
Form specifies function: Robust spike-based
computation in analog VLSI without precise

synaptic weights
Dylan R. Muir, Giacomo Indiveri and Rodney Douglas

Institute of Neuroinformatics
UNI - ETH Zurich
Zurich, Switzerland

Email: dylan@ini.phys.ethz.ch

Abstract— Recent studies demonstrated that sophisticated in-
formation processing can occur in spike-based computational sys-
tems that make use of synapses with only two states (potentiated
or depressed). Here we present the hybrid software / hardware
implementation of a model of the mammalian olfactory bulb
using an analog VLSI device comprising an array of integrate and
fire neuron with bistable synapses. Our implementation incorpo-
rates both software and hardware components, integrated using
an asynchronous event-based spike representation. The model
is able to perform highly selective simulated odor recognition,
using induced synchronization within a population of neurons
as the key to computation. The success of this scheme shows
that the analog VLSI circuits used can perform sophisticated
computation, taking advantage of the neuron dynamics and
the topology of the network, without requiring precise analog
synaptic weights.

I. INTRODUCTION

Networks of integrate and fire (I&F) neurons have been
shown to exhibit a wide range of useful computational prop-
erties [1]. Moreover, recent studies have demonstrated that
sophisticated information processing can occur in spike-based
computational systems that make use of synapses with only
two states (potentiated or depressed) [2]–[4]. These types
of networks with bistable synapses are very well suited for
analog VLSI implementation. In previous work we presented
neuromorphic circuits for implementing massively parallel,
distributed networks of I&F neurons [5], [6], and a VLSI
device comprising both I&F neurons and plastic, bistable
synapses, which can be used to implement multi-chip recon-
figurable networks of spiking neurons [7].

Here we present an application of such a device in which
we implement an olfactory bulb model, based on the model
proposed in [8]. The implementation we propose uses both
software and hardware components and demonstrates how it
is possible to build hybrid software/hardware networks of I&F
neurons with plastic, bistable synapses capable of performing
complex tasks, such as highly selective odor recognition.

II. THE ANALOG VLSI DEVICE

The analog VLSI device was implemented using a standard
AMS 0.8µm CMOS process. It comprises an array of 32 I&F
neurons, a 2–D array of 32×8 synaptic analog circuits, and

digital Input/Output circuits that allow the device to receive
and transmit pulses (spikes) in input and transmit spikes in
output using the Address-Event Representation (AER) [9],
[10]. In AER, each spiking neuron is assigned an address.
When a neuron generates a pulse its address is put on a
digital bus. In this asynchronous protocol time representation
is implicit, and analog signals are encoded by the inter-spike
intervals between the addresses of their sending nodes. Input
and output spikes (events) are transmitted as real-time asyn-
chronous binary data streams that carry analog information in
their temporal structure. Each event is represented by a binary
word encoding the address of the sending node.

Inside the VLSI device each neuron is connected to 2 in-
hibitory and 6 excitatory synapses (see Fig. 1). The excitatory
synapses contain circuits for implementing adaptive learning
on short time scales, and circuits for driving the weight to one
of two possible analog values on long time scales. The learning
circuits implement a rule based on the spike-timing-dependent
plasticity (STDP) mechanism [11]. In STDP the precise timing
of spikes generated by the neurons determines the weight
update. If a pre-synaptic spike arrives at the synaptic terminal
before a post-synaptic spike is emitted, within a critical
time window, the synaptic efficacy is increased. Conversely
if the post-synaptic spike is emitted soon before the pre-
synaptic one arrives, the synaptic efficacy is decreased. If
on short time scales the synaptic weight is increased by the
STDP circuits above a threshold, the bistability circuits will
generate a constant weak positive current. In the absence of
activity (and hence learning) this current will drive the weight
toward its potentiated state; if the STDP circuits decrease the
synaptic weight below the threshold, the bistability circuits
will generate a negative current that in the absence of spiking
activity will actively drive the weight toward the analog value
encoding its depressed state.

The addresses of the spiking neurons, transmitted off-chip
by the AER circuits, are received by a custom PCI-AER
board [12]. In addition to logging, time-stamping and storing
the spiking activity of the neurons, the PCI-AER board can
send Address Events to arbitrary synapses on the chip. Hence
spike trains with arbitrary statistics can be generated off-line
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Fig. 1. Block diagram of the chip’s architecture. Small trapezoids in the
array represent integrate and fire neurons, while squares represent inhibitory
and excitatory synapses.
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Fig. 2. Olfactory bulb model proposed by Brody and Hopfield. Individual
neurons in the model are represented by circles. The two circles on the
left represent glomerular cells. The activity of chemosensors (not shown) is
proportional to the chemical components of an odor. Chemosensors sensitive
to a particular component integrate their activity in a single glomerulus. Mitral
cells, in the center of the figure, have three distinct input sources: odor-elicited
activation from the glomeruli, a common sinusoidal drive, and a constant
random bias current (bold arrows). The dashed oval indicates the repertoire
of mitral cells receiving common input from a glomerulus.

on a workstation by a software model, mapped to arbitrary
synapse addresses, depending on the desired network topology,
and sent to the chip. The result of the network activity can be
measured by monitoring the spikes generated by the neurons
in the device.

III. THE OLFACTORY MODEL

Brody and Hopfield proposed a model of the mammalian
olfactory bulb in a spike-based system, using induced syn-
chronization within a population as the key to the computation
performed by the model [8]. This model is shown in Fig. 2.
Glomeruli collect and integrate the activity of chemosensors
sensitive to a particular odor component. Each glomerular
cell stimulates a repertoire of mitral cells with a common

activation. Each mitral cell in the glomerular repertoire is
also stimulated by a randomly chosen constant bias current
(bold arrows in the central part of Fig.2). In addition to the
odor-elicited activations and the constant random currents, the
mitral cell population receives a common sinusoidal current
input. The effect of this common sinusoidal input is to induce
approximate synchronization among the mitral cells that have
similar net input currents. For a range of net input currents,
the spiking activity of the population phase locks with the
common sinusoidal input. For input currents outside this range,
the mitral cells do not fire in synchrony.

The effect of odor presentation in the olfactory model
is illustrated in Fig. 3. The components of an odor drive
glomeruli with varying strengths. In the figure, the repertoire
of mitral cells associated with each glomerulus is shown
grouped together. Constant random bias currents injected into
each mitral cell are shown as horizontal bars representing the
magnitude of the bias current. The glomerular activations,
when coupled with the random currents will cause a subset
of the mitral cells to have a similar total activation. These
mitral cells are highlighted in the figure, and the dashed line
shows that the net activation for these cells is approximately
equal. The highlighted mitral cells in Fig. 3 will fire in close
synchrony. Connections are then manually selected from only
those highlighted cells to a single gamma cell, which acts as
a synchrony detector for this sub-population (see also Fig. 2),
given that the membrane time constant of the gamma cell is
shorter than the wavelength of the common sinusoidal input
to the mitral cell population. The activations projected to a
single gamma cell upon presentation of an odor are shown
on the right of Fig.3. The top right box of Fig.3 shows the
effect of presenting the target odor to the model. The mitral
cells will fire in synchrony, inducing the gamma cell to fire.
The lower right box of Fig.3 shows a representation of the
input to the same gamma cell upon presentation of a non-
target odor. As the same mitral sub-population will not fire in
synchrony, the gamma cell is less likely to fire. The number
of spikes produced by a gamma cell is a direct measure of its
recognition of the odor presented to the model.

IV. THE HYBRID SOFTWARE/HARDWARE MODEL

We implemented this model in a hybrid software/hardware
simulation. Odor generation, glomerular activity and mitral
cell activity were contained in a software simulation of simple
integrate-and-fire neurons. This portion of the system was
adapted from Brody and Hopfield’s matlab-based olfactory
simulation, and incorporates the same model neurons outlined
in their paper [8]. Both glomerular input and the common
sinusoidal drive were injected as currents into the simulated
mitral cells. Gamma cells were implemented by the silicon
neurons on the analog VLSI device. Connections were made
between the software portion and the hardware portion of
the implementation using the custom PCI-AER board [12].
In our implementation, mitral cell spikes were generated in
software and used to directly stimulate excitatory synapses on
the analog VLSI neuron.
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Fig. 3. Effect of simulated odor presentation in the olfactory model.
Activations are represented by horizontal bars that encode the magnitude
of the cell’s stimulating current. The activations of four glomeruli resulting
from the response to an odor are shown on the left. Every mitral cell in a
repertoire receives an identical odor-driven activation. In addition, each mitral
cell receives a constant random bias current. The highlighted subset of the
mitral cell population receives the same net activation, and will therefore fire in
approximate synchrony. The highlighted cells are manually selected to project
to a gamma cell. On the right, the net activation of the highlighted mitral cells
is shown for the target odor (top box) and a non-target odor (bottom box).

The parameters of the analog VLSI neurons were set to
imitate as closely as possible the time constants, threshold
potential and other parameters of the gamma cells in Brody
and Hopfield’s original simulations [8].

V. THE EXPERIMENT

In Hopfield and Brody’s network-repair extension to their
olfactory model [4], the connections between synchronous
subsets of mitral cells and the gamma cell are learned with
a spike-timing based learning rule. Specifically, 200 synapses
are potentiated from a field of 5,400 potential mitral cell con-
nections. Due to the low numbers of excitatory synapses per
neuron available on our aVLSI device we could not carry out
an equivalent experiment, where the synapses of the gamma
cell with appropriate connections (i.e. the synapses stimulated
by the synchronous subset of mitral cells) potentiated and
the synapses with inappropriate connections depress. Instead
we manually selected the appropriate subset of mitral cells
to connect to the aVLSI synapses of a gamma cell and
verified that the STDP circuits maintained the weights in their
potentiated state. Furthermore we evaluated the selectivity
of the aVLSI gamma cell by gradually replacing the mitral
cells projecting to the gamma cell synapses, from an initially
appropriate synchronous subset to a randomly selected subset.
According to the STDP learning rule implemented on the
chip, the synapses receiving input from inappropriate mitral
cells should decrease their weight to the depressed state,
dramatically decreasing the sensitivity of the gamma cell to
the target odor.

We generated random odor activity patterns in software and
presented them to the simulated mitral cell population. We
collected the spikes generated by the mitral cells, and selected
a set of six mitral cells communally sensitive to the random
odor. We mapped the output spikes from these mitral cells to
the six excitatory synapses on an aVLSI neuron via the PCI-
AER board. These connections caused the aVLSI neuron to
behave as a gamma cell highly sensitive to the random odor. As
a control, we created a non-selective gamma cell by connecting
six random mitral cells to its six excitatory synapses. Upon a
simulated odor presentation, the mitral cells produced spikes;
the spikes were transmitted to the aVLSI gamma cells, and
the spiking activity of the aVLSI gamma cells was recorded
by the PCI-AER board. We repeated this procedure, each
time progressively replacing individual appropriate mitral cell
connections with random connections, until all six possible mi-
tral cell connections were made randomly. For the engineered
gamma cell, this had the effect of reducing its sensitivity. For
the control (non-selective) gamma cell there was no significant
reduction in sensitivity, as new random connections could
cause the cell to become even more sensitive to the target odor.
In all cases the net number of spikes received by a gamma cell
was roughly equal.

VI. RESULTS

Figure 4 shows the results of the odor presentation trials.
The response of the gamma cells is shown for progressive re-
placement of the mitral cell connections. The response marked
with a double asterisk shows that the engineered gamma
cell is highly selective for the target odor. This selectivity is
statistically significant (p < 0.001, n = 175).

The number of spikes produced by a gamma cell during
odor presentation is a direct measure of the degree to which
it recognizes an odor. The selectivity of the model implemen-
tation can be measured by comparing the number of spikes
produced in response to the target odor with the number of
spikes produced in response to a random odor. In Fig. 4, this
is equivalent to comparing the solid and dashed lines for zero
inappropriate synaptic connections. For our implementation,
this selectivity was 1.98 : 1.

When the network is deliberately damaged by degrading the
appropriateness of the mitral-gamma cell synaptic connections,
the model should continue to provide high selectivity to odors.
The STDP-based learning rules implemented in each synapse
cause inappropriate mitral-gamma cell synaptic connections
to become depressed. This ensures that only synchronized
mitral cell spikes contribute to the activity of a gamma cell.
Incorporating STDP learning therefore depresses the activity
of a gamma cell when presented with an odor close to the
cell’s target odor. This effect can be seen by the sharpness
of the selectivity between zero and one inappropriate synaptic
connections for the manually engineered gamma cell (the solid
line in Fig. 4). For our implementation, this selectivity was
1.78 : 1.
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Fig. 4. Results of the odor presentation trials. Shown is the number of spikes
elicited from a gamma cell on odor presentation, for an increasing number
of inappropriate synaptic connections. The solid line represents a gamma cell
for which the mitral cell connections were initially manually engineered to
produce high odor sensitivity. The dashed line represents a gamma cell for
which the initial connections were made randomly. Error bars show the upper
and lower quartile of the response. The initial response of the engineered
gamma cell is highly selective for the target odor. This response is indicated
with a double asterisk, and is highly significant when compared to the response
of the non-selective gamma cell (p < 0.001, n = 175).

VII. FURTHER WORK

The selectivity and function of the current implementation
is limited mainly by the small number of synaptic inputs
available to each gamma cell. The original model proposed
in [4], where mitral-gamma cell connections are learned by an
unsupervised learning rule, presupposes up to 200 mitral cell
synaptic connections to each gamma cell. A greater number
of synapses per gamma cell in our hybrid software/hardware
model would allow greater odor selectivity, would lessen the
effect of operating conditions on the aVLSI hardware and
would allow more sophisticated network repair and unsuper-
vised learning experiments to be performed. We are currently
working on a new implementation of the model using a larger
chip, recently fabricated, with 256 neurons and 32 synapses
per neuron, for a total of 8,192 synaptic circuits. We will use
this new implementation of the model to characterize its odor
discrimination capabilities also for simultaneously presented
odors.

VIII. CONCLUSION

We demonstrated that computation can occur in a hybrid
software/hardware simulation using synaptic connections with
only two states (potentiated or depressed). Using an analog
VLSI device that incorporates bistable synapses with an STDP
learning rules, and integrate and fire neurons, we implemented
an olfactory model capable of performing robust odor discrim-
ination. The model implementation was found to be highly

selective between target and non-target odors, in addition to
maintaining this high selectivity while undergoing degradation
of the network connectivity. The STDP-based learning rules
implemented in the synapses of the analog VLSI device
supported the selectivity of the model by limiting the effects
of the network degradation.

The success of this scheme shows that sophisticated com-
putation is possible in noisy networks of spiking neurons
relying only on neuron dynamics and the structure of a spiking
network. In this context, precise analog synaptic weights are
not necessary to perform computation.
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