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Abstract Invariant object recognition is arguably one of the
major challenges for contemporary machine vision systems.
In contrast, the mammalian visual system performs this task
virtually effortlessly. How can we exploit our knowledge
on the biological system to improve artificial systems? Our
understanding of the mammalian early visual system has been
augmented by the discovery that general coding principles
could explain many aspects of neuronal response properties.
How can such schemes be transferred to system level per-
formance? In the present study we train cells on a particu-
lar variant of the general principle of temporal coherence,
the “stability” objective. These cells are trained on unlabeled
real-world images without a teaching signal. We show that af-
ter training, the cells form a representation thatis largely inde-
pendent of the viewpoint from which the stimulus is looked
at. This finding includes generalization to previously unseen
viewpoints. The achieved representation is better suited for
view-point invariant object classification than the cells’ input
patterns. This property to facilitate view-point invariant clas-
sification is maintained even if training and classification take
place in the presence of an —also unlabeled — distractor object.
In summary, here we show that unsupervised learning using a
general coding principle facilitates the classification of real-
world objects, that are not segmented from the background
and undergo complex, non-isomorphic, transformations.
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1 Introduction

Humans readily recognize an object independently of its
position in space, its illumination, its size or their viewpoint.
This is particularly remarkable considering that the signal
on their retinae changes dramatically under such transforma-
tions. Invariant recognition implies discarding information
that is irrelevant for the task, while at the same time keeping
the relevant information. This raises the question whether
there are general principles that allow a system to decide
which part of the input signal it has to neglect? For contempo-
rary machine vision, on the other hand, invariant recognition
remains one of the main challenges, fostering the interest in
the mechanisms of the visual system.

In the mammalian visual system, the issue of invariance
arises already at its earliest stages: the retina achieves invari-
ance to absolute illumination by adaptation of photorecep-
tors. A prominent example of an early invariance is found in
the primary visual cortex: complex cells, one of the two major
cell classes in primary visual cortex, are orientation selective,
but at the same time largely position (phase) invariant (Hubel
and Wiesel 1962). A number of recent studies address the
principles underlying this invariance. One popular principle
is that of temporal coherence. It is based on the idea to sep-
arate different aspects of a visual stimulus according to their
time-scale, neglecting fast variations while keeping slower
features. Phase invariance of complex cells in this scheme
follows from local orientation being slower (i.e., having a
longer correlation time-constant) than local position as first
shown in Foldiak’s (1991) trace rule implementation. This
relation between orientation and position also holds for nat-
ural visual stimuli (Kayser et al. 2003a; Betsch et al. 2004).
Hence, the invariant response properties of complex cells can
also be learnt by applying the temporal coherence principle
to sequences of natural scenes. A number of recent stud-
ies exploited this possibility by using different implementa-
tions of the temporal coherence principle, such as ‘stability’
(Kayseretal.2001,2003b; Kording et al. 2004), ‘slow feature
analysis’ (Berkes and Wiskott 2003) and a physiologically
inspired learning rule (Einhiuser et al. 2002). Concluding,
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Fig. 1 Network and Stimuli. a Schematic of the network architecture. The stimulus sequence is fed into a set of colored CCs, whose properties
are fixed. On the pooled output of these cells, OCs, which consist of multiple linear subunits, are trained to optimize the stability objective, b Plain
stimuli. Several training views of each object are shown repeatedly at different positions; the square retina has 64 x 64 pixel resolution in three
color channels. ¢ In the cluttered condition a random object is added as distractor to the background of the target object at a random location

the general principle of temporal coherence explains impor-
tant aspects of invariance properties in primary visual cortex.

Temporal coherence has also been used to investigate
other properties of the visual system: optimising stability
over natural stimuli may explain the segregation of colour
from orientation in neuronal representations (Einh&duser et al.
2003). Repeated application of the same optimization in a
hierarchical scheme leads to texture selective cells (Franzius
etal. submitted). Proceeding further up through the hierarchy
of the visual system, an iterative application of the trace rule
can even learn to recognize faces (Wallis and Rolls 1997).
The responses of cells trained in this network thus resem-
ble those of neurons found in inferotemporal cortex. Multi-
ple complex transformations including changes in viewpoint,

have also been successfully addressed using simplified stim-
uli (Wiskott and Sejnowski 2002; Stringer and Rolls 2002).
In summary, the principle of temporal coherence explains
invariance properties of various parts of the visual system.
In spite of the analogies of networks trained with the
principle of temporal coherence with the biological system,
it remains to be investigated in how far the resulting sys-
tems support complex recognition tasks. We like to single
out three aspects that make classification a difficult task: real
world stimuli undergoing complex transformations in clut-
tered scenes during training. Machine learning approaches
have reached a high degree of sophistication, and given a
large number of training examples can solve these problems.
However, large sets of labeled training examples are hard
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Fig. 2 Single-cell activity. Single-cell activity during presentation of ten objects rotating over all 72 viewpoints during testing. Top row: complex
cell activity, bottom row: object cell activity, middle: presented object (for illustration depicted centrally in full database resolution and from 0°
viewpoint only). Data of each viewpoint are averaged over 100 test presentations at different locations. In the used example, OCs were trained

with 12 views (30° steps) of each of the ten shown objects

to obtain. Therefore it is attractive to divide the classifica-
tion task into separate steps: first, the stimuli are processed
by a network trained on unlabeled representative data with a
general principle. Exploiting the statistical nature of the data
this shall lead to a transformation of the input pattern into a
representation that facilitates subsequent classification. Here
we follow this approach and apply the temporal coherence
principle to real world stimuli. The stimuli are subject to a
complex transformation, namely change in viewpoint, and
learned and classified in the presence of a distractor.

2 Methods
2.1 Network

Recently we demonstrated that applying a temporal coher-
ence objective to natural videos yields complex cell-type
receptive fields (Kording et al. 2004). Here we aim at extend-
ing this scheme into a homogeneous hierarchical network for
invariant object recognition. Although complex cells might
not be the only output stage of primary visual cortex, they are
the dominant cell type in the supragranular layers where the
projections to higher areas originate. To fulfil the requirement
of homogeneous network architecture we hence add on top
of a layer of modeled neurons with complex cell properties
a second layer of “object cells” (OCs) that will be trained to
optimize the stability objective on the output of complex cells
(Fig. 1a). Since we and others have already demonstrated that
the stability objective can be used to learn complex cell-type
receptive fields, here — for computational efficiency, we fix
the complex cells (CCs) instead of learning their properties.
Complex cells are modeled as complex Gabor filters V:

Vi (x, y) = exp [—2k ((x — x0)* + (v — y0)%)]
X exp [—2m'k( (x — x0) cos (¢)
—(y — yo)sin (¢) )]

1 <x,y<32; xg=yp =165 (D

where k denotes the spatial frequency and ¢ the orientation
of the Gabor; x and y the pixel coordinate in a 32 x 32 pixel
wide patch and xg, yo the patch centre. To compute the CCs’
activities on each input image I (x, y, t) the colour channels
I¢ of I are first convolved separately with the Gabors:

Cl;p (x,y,1) = ZZ Vi (X' —=x,y = y) I (x', ¥, 1).
&, >

@)
Accordingly the CC activity is then given by the absolute

value of ; pooled over all locations:

40 =T
x oy

where the index i summarizes the subscripts k, ¢, c. While
this pooling over all locations is not meant to model any spe-
cific cortical projection, it mimics the increasing receptive
field size, when proceeding from primary visual cortex to
higher visual areas. By this pooling a large-scale translation
invariance is achieved.

Each CC’s activity is normalized to zero mean and unit
standard deviation. We use four orientations (0°, 45°, 90°,
135°), three spatial frequencies (1/32, 1/16, 1/8 pixel ') and
three colour channels (R, G, B), resultingin4 x 3 x 3 = 36
different CCs.

The CCs project on a second layer of N neurons, which
will be referred to as OCs throughout this paper. Each OC
consists of S linear subunits akin to functional subunits
observed in real cortical cells (Touryan et al. 2002). The
activities of these subunits Z?il A;CC) Wijs are added non-
linearly:

s /36 4
= (S (S ) r=ien e

s=1 \i=1

Lx.y. 1)), 3)

Since Touryan et al. (2002) observed up to five significant
subunits for cortical CCs, we — for the OCs — chose a



82 W. Einhduser et al.

a c
36 b 36 - 1
all objects all objects 3 ‘
e} ’
- I
1] .
2
2 K 005
218 18 2
S % 8
©
>
£
g O
1]
=
0 0 -0.2
0 0.5 1 0 0.5 1 -0.2 0 0.5 1
invariance index (CC) invariance index (OC) mean invariance index (CCs)

d  ©-0000 p=0575 p=0.001 p=0.010 p=0.000 p=0.000 p=0.178 p=0.000 p=0.007 p=0.012

36 . :

o | B[R [|E H E | =

8 18 |

* 0 .ul. i kb Jdn l iy .ni " ] ks i I I I- QL kel
46 P=0-000 p=0.000 p=0000 p=0217 p=0002 p 0000 p=0.737 p=0618 p=0.001 p=0.884

E l» H | H||& H |[|EH |[|E |[H

D 18

* 0 I | ' T I I nl II ulh Il.L M | I .l'l al I-

5 P=0000 p=0018 p=0.000 p=0004 p=0.204 p=0002 p=0000 p=0559 p=0949 p=0.257

n‘“& H @ § &

=
1}

0 |I.1|l al 2
p=0.000 p=0016 p=0000 p=0.000 p=0000 p=0.904 p=0000 p=0015 p 0.021 p=0.000

p
36
o B | = = =
@
O I 1 |
O.Illl ' a .‘I ¥ l III ‘I Il Il L4 II |

p=0.062 p=0.001 p=0.317 p=0.000 p=0.237 p=0.000 p=0.034 p=0.000 p=0.981 p=0.106

o mILEnL o E] B th B

oLl Lol all i Ul Jd A/
0 05 10 05 10 05 10 05 10 05 10 05 10 05 10 05 10 05 10 05 f

invariance index (CC, OC)

[
. |

Fig. 3 Population data: viewpoint invariance. a Histogram of invariance index of all CCs (mean over all objects). Vertical line indicates mean.
b Histogram of invariance index of all OCs (mean over all objects). Vertical line indicates mean. ¢ Invariance index mean over all CCs (x-axis)
versus mean over all OCs (y-axis). Each datapoint corresponds to one object. Objects for which mean invariance indices are significantly different
(at p < 0.05) are colored (red for larger CC invariance, green for larger OC invariance). d Histograms of invariance index for all CCs (red) and
OCs (green) for each object (insets). Red and green vertical lines mark mean invariance index of CCs and OCs respectively. Significance values
for uncorrected z-tests on the difference of this means are given on top of the respective panels. Red boxes mark objects for which CC invariance
is significantly larger than OC invariance

somewhat larger number for our baseline simulation (S = 8) non-linearity (4-norm) is not critical; in a separate study we
and test in additional simulations, the effect of reducing this demonstrate in the context of texture discrimination that there
number. We chose unless otherwise stated the number of OCs  are no qualitative differences between using the 2-norm and
equal to the number of CCs (N = 36). The exactchoice of the the 4-norm (Franzius et al. unpublished observations).
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Fig. 4 Stability and viewpoint invariance. Invariance index for each cell (averaged over objects) plotted versus individual stability of each cell.

Solid lines: regression lines for best linear fit. a CCs, b OCs

2.2 The stability objective function

We use the ‘stability’ formulation of the temporal coherence
principle as introduced in Kayser et al. (2001): the squared-
temporal derivative of the neurons’ activity is minimized,
while the trivial solution of constant zero activity is avoided
by normalization by the temporal variance:

(o))

var, (A; (1)) ®

stable __ stable __ o
pible — " yaable
i i

where <.>¢ denotes temporal averaging. The derivative is
implemented as a finite difference A; (r + Ar) — A; (t), where
At is the step size between subsequent stimuli, as in the defi-
nition that follows. ¥5*"'¢ measures the stability of a single
neuron and will be referred to as “individual stability”. The
stability objective does not include interaction between neu-
rons in the network. Consequently, maximizing W' alone
would lead to a population of identical neurons. An additional
de-correlation term forces neurons to acquire dissimilar recep-
tive fields, by penalizing correlated and anti-correlated activ-
ity of different neurons:

_ _ﬁ<zz(o§ m)>f

i iA)

U decorr

(6)

whereoi; = (A; — (Ai),) (A} — (A))//var, (A7) var, (A;)
and N denotes the number of neurons as described previ-
ously. Averaging over the square of o instead of using the
correlation coefficient as such, ensures that anti-correlated
activity is also penalized to ensure dissimilar receptive fields.
The total objective is then defined as

‘.ptotal — ‘.pstable 4 \deecorr (7)
This total objective function is optimized for A©©® with
respect to W by scaled gradient ascent.

All simulations were performed using MATLAB soft-
ware (Mathworks, Natick, MA, USA).

2.3 Stimuli

All stimuli used in this study were derived from the Colum-
bia University Object Image Library (COIL-100, Nayer et al.
1996). This database provides photographs of 100 objects
from 72 different viewpoints each (5° steps). Objects are
located in front of a black background at a original resolution
of 128 x 128 pixels and three-channel (RGB) colour represen-
tation. Stimuli were used in two ways: in a plain condition,
where one object (‘target’) was present on the retina, and
in a ‘cluttered’ condition, where another object (‘distractor’)
was placed on the retina in the background of the target. To
allow for partial overlap in the cluttered condition from all
7200 stimuli, the background was removed before process-
ing. This was done by pixel-wise applying of a threshold to
the luminance (weighted-sum of all color channels) and such
that rather parts of the object boundary were cut than leaving
black fringes around the object. In both conditions objects
were placed at a random position on a 256 x256 pixel wide
retina. The random position mimics the relatively fast change
of position in comparison to other transformations such as
changes in viewpoint. However, since this study does not
deal with learning translation invariance, which is built-in by
pooling over CCs, we did not mean to realistically model this
relative timing and thus chose the extreme case of random
positions. The 256 x256 pixels are finally down-sampled to
64 x 64 using bi-cubic interpolation (Fig. 1b), which in com-
bination with the random position adds additional variation
to the input signal for each object.

For training only certain views of the objects were used,
the number of training views per object being a divider of
the total 72 views. From one time-step to next the view-
point of each object was changed by 360°/(number of training
views), while the position was randomly selected indepen-
dently across time-steps (Fig. 1b). All views of each
object were presented 100 times. In the cluttered condition
the distractor was selected and placed independently for each
step (Fig. 1c). Distractor objects were always taken from the
whole database even if the network was trained only on a
subset.
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For testing, all 72 views of each trained object were pre-
sented to the converged network 100 times at random posi-
tion. For testing in the cluttered condition a distractor was
added for each test presentation. The object used as this test-
ing distractor was chosen randomly from a subset of objects
disjoint from the trained objects. That means, if objects #1—
#10 were used as targets for training, objects #11—#100 were
used as distractors; for cells trained with object #1—#50 as tar-
get, testing distractors were objects #51—#100. To ensure a
testing distractor set of at least equal size as the trained target
set, the maximum number of trained objects was restricted
to 50.

For testing generalization of the converged network to
previously unseen objects, we performed the testing on
objects #1—#10, while the training was performed on var-
ious numbers (10, 20, ...) of objects. In one set of these
simulations, the tested stimuli were included, i.e., we trained
on stimuli #1-#10, #1—#20, etc. In a second set of simula-
tions, the tested objects were not part of the training set, i.e.,
we trained the network on objects#11-#20, #11-#30, etc.

2.4 Quantifying viewpoint-invariance

In order to quantify viewpoint-invariance, we probed CCs
as well as converged OCs with all views of the objects used
for training (note that for the training usually only a subset
of views was used). Each view of each object is presented
100 times at different locations and — for simulations includ-
ing distractors — with changing random distractors. The cell
activity was averaged over these 100 presentations and this
average will be referred to as the response of the cell to a cer-
tain view of a certain object. The response of each cell over
this complete set of objects and views was then normalized
to zero mean and unit standard deviation. To quantify a cell’s
dependence on the viewpoint we take the standard deviation
of the response over all views of each object. One minus this
standard deviation defines a measure of viewpoint invariance
for each cell and object. Note that viewpoint invariance can
be calculated for each object separately to distinguish effects
that result from object inherent rotational symmetries from
those that are an acquired property of a cell.

2.5 Classification performance

In order to analyse how well OC and CC outputs can be used
for object classification, we performed a clustering on the
cells’ activities during testing. We repeatedly applied the k—
means algorithm (implementation from MATLAB s statistics
toolbox) with ten different random initial settings. The num-
ber of clusters was chosen to match the number of objects. To
assess the number of correctly classified objects, each cluster
had to be assigned an object, which was done by the pro-
cedure described in the appendix. The fraction of correctly
classified test presentations was computed independently for
each repetition of the k-means algorithm and the mean across
repetitions is referred to as unsupervised classification per-
formance.

0.80
8 T [) [} i
= [}
3 I
g 1
= I
0.73 !
1 8
# subunits

Fig. 5 Dependence on network parameters. Dependence of invariance
on the number of subunits of each OC. Mean and standard error over
objects and OCs

3 Results
3.1 Single cell properties

We train OCs to optimize the stability objective on a subset
of viewpoints of several objects of the COIL-100 database.
After convergence we probe both OCs and their inputs (CCs)
on all trained objects from all viewpoints. The response trace
of one example cell of each cell type is depicted in Fig. 2: For
objects, whose appearance change considerably with chang-
ing viewpoint, the response of the CC dramatically depends
on the viewpoint (Fig. 2, top row). The response of the OC, on
the other hand, does not exhibit a strong modulation while the
same object is presented, but responds rather independently
of the viewpoint (Fig. 2, bottom row). Consequently the OC
can be characterized view-point invariant cell.

We now investigate to what extent the discussed example
is typical for the whole population of cells. Unless otherwise
stated, all data presented in the successive paragraphs refer
to a simulation, in which OCs were trained on 12 views (30°
steps) of 50 objects in the absence of a distractor. We first
measure viewpoint invariance — as defined in the methods
— for all objects. Averaged over all objects, the mean OC
invariance index (0.78, Fig. 3b) is significantly larger than
the mean CC invariance index (0.67, Fig. 3a; p < 10719,
t-test). Next we test to what extent this result also holds for
individual objects (Fig. 3c). For 27 objects the mean OC
invariance index is indeed significantly larger (at p < 0.05,
t-test) than the mean CC invariance index (green points in
Fig. 3c), while the reverse is the case for only seven objects
(red points in Fig. 3c). Since the distribution for CC invari-
ance indices is not normal for all objects (Fig. 3d), we in
addition perform a Wilcoxon test on the difference of medi-
ans. At a significance level of p = 0.05 this test yields the
same result as the 7-test for each individual object. All of
the seven objects, for which OC invariance is significantly
worse than CC invariance, already have a very high invariance
index for CC (>0.82). These objects themselves are inher-
ently rotation invariant, as they resemble cylinders, toroids
or spheres (marked by red boxes in Fig. 3d). On the contrary,
objects whose CC invariance is rather low, exhibit especially
improved OC invariance. In total there are significantly more
objects for which OC invariance is larger than CC invari-



Learning viewpoint invariant object representations using a temporal coherence principle 85

3 6 [N ——
K e e
) R — T
) ——
R e
31 | ™ mrr— N ——
30 N N
|- N
28 |t ™ e e,
2T |t e e
et e
PR —— ]
2 | e e
2 3 | e e
2 2 | ————
FRNL e ——
20 | e s
19 [ ————
10 | ™ e ™ s
17| e~
| | ——
15 g
T e ey
13 | r—————
12“—*#-—
1 1 [ ——————
10 | e

T —— ——

invariance rank of CC
invariance rank of CC

|

N -]

viewpoint {deg)

relative
activity

o

z

£

3

2

3t

360° J Z

activity (a.u.)

o viewpoint {deg) 355

¥ inhibitory excitatory

-50 weights. +50

c
0.80

invariance

0.65
1 # subunits 8
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Fig. 7 Results with distractor. Analogous to Fig. 3c for cluttered condi-
tion: Mean OC invariance for individual objects plotted versus mean CC
invariance. OCs are trained in the presence of a distractor, both cell types
are tested in presence of distractor. All other parameters unchanged as
compared to Fig. 3¢

ance (36 objects) than there are objects for which the reverse
holds (14 objects p = 0.005, sign-test). In summary, opti-
mizing the stability objective leads to an improvement of
viewpoint invariance for most objects and this improvement
is especially prominent for objects that show little intrinsic
invariance.

To further investigate how the stability objective relates
to viewpoint invariance, we directly compare the individual
stability values of each cell to its mean viewpoint invari-
ance (averaged over objects). As expected — since OCs are
trained to optimize stability, the individual stability values
of CCs (mean: —0.046) are significantly smaller (p < 1074,
t-test) than those of OCs (mean: —0.038). The same is true
for the mean viewpoint invariance (CC: 0.671, OC: 0.783,
p < 1071, ¢-test). Nevertheless, there is a highly significant
correlation between viewpoint invariance and individual sta-
bility for both CCs (r = 0.71, p < 1073 Fig. 4a), and OCs
r =053,p < 1073, Fig. 4b). Note, that the difference
in correlation values might be partly due to a lack of low
invariance/stability values for OCs. Indeed the correlation for
the combined population of CCs and OCs also yields a highly
significant result (r = 0.74, p < 107'°). This shows that sta-
bility is indeed a good correlate of viewpoint invariance, and
the optimization of stability is the key to the improved view-
point invariance of the OCs as compared to CCs.

3.2 Dependence on the number of subunits

All simulations reported so far used eight subunits (S = 8).
Do the observed invariance properties critically depend on
this choice? We perform additional simulations varying the

number of subunits from 1 to 8 (Fig. 5). We find that invari-
ance depends only slightly — but significantly — on the num-
ber of subunits (p < 10~'%, ANOVA). However, invariance
increases monotonically only up to six subunits and then sat-
urates. This shows that increasing the number of subunits fur-
ther does not affect invariance anymore. Consequently eight
subunits is a reasonable choice, although this choice does not
critically affect performance (see Sect. 3.5 below).

3.3 Improvement of invariance from CCs to OCs

In order to achieve a sound understanding as to how OCs
achieve an improved invariance by appropriately combining
their CC afferents, we more closely analyse these projec-
tions. Fig. 6a illustrates how OC activity derives from CC
activity. Most CCs exhibit a strong modulation with view-
point (Fig. 6a, left). However, only few of the CCs have strong
projections to a given OC subunit (Fig. 6a, right). As the view-
point-dependent modulation is strong for inhibitory as well
as for excitatory projections to a subunit, the peaks get flat-
tened out (Fig. 6a, third row from the bottom). After passing
through the even non-linearity the negative troughs become
peaks (Fig. 6a, second row from the bottom). Consequently
the sum over subunits only shows a weak and biphasic mod-
ulation with viewpoint (Fig. 6a, bottom), and thus increased
viewpoint invariance. The chosen OC exemplifies three major
factors that shape the OC response: (1) only few CCs have
strong connections to a given subunit, i.e., the connectivity
is sparse; (2) subunit activities get more invariant by excit-
atory and inhibitory projections from CCs, that antagonize
each other; (3) subunits that receive mainly inhibitory and
excitatory projections antagonize each other and flatten the
response further; while the absolute integral, and thus the
object-specific response, is persevered by the even non-line-
arity. To quantify these observations for the whole population
of cells we first analyse connectivity weights over all cells
and subunits, and find that this distribution is indeed sparse,
i.e., heavy-tailed (Fig. 6b). We measure subunit invariance
analogously to CC and OC invariance. We find that the mean
invariance of the subunits (0.72) is inbetween those of CCs
(0.67) and OCs (0.78), and significantly different from either
(p < 0.005 for both pair-wise ¢-tests). To test how many
subunits are actually needed to achieve invariance, we com-
pute each OC'’s activity only including its » most invariant
subunits. We find that invariance increases gradually with an
increasing number of subunits (Fig. 6¢). Adding an additional
subunit leads to a significant increase compared to leaving
that subunit out until five subunits are included (pair-wise
ttests: 1 - 2:p <1071 :2 5 3:p <1074 ;3 — 4
p < 001;4 — 5: p < 0.05;, ANOVA over all n: p <
10~13). This shows that the mutually antagonizing effect of
two or more subunits is a factor in the improvement of invari-
ance. In conclusion, the three factors leading to the improved
OC invariance described in the example of panel 6a (sparse
connectivity, antagonizing CCs— subunit projections, antag-
onizing subunit— OC projections), are typical for the invari-
ance properties of all OCs.
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10 objects

50 objects

plain stimuli  with distractor  plain stimuli  with distractor

Fig. 8 Unsupervised clustering. Classification performance for k-
means clustering on CCs and OCs using 10 and 50 objects in pres-
ence and absence of distractor. Horizontal lines indicate chance level
(10 and 2% respectively); error-bars denote standard deviation over ten
repetitions of k-means clustering

3.4 Training and testing in the presence of a distractor

We have shown so far that optimizing the stability objec-
tive leads to viewpoint invariant cells when trained on plain
stimuli. Do these results persist if a distractor is present as
well during training and testing? We train and OCs with the
same stimuli and parameters as in the baseline situation (50
objects, 12 views), but add to each presentation a randomly
chosen second stimulus as distractor. For testing, the distrac-
tors are taken only out of the 50 objects, that are not trained.
In the simulation with distractor, viewpoint invariance is sig-
nificantly larger (at p < 0.05, 7-test or Wilcoxon-test) for
OCs than for CCs in 27 objects, while the reverse only holds
for four objects (Fig. 7). In total, OC invariance exceeds CC
invariance for a significant number of images (39 out of 50
objects, p < 1074, sign-test). This implies that the difference
between OCs and CCs in viewpoint invariance is not only
conserved for training and testing with distractors but gets
even more pronounced. This shows that the stability objec-
tive is also well suited to suppress distractors on the basis of
input statistics.

3.5 Unsupervised clustering

The stability objective increases viewpoint invariance for
individual cells, but does this also facilitate invariant object
classification on the population level? In order to test this
issue, we perform an unsupervised clustering on both the CC
and OC activities. As before, OCs are trained on a subset of
12 views per object (30° steps). After convergence k-means
clustering is performed on the activities in response to all 72
views of all trained objects. In the absence of a distractor,
classification performance reaches 79% (ten objects, Fig. 8
left) and 75% (50 objects, Fig. 8 right) for OCs, which is
larger than the 65% and 62% reached for CCs. These values
are obtained as mean over ten different random initial condi-
tions for the clustering algorithm and the observed difference
between CCs and OCs is highly significant (p < 0.005 and
p < 1077, t-test).

In order to ensure that this result does not depend on the
specific design of the network, we tested the performance
for different numbers of subunits. While OC performance
for S = 1 is slightly smaller (72%) than for higher numbers
of subunits, there is no significant dependence of classifica-
tion performance on subunit number (p = 0.27, ANOVA).
This demonstrates that nearly optimal performance is already
reached with one subunit. The fact that performance does not
worsen for higher number of subunits (and invariance even
increases — see 3.2), in turn shows that this increase in the
number of optimized parameters does not lead to a loss in
generalization performance. Hence — even for large numbers
of subunits — there is no “overfitting” of training views. In
summary, the choice of the exact number of subunits is not
critical.

When training and testing is performed in the presence
of a distractor the difference of classification performance
between OCs and CCs becomes even more remarkable: both
for 10 and 50 objects, the relative increase in classification
performance is over 50% (from 38 to 60% and from 14 to
22%) and are both highly significant (p < 107, t-test). In
the simulations discussed so far, a rather large number of
views (12) was presented for training the OCs. Do the re-
sults persist if this number is reduced? We tested classifica-
tion performance for OCs trained with 50 objects and three
different views per object (120° steps). The results do not dif-
fer remarkably, still OCs classification performance reaches
71% (50 objects) in the absence of a distractor and 20% in
the presence of a distractor. In both conditions the OC per-
formance is still significantly higher than CC performance
(p < 107, t-test).

Concluding, even for a small number of training views
and in the presence of a distractor, unsupervised classifica-
tion performance is significantly increased for cells trained
with the stability objective (OCs) as compared to their affer-
ents (CCs). Consequently, the stability objective is a valuable
pre-processing step for viewpoint-invariant object classifica-
tion, especially if the object to be classified cannot readily be
segmented from the background and can be trained from few
viewpoints only.

3.6 Generalization to novel objects

So far we have tested classification performance only on the
set of objects the OCs had also been trained with. While the
network generalizes well to previously unseen viewpoints,
we may not expect an equally good generalization to novel
objects, since the object sample is small and rather hetero-
geneous. We train OCs with different number of objects (10,
20, ...) and test their classification performance on the first
ten objects only. In one set of simulations the test objects are
included in the training set, in another set they are excluded
(Fig. 9). We perform a two-way ANOVA to test whether per-
formance depends on the number of training objects and/or
on whether or not the test objects are part of the training set.
First we find no difference between the two types of sim-
ulations (p = 0.33, ANOVA), OCs’ performance does not
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Fig. 9 Generalization over objects. Classification performance on ten
objects for OCs trained with different numbers of objects. Cyan crosses:
test objects were not included in training set; green stars: test objects
were included in the training set. Solid red line: CC classification perfor-
mance. Errorbars and dashed lines denote standard errors of the mean
over ten repetitions of k-means clustering

depend on whether or not the tested objects are included in
the training set. Second, we do not observe a decrease in
performance when more objects are added to the training set
(p = 0.19,ANOVA); if anything, the performance tends to be
better for larger training sets: OCs trained with 100 objects
show a performance of 85% correct compared to the 79%
when only the test objects are used for training. In conjunc-
tion with the independence of whether or not tested objects
are in the training set at all, this demonstrates that OCs do
not only generalize over unseen viewpoints but also to some
extent over unseen objects.

4 Discussion

‘We show that unsupervised training with a general optimiza-
tion principle facilitates the classification of real-world stim-
uli. The facilitation still holds, if stimuli undergo a complex,
non-isomorphic, transformation — in our case the change of
viewpoint — and only few examples are seen during train-
ing. The degree of facilitation is furthermore maintained in
the presence of a distractor during training and classifica-
tion. This result rests on the fact that cells trained to opti-
mize a temporal coherence objective represent the input more
invariant to viewpoint than their afferent cells. This result
is especially remarkable as it is achieved in a homogenous
architecture: already the input neurons, modeled as complex
cells, can be understood as the temporally coherent features
of anatural stimulus sequence (Kayser et al. 2001; Berkes and
Wiskott 2003; Kording et al. 2004). Nevertheless, the degree
of invariance still increases for the second layer trained here.
Hence, the arguably most difficult step in object classifica-
tion, namely achieving a representation of the input, which is
invariant under the desired transformations, does not require
a large set of labeled examples. Instead, training on unla-
beled examples according to a general principle like temporal
coherence, generates such a representation. A simple classi-
fication algorithm operating on the resulting representation
then suffices for successful classification.

The results of the present study are rather insensitive to the
choice of the exact network parameters. In particular, there
is no dependence of classification performance, and only a

slight — though significant — dependence of the invariance
measure, on the number of subunits. This shows, that — for
the dataset used — the generic principle of temporal coher-
ence combined with a non-linear operation suffices to achieve
increased performance with a linear classifier. It is important,
however, that generalization does not worsen with an increas-
ing number of subunits. Therefore the system can readily be
extended to more complex sets of inputs. Having multiple
subunits is especially desirable, when pooling over a topo-
graphically organized input space shall be learnt. In the pres-
ent study, we implemented this pooling already in the input
(CC) representation, as previous studies had demonstrated
that such representations can be learnt by optimizing the sta-
bility objective (Kording et al. 2004). Such a requirement for
multiple functional subunits at early levels of processing has
also received recent experimental support by electrophysio-
logical data of CCs in cat visual cortex (Touryan et al. 2002).
While the present study does not include any topographical
organization of cells, the robustness of the results to the num-
ber of subunits makes the use of the stability objective in a
topographically organized hierarchical multilayer network a
promising approach for future research.

A large body of recent studies applies the temporal coher-
ence principle to achieve invariant representations and to
explain some properties of the visual system (Fodiak 1991;
Stone 1996; Wallis and Rolls 1997; Rolls and Milward 2000;
Kayser et al. 2001; Einhiuser et al. 2002; Stringer and Rolls
2002; Wiskott and Sejnowski 2002; Berkes and Wiskott 2003;
Hurri and Hyvirinen 2003; Wiskott 2003; Kording et al.
2004). These studies as well as those on similar coding
schemes (see Olshausen 2002, for review) are often taken
as evidence, that the functional organization of large parts of
the visual cortex can be derived from such general principles.
The important criterion during evolution and in development
of technical applications, however, is whether such a cod-
ing principle boosts system’s performance. Invariant object
classification of real-world objects under complex, i.e., non-
isomorphic, transformations is thus a critical test case for the
above conjuncture. Only few of the aforementioned studies,
however, fully address this issue: Wallis and Rolls (1997)
show that cells of their trace-rule based “VISNET’ architec-
ture can acquire translation and viewpoint invariance for face
stimuli. Thereby they delivered the proof of concept, that tem-
poral coherence-based learning rules in principle can learn
viewpoint invariant representations. The analysis of their re-
sults is mainly based on a so-called “discrimination factor”,
which does not exclude that information on the stimulus is
lost across their hierarchical levels. While in case of trans-
lation invariance the authors control for this possibility by
adding a simple supervised classifier to the output of their
network, they do not report a similar control for viewpoint
invariance. Furthermore, the number of stimuli to be dis-
criminated in their viewpoint invariance experiment is very
small (3). Although more recent studies on a similar archi-
tecture (“VISNET2”) use more stimuli, the authors either
restrict themselves to translation invariance (Rolls and Mil-
ward 2000) or do not use real-world stimuli (Stringer and
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Rolls 2002). Consequently the present study is the first to
apply the temporal coherence principle to viewpoint invari-
ant classification of a large number of real-world objects. In
addition — unlike Wallis and Rolls (1997) — we demonstrate
the suppression of distractors and generalization to unseen
viewpoints. Hence our study is the first to show the func-
tional usefulness of a general coding principle like temporal
coherence on the system level.

Learning invariance to complex transformations has also
been addressed in other physiologically inspired network
models. Mel’s (1997) carefully designed “SEEMORE” archi-
tecture allows very reliable recognition of the trained objects
from novel viewpoints and is robust to various other distor-
tions. SEEMORE uses a large variety of adhoc pre-defined
feature channels to reach high classification rates. Here we
restricted ourselves to very few simple input ‘feature’ chan-
nels (color, orientation and spatial frequency preferences of
the CCs), in conjunction with an adaptive network structure.
Hence, although engineered solutions like SEEMORE might
reach higher classification rates for specific problems, the
appropriate combination with general learning principles like
temporal coherence therefore reduces design and computa-
tion costs.

Feature-based recognition systems often rely on the pre-
cise segmentation of the object from its background. Wers-
ing and Korner (2003) show that a network trained by the
principle of sparse-coding achieves some degree of view-
pointinvariance for classifying real-world objects in cluttered
scenes. Here we show that the principle of temporal coher-
ence generates viewpoint invariant representations. We do not
use a fully cluttered background but just a single distractor. It
is hence likely that most information extracted by our system
is still based on the outline of each object, especially since the
retinal resolution is low and using fine internal object struc-
ture thus difficult. These considerations could be addressed
by a complementary segregation based on independent cues,
like motion, which are presently not used. Concluding the
present study provides an unsupervised learning scheme that
is insensitive to the background during both classification and
training.

Two dominant views exist with respect to human
recognition of objects at novel viewpoints. So-called “struc-
tural-description” or “object-centred” approaches, such as
Biederman’s (1987) “Recognition-by-Components” model,
postulate an object to be defined by the arrangement of a
small set of generic features (“geons”). Viewpoint invariant
recognition in this view is achieved, since the relative con-
figuration of these geons do not change when the object is
rotated in depth. “Image-based” or “view-based” models in
turn postulate the existence of a small number of two-dimen-
sional templates for objects and propose several mechanisms
that could allow generalization to novel viewpoints, such as
mental rotation (Tarr and Pinker 1989), mapping to a stan-
dard (“canonical”) view generated from few example views
(Poggio and Edelman 1990) or linear combination of few
familiar views of the object (Ullman and Basri 1991). The
controversy between both types of theories has remained

pretty much alive and has prepared the ground for consider-
able theoretical and experimental progress (Tarr and Biilthoff
1998; Biederman 2000 for reviews). Here we do not make
use of any structural description, instead our network model
extracts the relevant features from only a few views to gener-
alize novel views and — to some extent — novel objects. While
we hereby demonstrate that a general optimization scheme
can generate a representation, as it is needed for “view-cen-
tred” models, it will be an interesting issue for further re-
search, to what extent relevant structural information could
also be extracted by similar principles.

When learning takes places in the presence of distractor,
learning of the specific target—distractor combination needs
to be avoided. Instead the isolated target has to be learnt.
This can be achieved by a variety of segregation mechanisms.
Human and non-human primates can achieve segregation by
selectively directing attention to the target (Desimone and
Duncan 1995). When the target to be trained is presented
with a sufficient number of different distractors, this statis-
tical property can be exploited. Our network model uses the
higher temporal coherence of the target relative to the dis-
tractor. While the cluttered condition surely exaggerates the
difference in temporal coherence between target and distrac-
tor compared to real-world situations, it directly relates to
the definition of an object in the tradition of Gestalt psychol-
ogists. The law of common fate binds different features of
one object and sets them apart from features of other objects.
The temporal stability defines an object and is contrasted by
the faster changes of the arrangement of different objects
to a visual scene. Therefore the present study provides the
proof of concept that bottom—up mechanisms, i.e., mech-
anisms based on the input statistics, may contribute to sup-
pression of distractors. It will be a fruitful approach for future
research to incorporate top—down interactions in the pres-
ent bottom—up scheme, which learns relevant representations
unsupervised from the natural statistics of the input.
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Appendix

Since the k-means clustering is an unsupervised algorithm,
determining the fraction for correctly classified object pre-
sentations requires assigning each cluster to an object. This
is done by the following procedure:

Generate a hit-matrix H® by assigning each cluster an
object at random.

For all n from 1 to the number of objects (= number of
clusters)
o Find the maximum entry (k,,1,) =arg max_j,(H"~V(, j))

in this hit matrix,

o Assign cluster &, to object 1.
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o delete row k, and column 1, from hit matrix: H® (k,,.) =
0, H™ (,,1,) = 0; for all other i, j: H™ (i, j) = H"~V(, j)

Create the final hit-matrix H by rearranging the columns
of HO: For all n H(.,k,)= H? (,,1,).

The fraction of correctly classified test classifications is
now given by the sum over the diagonal entries of H by the
sum over all entries.

References

Berkes P, Wiskott L (2003) Slow feature analysis yields a rich repertoire
of complex-cell properties. Cognit Sci EPrint Arch (CogPrints) 2804,
http://cogprints.ecs.soton.ac.uk/archive/00002804/

Betsch BY, Einhiduser W, Kording KP, Konig P (2004) The world from a
cat’s perspective — statistics of natural videos. Biol Cybern 90:41-50

Biederman I (1987) Recognition-by-components: a theory of human
image understanding. Psychol Rev 94(2):115-147

Biederman I (2000) Recognizing depth-rotated objects: a review of
recent research and theory. Spat Vis 13:241-253

Desimone R, Duncan J (1995) Neural mechanisms of selective visual
attention. Annu Rev Neurosci 18:193-222

Einhduser W, Kayser C, Konig P, Kérding KP (2002) Learning the
invariance properties of complex cells from their responses to natu-
ral stimuli. Eur J Neurosci 15:475-486

Einhduser W, Kayser C, Kording KP, Konig P (2003) Learning distinct
and complementary feature-selectivities from natural colour videos.
Rev Neurosci 14:43-52

Foldiak P (1991) Learning Invariance from Transformation Sequences.
Neural Comput 3:194-200

Franzius M, Einhduser W, Konig P, Kording KP (2005) Learning a hier-
archical model of cortical function from natural stimuli. (submitted)

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J Physiol 160:106—
154

Hurri J, Hyvirinen A (2003) Simple-Cell-Like Receptive Fields
Maximize Temporal Coherence in Natural Video. Neural Comput
15(3):663-691

Kayser C, Einhduser W, Diimmer O, Konig P, Kording KP (2001)
Extracting slow subspaces from natural videos leads to complex
cells. In: Dorffner G, Bischoff H, Hornik K (eds) Artificial neural
networks — (ICANN) LNCS 2130, Springer, Berlin Heidelberg New
York, pp 1075-1080

Kayser C, Einhéduser W, Konig P (2003a) Temporal correlations of ori-
entations in natural scenes. Neurocomputing 52:117-123

Kayser C, Kording KP, Kénig P (2003b) Learning the nonlinearity of
neurons from natural visual stimuli. Neural Comput 15:1751-1759

Kording KP, Kayser, C, Einhduser W, Konig P (2004) How are complex
cell properties adapted to the statistics of natural stimuli? J Neuro-
physiol 91:206-212

Mel BW (1997) SEEMORE: combining color, shape, and texture his-
togramming in a neurally inspired approach to visual object recog-
nition. Neural Comput 9(4):777-804

Nayer SK, Nene SA, Murase H (1996) Real Time 100 object recognition
system. In: Proceedings of ARPA Image Understanding Workshop.
Morgan Kaufmann, San Matteo

Olshausen BA (2002) Principles of image representation in visual cor-
tex. In: Chalupa LM, Werner JS (eds) The visual neurosciences, MIT
Press, Cambridge

Poggio T, Edelman S (1990) A network that learns to recognize three-
dimensional objects. Nature 343(6255):263-266

Rolls ET, Milward T (2000) A model of invariant object recognition in
the visual system: learning rules, activation functions, lateral inhibi-
tion, and information-based performance measures. Neural Comput
12:2547-2572

Stone JV (1996) Learning perceptually salient visual parameters us-
ing spatiotemporal smoothness constraints. Neural Comput 8:1463—
1492

Stringer SM, Rolls ET (2002) Invariant object recognition in the visual
system with novel views of 3D objects. Neural Comput 14:2585—
2596

Tarr MJ, Pinker S (1989) Mental rotation and orientation-dependence
in shape recognition. Cognit Psychol 21(2):233-282

Tarr MJ, Biilthoff HH (1998) Image-based object recognition in man,
monkey and machine. Cognition 67:1-20

TouryanJ,LauB, DanY (2002) Isolation of relevant visual features from
random stimuli for cortical complex cells. J Neurosci 22:10811—
10818

Ullman S, Basri R (1991) Recognition by linear combinations of mod-
els. IEEE Trans Pattern Anal Mach Intell 13(10):992-1006

Wallis G, Rolls ET (1997) Invariant face and object recognition in the
visual systems. Prog Neurobiol 51:167-194

Wersing H, Korner E (2003) Learning optimized features for hierarchi-
cal models of invariant object recognition. Neural Comput 15:1559—
1588

Wiskott L, Sejnowski T (2002) Slow feature analysis: unsupervised
learning of invariances. Neural Comput 14:715-770

Wiskott L (2003) Slow feature analysis: a theoretical analysis of optimal
free responses. Neural Comput 15(9):2147-2177



