be memorized. Given that the sparseness of the
pattern can significantly reduce the number of synapses which are needed to be modified to store new
memories, is it still advantageous to have a cascade synapse with metaplasticity? We show that cascade
synapses have always a better memory performance.
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The model
We study a feed-forward input layer of N neurons connected by plastic synapses to a second
layer. A neuron can be either active with probability f or inactive with probability (1 − f).
We compare the memory performance of a synaptic model characterized by a single degree of
plasticity to the performance of the cascade synaptic model introduced in Fusi et al. (2005). The
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first synaptic model which we will name “non-cascade model” has been addressed in Amit and
Fusi (1994) and it has two stable states (depressed, potentiated). Each stimulus presentation
can induce a transition from one state to another according to the following learning rule: upon
pre- and post-synaptic activation a transition to the potentiated state occurs with probability
q+; if the pre- is active and the post-synaptic inactive, a transition to the depressed state occurs
with probability q−. q+, q− determine the degree of plasticity, i.e. the average number of modified
synapses upon each stimulus presentation. These quantities are directly related to the learning
and the forgetting rates (e.g. high q’s mean fast learning, and fast forgetting). The cascade model
has again two states of efficacy (depressed, potentiated), but the degree of plasticity depends on
the history of synaptic modifications. In particular each synapse is characterized by two chains
of n states which implement metaplasticity. All the states in a chain share the same efficacy.
When the synapse is in the potentiated state and the conditions for potentiation occur (pre
and post-synaptic neurons are active), the synapse makes a transition in the same chain to the
neighboring state which has a reduced degree of plasticity. Analogously, for depressed synapses
which should undergo further depression. In the cascade model the different degrees of plasticity
are implemented by introducing a probability qk that a transition from state k to state k+1 occur.
E.g. if the synapse is in a potentiated state, and a potentiation event occurs, then a transition to
the (k + 1)th potentiated state occurs with probability qk = 2k−1 (k = 1, ..., n). If a depression
event occurs, then a transition to the most plastic depressed state (k = 1) occurs again with
probability qk. The patterns to be stored determine the activity of the pre- and post-synaptic
neurons and hence the direction of the synaptic modification. We studied random uncorrelated
patterns. Each pattern is generated by choosing the activity of each neuron randomly. The
criterion for deciding whether a memorized pattern is retrievable or not is the same as the one
introduced in Amit and Fusi (1994). We start from the equilibrium distribution of the synapses.
We then present one specific pattern and we memorize it. We characterize its strength after an
arbitrary number of other pattern presentations by computing its signal to noise ratio (S/N).

Results
We study the case in which the average number of potentiating events equals the average number
of depressing events which implies q− = fq+/(1 − f). We first compute the noise in the non-
cascade and in the cascade models. We separate two components of the noise. The first denoted
as uncorrelated, is the noise that we would have in the case in which all synapses were modified
independently: 1

N

[
〈J2
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]
. The second is due to the correlations emerging from the

fact that pairs of synapses on the same dendritic tree share the same post-synaptic neuron:
N−1

N
[〈JjJkξjξk〉 − 〈Jjξj〉2]. We compared the cascade vs non-cascade models in the case which

mostly favors the memory performance of non-cascade models, i.e. the case in which the coding
level is minimal and it scales with N as f = α log(N)/N (α = 0.43).
In Fig.1(a) we plot the noise components (correlated component - black line - and the uncorrelated
component - light gray line) as a function of the number of presynaptic neurons together with
their sum (dark gray line) for the binary (dashed lines) and cascade model (solid lines) as a
function of N . The total noise of the cascade model is not visible since on this log-scale axis it
falls behind the plot of the uncorrelated noise.
We then compare the signal to noise ratio (S/N) for the cascade model and two non-cascade
models. The first one has q+ = 1, and hence it is good at storing new memories but bad at
retaining the old ones. The second one has q+ = qL, where qL is the smallest probability of the
cascade model. So it is good at retaining but bad at storing. In fig.1(b) we present the behavior

2



of the three models (cascade (solid line) non-cascade q+ = 1 (dashed line) non-cascade q+ = 1
(dot-dashed line))for various f = {0.03, 0.0046} when N = {40, 600} as a function of the number
of presented patterns p. Imagine now to draw an horizontal line at the initial S/N of the cascade
divided by 100 for each triplet of curves sharing the same f . The crossing points between this
threshold and the curves are defined as the critical capacity points pcrit. In fig.1(c) we present the
trend of pcrit. In fig.1(d) we compare furthermore the initial S/N for the same points in fig.1(c).
The cascade model results to be the best compromise when compared to the best performing
non-cascade models in terms of (1) initial S/N (q+ = 1) and (2) long memory lifetime (q+ = qL).
The initial S/N of the cascade is closer to the first non-cascade model of q+ = 1 and still being
outperforming in retaining memories compared to the second non-cascade model.
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Fig. 1. (a) Noise components of the cascade Vs. non-cascade model as a function of N . (b) S/N of the
Cascade model compared to the two non-cascade models as a function of p. (c) Capacity of the three
models as a function of f . (d) Initial S/N for the curves in (c) as a function of the coding level f . In all
the panels the coding level scales as f = .43 log(N)/N , see text for details
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