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Hipp, Joerg, Ehsan Arabzadeh, Erik Zorzin, Jorg Conradt, Chris-
toph Kayser, Mathew E. Diamond, and Peter König. Texture signals
in whisker vibrations. J Neurophysiol 95: 1792–1799, 2006. First pub-
lished December 7, 2005; doi:10.1152/jn.01104.2005. Rodents excel in
making texture judgments by sweeping their whiskers across a surface.
Here we aimed to identify the signals present in whisker vibrations that
give rise to such fine sensory discriminations. First, we used sensors to
capture vibration signals in metal whiskers during active whisking of an
artificial system and in natural whiskers during whisking of rats in vivo.
Then we developed a classification algorithm that successfully matched
the vibration frequency spectra of single trials to the texture that induced
it. For artificial whiskers, the algorithm correctly identified one texture of
eight alternatives on 40% of trials; for in vivo natural whiskers, the
algorithm correctly identified one texture of five alternatives on 80% of
trials. Finally, we asked which were the key discriminative features of the
vibration spectra. Under both artificial and natural conditions, the com-
bination of two features accounted for most of the information: The
modulation power—the power of the part of the whisker movement
representing the modulation due to the texture surface—increased with
the coarseness of the texture; the modulation centroid—a measure related
to the center of gravity within the power spectrum—decreased with the
coarseness of the texture. Indeed, restricting the signal to these two
parameters led to performance three-fourths as high as the full spectra.
Because earlier work showed that modulation power and centroid are
directly related to neuronal responses in the whisker pathway, we con-
clude that the biological system optimally extracts vibration features to
permit texture classification.

I N T R O D U C T I O N

The whiskers are one of the principal sources of sensory
information for rodents; a conspicuous and specialized sensory
pathway has evolved to process vibrissal signals. Since the
discovery of rodent barrel cortex (Woolsey and Van der Loos
1970), great strides have been made in understanding the
relationship between the circuitry and the physiological prop-
erties of neurons (Armstrong-James and Fox 1987; Brecht et
al. 2003; Staiger et al. 2004). In the last few years, research has
begun to turn to another aspect of sensory processing: how
does neuronal activity represent the real physical objects with
which the animal interacts? Through active movement of their
whiskers, rats are able to discriminate the shape of small
objects, the aperture size of openings, and the distance and
location of objects (Brecht et al. 1997; Hutson and Masterton
1986; Krupa et al. 2001). An additional sensory capacity, the
focus of the present work, is the discrimination of the surface

features of objects; rats can judge the depth and distance
between ridges as well as the coarseness of textures (Carvell
and Simons 1990, 1995; Guic-Robles et al. 1989). Indeed,
when making a texture discrimination by sweeping their whis-
kers across a surface, rats demonstrate discriminative capaci-
ties that rival or exceed those of humans using their fingertips.
Here we aim to identify the signals present in whisker move-
ment that give rise to such fine sensory discriminations.

The nature of the signals present in the whiskers is of interest
for several reasons. First, whiskers carry out a signal transforma-
tion, acting as the interface between external objects and sensory
receptor neurons. Whereas in visual system it is readily apparent
that sensory receptors transduce the energy of photons, such a
straightforward statement cannot be made for the whisker sensory
system. To probe a texture, rodents actively move their whiskers
at a frequency of �5–12 Hz (Carvell and Simons 1990, 1995;
Harvey et al. 2001). Signals arising from contact with the object
surface are conducted toward the follicle, where the primary
sensory neurons are situated. In this process, the mechanical
properties of whiskers modify the signals in ways that are only
recently beginning to be understood (Fend et al. 2003; Hartmann
et al. 2003; Neimark et al. 2003). Second, the features of the
signals that reach the whisker follicle can give us indications of
what to expect in neuronal processing. If sensory processing
mechanisms have evolved to take advantage of the most infor-
mative features of the physical signal, then identifying those
informative features will lead us to more precise hypotheses about
neuronal processing mechanisms.

In this study, we investigate which features of the whisker
movements are best suited for the discrimination of textures.
We use a hardware model of a whisker system as well as in
vivo measurements of rat whiskers. Applying a classification
algorithm to the power spectra of whisker movements, we
identify vibration features which could be extracted to support
optimal performance. This leads to a model of texture discrim-
ination that is, we argue, corroborated by recent electrophysi-
ological experiments (Arabzadeh et al. 2005).

M E T H O D S

Hardware model

RECORDING SETUP. To probe textures, rodents actively move their
whiskers across them. We simulated this process using metal whiskers
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(steel wire, Fig. 1A; Small Parts, Miami Lakes, FL) fixed at one end
to a sensor head (Fig. 1, B and C), which was mounted perpendicu-
larly to the rotation axis (Fig. 1, B and C). With the use of a servo
motor (Digital Servo S9251, Futaba, Huntsville, AL), the whisker
could be swept back and forth (Fig. 1B). The motor was controlled by
a microprocessor (Atmega163, Atmel, San Jose, CA) interfaced via a
serial port to a PC. The whisking frequency was set to 1 Hz, where
one sinusoidal cycle was a complete back-and-forth movement.

The texture of interest was placed in front of and orthogonal to the
whisker (Fig. 1B). A miniature magnetic field sensor (KMZ51 Philips,
Philips-Semiconductors, Eindhoven Netherlands), attached near the
base of the whisker, recorded the distortions of the magnetic field
induced by the movements of the whisker (Fig. 1, B and C). The motor
position was measured via a potentiometer (variable resistor).
Motor position and the deflection of the whisker were digitized
(National Instruments DAQCard-6036E, Austin, TX) at a sampling
rate of 4,000 Hz.

ARTIFICIAL WHISKERS. The set of artificial whiskers consisted of 4
metal whiskers with the same diameter (0.305 mm) but different
length (W94: 94 mm; W88: 88 mm; W77: 77 mm; W73: 73 mm). To
determine the fundamental resonance frequencies and the damping
coefficients as two characteristic features for each whisker, we fixed
one end and then deflected and released the free tip, fitting a damped

oscillation to the resulting motion. The resonance frequencies of the
whiskers under these conditions ranged from 20 to 40 Hz (W94: 23.9
Hz; W88: 27.2 Hz; W77: 35.3 Hz; W73: 40.1 Hz) and the damping
coefficient was 1.1 � 0.15 (SD) s for all whiskers. However, these
values do not apply to the more complex boundary condition that
occurred while sweeping a whisker across a texture; in that case, the
whisker was partly fixed at the “free” end.

TEXTURES. We recorded whisker movements across eight sandpa-
pers of different coarseness. Coarseness is routinely defined by the P
value, a standard measure of grain size and density (http://www.
fepa-abrasives.org/). The eight sandpapers (and average grain diam-
eter) were P40 (425 �m), P60 (269 �m), P80 (201 �m), P100 (162
�m), P120 (125 �m), P150 (100 �m), P180 (82 �m), and P240 (58.5
�m).

PROCESSING OF METAL WHISKER SIGNALS. Whisker movement re-
sulted in a superposition of the deflection signal and the earth
magnetic field. To correct for the earth magnetic field, we measured
its contribution at each motor position and subtracted it from the total
recorded signal. In one whisking cycle, a whisker moved across the
surface two times, analogous to the protraction/retraction cycle in
natural whisking. Around the inflection points, where the movement
direction reversed, the metal whiskers did not contact the texture but

FIG. 1. A: metal whisker provided with little magnets. B:
metal whisker recording setup. C: sensor head with magnetic
sensor and attached metal whisker. D: time course of whisker
(W73) signal on the finest (P240, black) and the coarsest
(P40, gray) sandpaper and the motor position (dotted line). E:
in vivo recording setup. F: 2 textures (sandpapers P280 and
P400). G: whisker movement signals on 2 sandpapers (P280,
gray; P400, black). The shaded areas in F and G indicate the
intervals when the whiskers are sweeping across the texture.
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oscillated at their resonance frequency (Fig. 1D). Using motor posi-
tion as a reference, we discarded these segments and selected those
when the whisker touched the texture (gray shading, Fig. 1D). We
refer to these as sweeps. The two directions were treated separately
and gave equivalent results; analyses are based on sweeps in one
direction only. After low-pass filtering (150 Hz; chebyshev type II
filter of 5th order) and subtracting a polynomial of third order, we
applied a Hanning window (raised cosine window) and zero padding
(adding zeros in the temporal domain to increase the frequency
resolution), and then calculated the power spectra.

In vivo recording

RECORDING SETUP. The data were originally collected as described
in Arabzadeh et al. (2005). Experiments were conducted in accor-
dance with National Institutes of Health and institutional standards for
the care and use of animals in research. Subjects were 10 adult male
250 to 350 g Wistar rats anesthetized with urethan (1.5 g/kg), and data
are presented from one case with the most complete stimulus set; the
whisker in this dataset was C3. “Electrical whisking ” (Brown and
Waite 1974; Szwed et al. 2003) was generated by stimulating the right
facial nerve (Fig. 1E) with 1 to 2 V pulses of 100 �s at 200 Hz for 60
ms to produce whisker protraction, followed by a passive 65 ms
whisker retraction (also see Fig. 1 in Arabzadeh et al. 2005). The
angle traversed at the whisker base, averaged across all trials and all
textures, was 25 � 6.1° (mean � SD). Horizontal and vertical
movements at the base were registered by a two-channel optical
sensor, each channel consisting of a light-emitting diode (LED) light
source and phototransistor. The two voltage signals were digitized
(7,634 samples/s). Whisker movement was recorded in contact with
five surfaces of different coarseness for 10 min each [compact disk
and 4 sandpapers: P1200 (15.3 �m), P400 (35.0 �m), P280 (52.2
�m), P100 (162 �m); Fig. 1F illustrates P280 and P400].

PROCESSING OF IN VIVO WHISKER SIGNALS. We examined the prin-
cipal direction of whisker movement, corresponding to the horizontal
forward- backward axis. Movement in this axis contained all the
texture-specific signals (Arabzadeh et al. 2005) and allowed an anal-
ysis in one dimension, similar to that of the metal whiskers (Fig. 1G).
We extracted 300 protraction and retraction segments for each texture
(illustrated by gray backgrounds in Fig. 1G). After band-pass filtering
(cut off frequency 30 Hz, 150 Hz; chebyshev type II filter of 5th
order), we applied a Hanning window, zero padding, and then calcu-
lated the power spectra.

Classification

The whisker movements in each sweep across a texture were
characterized by their power spectrum, a good representation of
whisker kinetics (see Fig. 1, Arabzadeh et al. 2005). However, the
frequency resolution and the wide frequency band investigated
yielded vectors of several hundred dimensions, unsuitable for classi-
fication. To estimate the classification performance supported by
whisker movements’ power spectrum, we reduced the dimensionality
of the data using the generalization of Fisher’s linear discriminant to
multi dimensions (Fisher transform), applied density estimation, max-
imum likelihood classification and then documented the results as
hit-matrices, fraction correct classified and mutual information. The
steps are next described in detail.

GENERALIZATION OF FISHER’S LINEAR DISCRIMINANT (FISHER

TRANSFORM). The Fisher transform finds a linear projection such
that the classes are best separated (Bishop 1995). This is achieved by
maximizing the product of the between-class scatter matrix (SB) and
the inverse of the within-class scatter matrix (SW)

SB � �
t

nt(�t � �) � ��t � ��T (1)

SW � �
t

�
s�t

�xs
t � �t� � �xs

t � �t�
T (2)

where t is the texture class index (8 classes for metal whiskers and 5
for the rat whisker); nt is the number of samples in class t; xs

t is the sth
sweep from texture class t; �t is the mean of class t and � is the mean
over all sweeps. In this notation, we use column vectors and T

indicates the transpose. We refer to this transform as Fisher
transform.

PARAMETRIC DENSITY ESTIMATION. We approximated the proba-
bility distribution of feature vectors pertaining to each texture class by
a multi-dimensional Gaussian (n dimensions). Given a set of feature
vectors xs

t , e.g., the vector components after the Fisher transform,
relating to texture t and sweep s, we computed the class specific means
�t and covariance matrices �t. This yields an estimation of the
probability distribution of the feature vectors for each class

pt�x� �
1

� �2��n � det��t�
� e�

1
2 �x��t�

�t
�1

�x��t�T
(3)

CLASS ASSIGNMENT. For classification, we randomly select two
disjoint subsets: 100 sweeps for the metal whisker data, 150 sweeps
for in vivo data. One subset was used to compute the Fisher transform
and to estimate the class probability densities (training). The second
subset was used to measure performance. Each sample feature vector
of the validation set was then assigned to the texture class with the
maximum likelihood

c��t
s� �

arg max
t

�pt��t
s�� (4)

Classification results were visualized as a hit-matrix (H), which
contained for each sweep from texture class t � i the probability of
being assigned to a class c � j

Hi,j � w�c � j�t � i� (5)

To quantify the classification performance as a single value, we
computed the fraction of correctly classified sweeps

C�H� �

�
i

Hi,i

�
i

�
j

Hi,j

(6)

To compare classification performance of samples from m different
textures (chance level: 1/m) under two different conditions C1, C2, we
evaluated the relative performance (R) and the relative performance
gain (G � R � 1)

R �
C2 � 1/m

C1 � 1/m
(7)

Additionally, we measured the mutual information

I�H� � �
i�1

m �
j�1

m

w�t � j� � Hi,j � log2� Hi,j

w�c � j�
� (8)

The value of I(H) is in bits.
All data processing was in MATLAB (http://www.mathworks.

com).

R E S U L T S

We first illustrate texture-induced vibrations in the hardware
model of the whisker system and introduce a spectral analysis
algorithm that yields good classification performance. We then
uncover two features of whisker vibration that, by themselves,
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can support a high level of discrimination performance. Fi-
nally, we apply this same simple signal processing algorithm to
the data obtained in vivo.

Texture-induced vibrations in the hardware model

We analyzed two blocks (B1, B2) of 100 sweeps for each of
the eight textures (1–8) and four whiskers (W94, W88, W77,
W73) summing to a total of 6,400 sweeps. An example of two
sweeps of the shortest whisker (W73) across the coarsest (8,
P40) and the finest sandpaper (1, P240) is shown in Fig. 1D.
The gray shading indicates the period of interest, where the
whisker contacted the texture. In Fig. 2, additional stages of
signal analysis are shown for whisks on texture 8. The bending
of the metal whisker during the sweep becomes evident (Fig.
2A, slow shift in red signal); it can be approximated well by a
third-order polynomial (Fig. 2A, black curve). Because the
slow bending parameters were characteristic of a given whisker
and its position relative to the texture but not the texture
surface, this signal was extracted and was not further analyzed.
Once the texture-independent bending was subtracted from the
raw signal, the residual signal contained higher frequency
components (Fig. 2A, green signal). The power spectrum of the
raw signal is illustrated in Fig. 2B by the red line. The spectrum
is also shown broken down into its components: the bending
signal (texture-nonspecific) composed of very large power at
frequencies up to �20 Hz (Fig. 2B, black area) and the residual
signal (Fig. 2B, green plot). Thus the separation into bending
and residual components corresponded to low- and high-pass
filtering, respectively, of the total signal. The peak correspond-
ing to the strongest component in the power spectrum is
marked by a blue asterisk. To what extent does the peak of the
power spectrum reflect the characteristics of the raw signal? To
answer this question, the inset of Fig. 2B shows the residual
signal (green trace, carried over from A) overlaid (blue trace)
by the 27-Hz predominant frequency component in the signal.
This illustrates how the peak value of the power spectrum
(asterisk) captured the critical temporal patterns within the raw
signal.

Figure 2C shows the average power spectra of the residual
signal for four different metal whiskers applied to the coarsest
texture (8). The shape of the power spectrum was similar,
qualitatively, across all whiskers. More than 98% of total
power (90% of the residual power) was within the range of 0
to 150 Hz. To summarize, three components of the total signal
were excluded: oscillations occurring when the whisker was
not in contact with the texture, very low-frequency movements
caused by whisker bending, and very high-frequency vibra-
tions (�150 Hz) containing 	2% of the total signal power.

Subsequent analysis therefore focuses on the possible texture
information carried by the modulation power spectrum at
frequencies �150 Hz.

Quantifying texture discrimination performance

To quantify the performance we randomly chose distinct
subsets of 100 sweeps for training and validation. The param-
eters for classification were established on the training set. The
performance was than evaluated on the validation set (see
METHODS). This process was repeated 20 times. Classification is
documented by hit-matrices, correct classification percentage,
and mutual information.

Overall, classification performance among eight textures
using the modulation power spectrum was �39% correct
(chance performance � 12.5%) with a mutual information of
0.83 bits (upper limit � 3 bits). Performance also varied
slightly across whiskers (W94: 36%; W88: 40%; W77: 36%;
and W73: 47%). The SD of the classification across repeated
tests was low (maximum: �3%), indicating the robustness of
the classification algorithm. The hit-matrices (Fig. 3A) reveal
that misclassification mainly resulted from confusing textures
of similar coarseness. Averaging of all whiskers (Fig. 3B)
shows that 47% of all errors arose from confusing neighboring
textures (chance: 25%). The total number of neighbors with a
certain distance decreases with the distance (e.g., 14 neighbors
of distance 1 but just 2 neighbors of distance 7); to account for
this, in Fig. 3C, we show mean error probability for each
distance. Chance corresponds to equally distributed errors
(dotted line). This reveals that the classifier extracted coarse-

A B C FIG. 2. Properties of whisker vibrations. A:
sweep of the shortest whisker (W73) across the
coarsest sandpaper (P40). The shaded area in-
dicates the interval when the whisker is sweep-
ing across the texture. The whisker movement
(red) is separated into the contribution of bend-
ing (black) and modulated part (green). B:
power spectrum of the trial shown in A with
whisker movement (red), bending (black), and
modulation (green). C: average power spectra
across all sweeps for all whiskers across the
coarsest texture (texture: P40, W94: black;
W88: dark gray; W77: gray; W73: light gray).

B

A

C

FIG. 3. Classification: metal whiskers. A: hit matrices and classification
performance for all artificial whiskers. The hit matrices illustrate the proba-
bility of assigning a certain texture stimulus (y axis) to a specific texture class
(x axis). The textures are sorted by their coarseness (1, fine, to 8, coarse).
Correct classifications fall on the diagonal; confusion of neighboring textures
on the coarseness scale (e.g., confusion of 1 and 2) falls on the first off-
diagonals, etc. Thus the hit matrices represent correct discriminations as well
as the distribution of the classification error. B: average of hit matrices in A. C:
distribution of the distance between assigned texture and actual texture on the
coarseness scale. The values are corrected for the fact that there are fewer
distant than close neighbors. Error bars indicate the SD across whiskers.
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ness of the surfaces, capturing the inherent order in this feature.
In other words, the power spectrum classifier was measuring
the P rating of each texture. Discriminating between just the
coarsest and finest textures (8 and 1) yielded a performance
of 93% and a mutual information of 0.69 bits (upper limit �
1 bit). Thus the information in the modulation power spec-
trum of one sweep with one whisker was sufficient to
support above-chance discrimination between textures of
similar coarseness and to reliably discriminate between a
coarse and a fine texture.

Spatial and temporal integration of information

Behavioral studies reveal that rats, while probing textures in
a discrimination task, contact the surface with many whiskers
over several whisking cycles (Carvell and Simons 1990). Thus
rats might normally reach optimal performance by combining
the signals from different whiskers (spatial integration), while
collecting data over time (temporal integration). To learn more
about how performance could be improved through spatial and
temporal integration, we combined the signals acquired from
multiple whiskers and multiple sweeps. With a single whisker,
the performance using two, three, and four sweeps was 48 � 6,
55 � 6, and 59 � 6%, respectively. This corresponds to a
relative performance increase (see METHODS) of 29, 55, and
69% compared with that of a single sweep. Thus increasing the
number of whisking cycles is a potentially powerful way to
increase the performance.

We also measured the classification performance using sev-
eral sweeps from distinct whisker/direction combinations. For
four whiskers and two directions there exist 28, 56, and 70
possible combinations of two, three, and four sweeps, respec-
tively. The average performance was 50 � 4, 57 � 4, and 62 �
5% corresponding to a relative performance increase of 36, 62,
and 80% compared with a single sweep. Similarly to temporal
integration, each additional whisker added progressively less
performance improvement. However, the average performance
increase achieved by spatial integration was greater than that
achieved by temporal integration.

Features of the power spectrum that support
texture discriminability

In the previous section, we illustrated classification perfor-
mance based on the complete modulation power spectrum over
the range 20–150 Hz. Next, we investigated whether some
subset of spectral features was particularly relevant in the
classification process. The approach was to look for the tex-
ture-specific differences in the power spectra. We compared
the power spectra averaged over all sweeps (shortest whisker:
W73, Fig. 4A). The most evident texture-related difference was
the total modulation power in the signal, i.e., the area below the
curves. Vibrations induced by coarse textures had high mod-
ulation power, while vibrations induced by fine textures had
low modulation power. To look for other potentially informa-
tive features, we then normalized the area under the curve of all
the spectra, thereby excluding modulation power as a feature
(Fig. 4B). After this normalization, the peak of the power
spectrum emerged as an informative feature: it was at low
frequencies for coarse textures and at higher frequencies for
fine textures. This could result from the whiskers performing
many small jumps while sweeping across a fine texture and
fewer, larger jumps across coarse textures. We quantified this
feature as the modulation centroid

Modulation Centroid � 
�X�f��2 � f ndf �
n�2


�f � X(f)�2df � 
�V(f)�2df

where X(f) and V(f) are the Fourier transform of the modulation
signal and its velocity. For n � 1, this corresponds to the center
of gravity of the power spectrum. However, we used n � 2 as
this corresponds to the power in the velocity signal, a quantity
which is easy to extract. In Fig. 4C all sweeps of W73 are
shown in the space spanned by the modulation power and
centroid; color identifies the sandpaper. The signals from the
coarsest and the finest sandpapers can be clearly discriminated,
while signals from neighboring textures are partially overlap-
ping. Thus a high capacity for texture discrimination appears to
be supported by the reduction of the full power spectrum to just
two features, power and centroid. This key finding was general
to the other metal whiskers.

A B C

D E F

FIG. 4. Meaningful features. Power spec-
tra of movements of the shortest metal whis-
ker (W73, A–C) and the real whisker (D–F)
across different textures is shown color coded,
A and D: Average power spectrum of modu-
lation part shown for all sandpapers individu-
ally. B and E: normalized average power spec-
trum of the modulation part for all sandpapers.
C and F: modulation power and centroid of all
sweeps. See results for details.
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Next, we quantified the fraction of the classification perfor-
mance the two features of interest conveyed, relative to the
whole spectrum. Performance was tested for each feature
singly and for both features together 20 times. The average
classification performance using the modulation power alone,
modulated centroid alone, and both, were 29 � 6, 23 � 3, and
32 � 6%, respectively. This should be compared with the
performance using the whole power spectrum, 39%. The rel-
ative performance (Eq. 7) is 62, 40, and 74%, respectively.
Thus the modulation power and modulation centroid together
can account for about three-fourths of the total information
available.

Texture signals in rat whisker vibrations

We now turn to the whisker signals recorded during whisk-
ing in anesthetized rats (Fig. 1, E–G). We used 300 whisks
across each of five textures of different coarseness (see Fig. 1G
for example traces). Similar to the artificial whisker, we ex-
tracted the modulation signal by high-pass filtering the whisker
movement signal. We separated the protraction and retraction
phases of each whisk (Fig. 1G, gray shadings) and performed
the complete analysis for both phases. Results were qualita-
tively similar for the two phases, although discrimination
performance was slightly lower for the protraction phase. This
can be understood by the more structured whisker velocity
profile in retraction compared with protraction (see Fig. 1G and
Fig. 1B in Arabzadeh et al. 2005). For these reasons, here we
concentrate on the whisker retraction results.

Figure 4D shows the average power spectrum of the retrac-
tion phase for all five textures. The plotted part of the spectrum
(30–150 Hz) covers most of the power (�90%). Just as for the
artificial whiskers, the modulation power increased with the
coarseness of the texture, whereas the modulation centroid in
the normalized power spectrum (Fig. 4E) decreased with the
coarseness of the texture. Figure 4F shows all sweeps from
each texture and the texture means in the space spanned by
modulation power and modulation centroid. Except for neigh-
boring textures on the coarseness scale, the sweeps were well
separated.

To quantify the reliability afforded by power and centroid,
we compared the classification performance based on the
whole power spectrum to the classification performance based
on just these two features. More precisely, we split the 300
sweeps across each texture randomly into training and valida-
tion sets of 150 sweeps each. The classification was performed
20 times, and the mean � SD of correct performance were
derived. Using the whole power spectrum, the performance
was 91 � 1%, whereas using the modulation power and
centroid yielded 78 � 1% correct classified. The modulation
power and centroid thus captured, by themselves, 83% of the
texture discrimination performance available in the whole
power spectrum.

Model of signal processing in the somatosensory system

Motivated by the finding that approximately three-fourths
(�80% for real whiskers) of the texture information could be
captured by the modulation power and centroid, we propose a
model for simple and rapid texture discrimination applicable to
both the metal whiskers and the natural whiskers (Fig. 5). First,

the signal is band-pass filtered to extract the relevant modula-
tion signal (in the case of metal whisker: �20 and 150 Hz
cut-off frequencies, real whisker: 30 and 150 Hz cut-off fre-
quencies). Measuring the power in the band-pass filtered signal
gives the modulation power. In parallel, the temporal deriva-
tive of the band-pass filtered signal is taken, which corresponds
to multiplication of the power spectrum by f 2. Determining the
power of the velocity signal and normalizing it by the total
power in the high pass filtered signal yields the modulation
centroid. Thus the main features contributing to texture dis-
crimination, under these experimental conditions, can be ex-
tracted by three simple operations: band-pass filtering, tempo-
ral differentiation and normalization. In the DISCUSSION, we will
explore the possibility that neuronal activity observed in the rat
whisker sensory system (Arabzadeh et al. 2005) is a represen-
tation of these two whisker vibration features.

D I S C U S S I O N

As a rodent palpates an object, what signals are transmitted
from the whisker shaft to the sensory receptor neuron to initiate
the process of sensory discrimination? In the present study, the
whisker vibration frequency power spectrum obtained from
single sweeps permitted our classification algorithm to cor-
rectly decode the contacted texture from among textures of
varying coarseness on �80% of trials for real whiskers and
40% for metal whiskers. As shown for the metal whiskers, this
performance can be improved by combining the signals from
different whiskers (spatial integration) and by collecting data
over several sweeps (temporal integration). Because sensory
systems may optimize discriminations by transmitting only the
most relevant stimulus features to the brain, we asked whether
the power spectrum could be reduced to some fundamental
features while still allowing reliable classification. The modu-
lation power—the power of the part of the whisker movement
representing the modulation due to the texture surface—in-
creased with the coarseness of the texture. The modulation
centroid, a measure related to the center of gravity within the
power spectrum, decreased with the coarseness of the texture.
After condensing the power spectrum to modulation power and
modulation centroid, the classification algorithm retained ap-
proximately three-fourths of its discriminative performance.
Thus as few as two features of whisker movements carried the
bulk of the information necessary to discriminate among can-
didate textures.

We analyzed two different types of whiskers, metal whiskers
and rat whiskers, in vivo. Metal whiskers provided a controlled
setup to allow highly reproducible recording of whisker move-
ments. In contrast to real whiskers, metal whiskers do not
change their properties due to abrasion or ageing and are
unaffected by changes in humidity or temperature. Therefore
they are more applicable to artificial sensing systems. On the
other hand, the in vivo setup aimed at providing realistic

FIG. 5. Evaluation of modulation power and modulation centroid by a
combination of band-pass filters (including temporal derivative) and a division
operation. *, link to physiological experiments (see DISCUSSION).
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natural signals, simulating the whisker movements in the living
animal. However, it should be noted that the whisker move-
ments induced by electrical whisking differ from those in
awake behaving animals. For instance, in awake animals, the
whisker kinetics might be affected by the muscle force applied
to the follicle; moreover, the sensory signals picked up by the
whiskers appear to lead to rapid modulation of the motor
output (Ahissar and Kleinfeld 2003).

For the metal whisker setup, we used eight relatively similar
sandpapers, therefore creating a difficult classification prob-
lem. In contrast, for the real whisker setup, we used five
different textures with more pronounced differences. A direct
quantitative comparison of the performance is therefore not
possible. Moreover, in both conditions, we measured the per-
cent of correct discriminations among a large number of
textures; in behavioral situations, discriminations are com-
monly made between just two possible stimuli (e.g., forced
choice paradigm). Percent correct would be much higher if
discriminations were considered between stimulus pairs (also
see the following text).

Regardless of the exact parameters of the stimulus set, the
fact that the general findings are true for both a natural whisker
in vivo and a metal whisker suggests that a whisker need not
possess special mechanical properties to generate texture-spe-
cific vibrations. Indeed for whiskers of widely differing prop-
erties, the sensory system could discriminate textures by per-
forming band-pass filtering (including temporal derivatives)
and division operations.

Emerging picture of texture discrimination

To discriminate textures, rodents use active whisking. Pre-
vious studies that analyzed the properties of whisker vibrations
used passive stimulation of whiskers (Arabzadeh et al. 2003,
2004, Hartmann et al. 2003; Neimark et al. 2003). Passive
stimulation by a piezoelectric wafer or by a rotating drum has
the great advantage of characterizing the system in a steady
state. However, potentially important properties of active
whisking are neglected, such as the continuous change in
geometry of the whisker relative to the texture. Furthermore,
under more natural whisking conditions, the contact point of
the whisker with the surface and the forces at the contact point
are likely to change continuously, producing a dynamic mod-
ulation of the mechanical properties of the system. Here, the
whiskers were moved forth and back across textures in an
attempt to mimic the dynamics of natural whisking.

The general picture that emerges from the present experi-
ments is that large quantities of information can be introduced
into the sensory system through a single whisker. Consistent
with this proposal, behavioral experiments demonstrate that the
performance of rats in a difficult texture discrimination task
remains intact even when the whiskers are clipped from the
normal complement of �30 down to 2 (Carvell and Simons
1995). Our results do not rule out the possibility that rats
exploit the gradient of mechanical properties across the whis-
ker array, as proposed in the “resonance frequency hypothesis”
(Andermann et al. 2004; Hartmann et al. 2003; Metha and
Kleinfeld 2004; Moore 2004; Neimark et al. 2003). However,
we did not observe prominent resonance frequencies within the
analyzed range that carried most power (�150 Hz). This might

be due to the difference between active and passive whisking
discussed in the preceding text.

Relation to behavioral evidence

How does the observed classification performance compare
with other available behavioral evidence? In many texture-
discrimination tasks, rats decided where to continue at a Y
junction based on texture cues (Carvell and Simons 1990;
Guic-Robles et al. 1989). In these experiments, the decision
was based on a stimulus set of two textures appearing with
equal probability, which corresponds to a maximum available
information of 1 bit. The difference of the texture cues ranged
from smooth surface versus surface with 30-�m grooves
spaced 90 �m (Carvell and Simons 1990) to two sandpapers
with grain diameters of 400 versus 2,000 �m (Guic-Robles et
al. 1989). The behavioral performance discriminating such
stimuli was 85% in both studies. The artificial whisker set up
in the present study used eight sandpapers with grain diameters
ranging from 59 to 425 �m, whereas the four sandpapers and
the compact disc in the in vivo recording ranged from smooth
(no structure) to 162-�m grains. For a direct comparison, we
consider the discrimination performance for the most extreme
stimuli. Using the model based on modulation power and
centroid on the movements of one whisker in a single trial to
classify the coarsest from the finest sandpaper, we observe an
average performance of 89% with the artificial whisker and a
performance of 95% with the rat whisker. Thus the behavioral
performance of the rats is compatible with the results of the
simple model proposed here.

Relation to electrophysiological evidence

Many electrophysiological experiments have been per-
formed to reveal the encoding and transformation of whisker
deflections along the whisker pathway from the primary stage,
the trigeminal ganglion neurons, to barrel cortex. Trigeminal
ganglion neurons reliably encode the kinetics of the whisker
movement at a very high temporal resolution (Arabzadeh et al.
2005; Deschenes et al. 2003; Gibson and Welker 1983a,b;
Lichtenstein et al. 1990; Shoykhet et al. 2000). More specifi-
cally, how does electrophysiological evidence from the whis-
ker system relate to the two features, modulation power and
centroid? Neurons in the trigeminal ganglion and the barrel
cortex of anesthetized rats, when presented with the stimulus
set analyzed here, encoded the “equivalent noise level” (ENL)
of the texture-induced vibration in their mean firing rates. The
neurons encoded the temporal structure of the vibration—the
time difference between the high-velocity events—by a match-
ing response probability profile (Arabzadeh et al. 2005). The
ENL is mathematically analogous to the product of modulation
power and modulation centroid (Fig. 5, *) and could be
extracted by upstream neurons via spike count of barrel cortex
populations across the whisker sweep.

In summary, the recent electrophysiological experiments
support the view that the modulation power and modulation
centroid are reflected in neuronal activity and could be ex-
tracted explicitly by neurons upstream of barrel cortex.
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