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An Interactive Space That Learns to
Influence Human Behavior
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Abstract—A key question in the design of intelligent environ-
ments is how a space can influence the actions of its users, and how
such behavior can be learned. In this paper, we present the results
of experiments conducted as part of the Ada project, an interac-
tive entertainment exhibit deployed at the Swiss national exhibi-
tion Expo.02. We used a learning model called distributed adaptive
control (DAC) that is based on the animal learning paradigms of
classical and operant conditioning. DAC has been developed using
mobile robots in foraging tasks. Here, it was applied to the learning
of effective cues for guiding visitors in a given direction. Our results
show that, by using this learning mechanism, Ada was able to influ-
ence the behavior of visitors by learning to deploy particular types
of cues. Many visitors could be induced to move toward a region of
the space that they normally avoided visiting—an effect that can be
seen as a spatial classification of visitors into interactive and non-
interactive categories. In our analysis, we also introduce a measure
of human activity that combines different types of data to capture
key aspects of human behavior in interactive spaces.

Index Terms—Behavior, human–machine interaction, interac-
tive space, learning.

I. INTRODUCTION

ACOMMONLY stated goal of ambient intelligence is the
seamless support of human activities through the use of

pervasive sensor and effector technologies. Many approaches
to the creation of such environments focus on natural input,
using techniques such as speech and gesture recognition. How-
ever, the resulting behavior of the system often follows a simple
predefined master–slave control mechanism, perhaps with some
context-dependent processing to resolve ambiguous inputs. We
argue that such approaches do not address the key issues con-
cerning intelligent environments, because they ignore the sym-
biotic nature of the human–environment relationship. In true
symbiosis, control is a two-way street—environments must be
able to actively affect human behavior as well as vice versa. In
this context, the key questions for intelligent environments can
be phrased as follows.

1) Language: how can an environment and its inhabitants
communicate, and what limits should (and can) be placed
on this interaction?
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2) Learning: given an agreed upon language, how can envi-
ronments and their inhabitants adaptively influence each
other’s behavior in order to achieve common or comple-
mentary goals?

A large body of knowledge already exists to address the first
question, i.e., in the context-sensitive speech and gesture recog-
nition system [3] that is part of the Massachusetts Institute of
Technology intelligent room project [4]. Another noteworthy
feature of this project is the use of gaze estimation to activate
voice recognition, where a user looks at a projection of a face
on a screen in order to signal that the system should prepare
to receive voice commands [5]. The broadly similar Interactive
Workspaces project at Stanford University [6] focuses on the
use of multiple high-resolution displays in multiperson collabo-
ration, and ways of interacting with various computing devices
(e.g., context-sensitive pointing and handwriting recognition).
More passive communication methods are being explored at the
University of Tokyo, which has developed a system for accu-
mulating human behavior in a small prototypical apartment [7],
using mainly tactile sensors. In this project, a human goes about
his/her normal daily routine while being monitored by devices,
such as a pressure-sensitive bed [8], a pressure-sensitive chair
[9], and a high-resolution pressure-sensitive floor [10]. One en-
visioned application of such a room is in background patient
monitoring and abnormal patient behavior detection in the in-
valid care industry. Microsoft Research has also entered the field
with its EasyLiving project [11], [12], using visual tracking of
humans and devices such as mice and keyboards to enable auto-
matic context identification and preference retrieval. So far, both
explicit voice or gesture-based languages and implicit move-
ment-based ones have been explored. The Ada project has ex-
plored an alternative approach by developing a nonverbal lan-
guage that uses the media of sound and light, combined with
tactile movement tracking.

The second question is more problematic, and consists of two
parts: 1) inhabitants learning to influence environments and 2)
environments learning to influence inhabitants. Given that the
inhabitants in our case are humans, we can treat the human
learning problem as being solved by our own genetic inheri-
tance. The key issue here is to understand the scope and limits of
human perceptual and behavioral learning capabilities in order
to allow optimal interfacing to and interaction with artefacts.
We made the assumption that humans are active explorers and
learners as long as they are sufficiently motivated. The visitor
appreciation of the exhibition suggests that this assumption was
justified. However, what about environments learning to influ-
ence humans? In investigating this question, we set ourselves
the following boundary conditions and assumptions.
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1) Language: the environment can only influence its inhabi-
tants using the nonmechanical means of light and sound. The
practical motivation for the exclusion of mechanical means
of interaction was safety. The light and sound design should
be generally pleasant, as it is preferable to influence behavior
by coaxing rather than by coercion (e.g., via the use of very
unpleasant sounds) as suggested by the work of Skinner and
others [13]. Furthermore, the lights and sounds should not in-
clude natural language-dependent features such as written or
spoken words in order to, among other things, avoid an an-
thropomorphization of the artefact. (We believe that although
the facilitation of anthropomorphization may make sense for
some humanoid robots, it can hamper long-term development
by denying that most embodied artefacts are not humans.)
The environment can receive its input from its users either
via sounds or movement.
2) Learning: we assume that, in essence, an environment

is an inside-out robot. This means that existing algorithms
for mobile robots should be able to be translated into a suit-
able form for use in an interactive space. The key distinc-
tion is that, in the former case, a large part of the dynamics
of system environment interaction is self-generated, while in
the latter case, it mostly originates in the movements of other
entities, i.e., the inhabitants. This implies that although an in-
telligent space does not usually have to solve the self-local-
ization problem, all other aspects of perceptual and behav-
ioral learning are surprisingly similar. Moreover, algorithms
that can be successfully adapted to this different task domain
could be said to be closer to meeting Newell’s requirement
for general intelligence, where anything can be a task [14].
Hence, applying algorithms tested on mobile robots to an in-
teractive space serves both a practical goal of generalization
and a basic science goal in the study of intelligence.
The above boundary conditions and assumptions were behind

our concept of Ada, an interactive entertainment space that was
built and exhibited at the Swiss national exhibition Expo.02. The
160-m main space of Ada contains visual, audio, and tactile
inputs, and noncontact light and sound effectors. Visitors to the
space are immersed in an environment where their only signif-
icant sensory stimulation comes from Ada (and other visitors).
Like an organizm, Ada’s output is designed to have a certain
level of coherence and convey an impression of a basic unitary
sentience to Ada’s visitors. Ada can communicate with them
collectively by using global lighting and background music to
express overall internal states, or on an individual basis through
the use of local light and sound effects. Development of Ada
commenced in late 1998 and involved over 30 person-years
of effort (including ten public demonstrations and tests) in its
technical components. The exhibit ran continuously for up to 12
hours a day over five months from May 15, 2002 to October 20,
2002. During this period, over 550 000 visitors entered the space.

The following sections of this paper contain a brief overview
of the main components of Ada, followed by a description of the
learning model that we tested for influencing the behavior of vis-
itors. The experimental procedures are then presented, followed
by the results of the experiments and suggestions for future ex-
tensions.

Fig. 1. Typical live user-interaction scene within Ada during explore mode.
Visible are floor tiles, a visitor being highlighted by a light finger (center left:
the light finger itself is in the ceiling frame), a dynamic 3-D visualization (top)
and a live gazer video on the screens (top left) provided by BigScreen (from
[2]).

II. ABOUT ADA

This section is intended to give only a brief overview of
Ada. More complete information about Ada can be found in
[15]–[17] and [2], as well as the official Ada web page [18].

In total (including auxiliary exhibition areas), Ada has 15
video inputs, 367 3 tactile inputs, 9 audio input channels,
46 mechanical degrees of freedom, 17 output audio channels,
367 3 floor tile lights, 30 ambient lights, and 20 full-screen
video outputs (Fig. 1). All of these inputs and outputs can be
addressed independently, giving a rich array of sensory modal-
ities and output possibilities. Ada has the following sensory
capabilities.

Vision: Pan-tilt cameras called gazers are available to Ada
for focused interactions with specific visitors. The cameras have
zoom and digital filtering capabilities that are controlled on-line.

Hearing: There are clusters of three fixed microphones each
in the ceiling plane, with which Ada is able to localize sound
sources by triangulation. Some basic forms of sound and word
recognition and pitch extraction are available.

Touch: Ada has a “skin” of 0.66-m-wide hexagonal pres-
sure-sensitive floor tiles [19] that can detect the presence of vis-
itors by their weight. Each contains a microcontroller and sits
on a serial bus running an industrial automation protocol called
interbus.

As well as sensing, Ada can also express itself and act upon
its environment in the following ways.

Visual: Ada uses a 360 ring of 12 LCD projectors called
BigScreen to express its internal states and visitor interaction
dynamics. These projectors collectively show a single, unified
display of three-dimensional (3-D) objects covering multiple
screens in real time, as well as live video that can move with
smooth transitions between screens. There is also a ring of am-
bient lights for setting the overall visual tone of the space. Local
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visual effects can be created using the red, green, and blue neon
lights in each floor tile in Ada’s skin.

Audio: Ada is able to generate a wide range of sound effects.
These sounds can be distributed across the entire space or local-
ized using a matrix mixer. Ada expresses herself using sound
and music composed in real time on the basis of Ada’s internal
states and sensory input. Ada can also change the pitch of Ada’s
output depending on what Ada hears from Ada’s visitors. The
composition is generated using a system called Roboser [20].

Touch: Ada has 20 16-bit pan-tilt light fingers for pointing at
visitors or indicating different locations in the space. They are
standard theatre lights on a serial bus called DMX, which is also
used to control the ambient lights and the gazers.

A tracking system uses data from the floor-tile pressure sen-
sors to determine the location, speed, direction, and weight of
visitors. The limited resolution of the tiles means that it is not al-
ways possible to distinguish individual paths, so in some cases,
Ada only knows about the presence of groups of people at cer-
tain locations. To obtain more information about individual vis-
itors, a vision system deploys gazers to collect images of people
who have been localized on the floor. The audio system localizes
and recognizes basic sounds (e.g., the word Ada, pitch, note, and
key) to help identify salient individuals. On the output side, the
Roboser system composes real-time music and sound effects,
a video server allows the visualization of saved and live im-
ages, video streams, and trajectory plots of identified visitors,
and a DMX server controls the light fingers, gazers, and am-
bient lights. The software implementing all of these functions
is a mix of procedural/object-oriented C/C++, Java-based soft-
ware agents, and models of large-scale neuronal circuits built
using a real-time simulation package called IQR [21].

During normal operation, the main space received about 25
visitors at a time and entertained them for about 4–6 min, de-
pending on the interactions that occurred. Due to the extremely
large number of visitors that wanted to see Ada, it was neces-
sary to control visitor flow very rigidly to avoid problems with
overcrowding. This was desirable both for safety reasons and
to ensure that each visitor had a reasonable amount of space
in which to interact with Ada. Before entering the main space,
all visitors were given a brief introduction to Ada by passing
through a conditioning tunnel containing examples of Ada’s
components. While watching the group in front of them, visi-
tors also received brief verbal explanations (in German, French,
or English) of how to interact with Ada.

To provide for a natural progression in visitor interaction, Ada
incorporates six basic behavioral modes: sleep, wake, explore,
group, play, and end. In sleep, visitors enter Ada, filled with
soft blue floor and light finger effects, simple reactive floor be-
haviors, and soft music. They can then induce Ada to wake by
running around and making noise. As a result, Ada will display
a sudden change in the ambient illumination conditions to bright
yellow and a different music style. This transient phase settles
down to explore mode, the longest phase of Ada’s activity cycle.
During this phase, visitors are tracked as they wander around the
space and their compliance is tested by periodically assessing
their responsiveness to visual cues consisting of single flashing
white tiles next to them. Visitors who respond to the cues by
stepping on the flashing tiles build up compliance, until they are

rewarded with light fingers directed at them and live video of
themselves projected on the BigScreen. This sequence of inter-
actions expresses the principle of resource allocation based on
behavioral salience, i.e., Ada only provides device attention to
visitors who are responsive to interactive cues and are, therefore,
interesting to Ada. After a while, the space switches to group
mode, which contains similar interactions to explore mode but
with one key addition: all tracked visitors may be given cues
to induce them to move to a particular target location. Upon
reaching the target location, the space switches to play mode,
where a simple game is played where visitors try to step on an
animated bouncing tile. Finally, it is time for the visitors to leave
when Ada enters End mode, characterized by sad music, dark
red color schemes and tile cues moving toward the exit of the
space.

In this paper we concentrate on how Ada was able to learn
the most effective cues to deploy to influence people to move
to a particular location in the space during group mode. The
following sections describe the learning architecture behind this
aspect of Ada’s learning capability and the results of various
experiments designed to measure its effectiveness.

III. VISITOR GROUPING: NEURAL ADAPTIVE ACTION

SELECTION USING DISTRIBUTED ADAPTIVE CONTROL (DAC)

The learning module operating in group mode is based on a
neural model of classical and operant conditioning called DAC
[22]. DAC is a model of the basic paradigms of animal learning;
classical and operant conditioning. Here we focus solely on the
classical conditioning part. Classical conditioning goes back to
the work of Pavlov in the late 19th and early 20th century [23].
He showed that when a motivational stimulus, e.g., food, or un-
conditioned stimulus (US) was paired with a neutral stimulus,
e.g., a sound, or conditioned stimulus (CS), the latter would over
trials trigger a conditioned response (CR), e.g., salivation, sim-
ilar to the unconditioned response (UR) triggered by the US
alone. This form of learning is now seen as one of the funda-
mental mechanisms underlying adaptive behavior. Given a set
of appetitive and aversive US US and CS, DAC selects
UR based on a set of predefined (US , UR) reflex mappings. If
a CS is consistently paired with a US, DAC will acquire a CR. In
this way, DAC directly implements the notion of stimulus sub-
stitution, a standard interpretation of the classical conditioning
paradigm.

DAC consists of three tightly coupled layers of behavioral
control: reactive, adaptive, and contextual control (Fig. 2).
The reactive control layer provides a behaving system with a
prewired repertoire of reflexes, which enable it to interact with
its environment and accomplish simple automatic behaviors.
The activation of any reflex, however, also provides cues for
learning that are used by the adaptive control layer. Adaptive
control provides the mechanisms for the adaptive classification
of sensory events and the reshaping of responses supporting
simple tasks. The sensory and motor representations formed at
the level of adaptive control provide the inputs to the contextual
control layer, which acquires, retains, and expresses sequential
representations using systems for short- and long-term memory.
These representations are used to control ongoing behavior in
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Fig. 2. Overview of the DAC architecture that consists of three layers: reactive,
adaptive, and contextual control. (See text for a detailed explanation.)

Fig. 3. DAC reactive and adaptive control layers. (�) = aversive; (+) =
appetitive. (See text for an in-depth explanation; adapted from [1].)

the context of behavioral plans. DAC has been tested using
different simulated and real mobile robots and has been shown,
among other things, to approximate an optimal, in a Bayesian
sense, solution to foraging [1], [24], [25]. For Ada, only the
reactive and adaptive control levels of DAC are used.

A. Reactive Control

The reactive control structure (Fig. 3) is implemented by
four populations of simulated neurons that are interconnected
by prewired fixed connections. The sensor readings of the
appetitive US , and the aversive US , are projected onto two
populations of internal state (IS) neurons, IS and IS . The
input of cell in IS population is defined by

(1)

where is the state of element of the US conveying sensor and
is the gain of the inhibitory input received from population

. Note that all variables are time varying.

The activity of unit in IS population , is defined by
thresholding the integrated input

(2)

where is the Heaviside, or step function, and defines the
activation threshold of the units of IS population .

Conflicts in action selection are resolved through competition
between IS and IS . This competition is expressed via the in-
hibitory population . Here, it is assumed that resolving aversive
situations takes precedence over responding to appetitive ones.
The input to unit of the inhibitory population is
derived from the activity of the aversive internal state popula-
tion IS

(3)

where is a decay factor IS is the size of the
population and IS is the activity of the IS population.

The activity of population is determined by thresholding
with (3).

Both IS populations will depolarize specific neurons in pop-
ulation UR, which represents particular actions. The input, ,
of unit in the UR population is defined as

(4)

where denotes the number of IS populations, is the size
of IS population , and is the strength of the connection
between cell of IS population and cell of the UR population.

After updating their inputs, the UR units compete in a winner-
take-all fashion. The winning unit’s activity is again thresholded
using . If its activity is above threshold, it will induce a
particular motor action, or a CR or UR. If none of the neurons
of the internal state or motor populations are active, the reactive
control structure will resort to its default action of exploration.

B. Adaptive Control

The adaptive control layer is defined on the basis of the reac-
tive control layer. It adds the components dealing with the pro-
cessing of CS events, and their association with internal states
and overt responses. The activity of unit in population CS
is derived from the state of element of the input sensor

(5)

where is a transduction function.
CS, in turn, excites populations and , in a modified

form of (1). In this new form, the input, , of cell in IS pop-
ulation is defined by

(1')

where is the size of the CS population, is the efficacy of
the connection between CS cell and cell of IS population .

is the state of element of the US conveying sensor and
is the gain of the inhibitory input received from population .
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The synapses forming the connections between these popu-
lations are modifiable using a predictive Hebbian learning rule
[25]. This method embeds a local learning rule in a recurrent cir-
cuit. After the inputs of the IS populations are updated (1’),
the IS populations in turn recurrently inhibit the CS population.
The resultant activity, , of unit in the CS population now is
defined as

(6)

where is a gain factor modulating the effect of the recurrent
inhibition and is the recurrent prediction defined by

(7)

where denotes the number of IS populations, is the size
of IS population is the strength of the connection between
cell of IS population and cell of the CS population, and

is the integrated activity of unit of IS population . is
the predicted CS, given the state of the IS populations, and will
be referred to as a CS prototype. The connections between unit

of population CS and unit of IS population now evolve
according to:

(8)

where defines the learning rate of the connections between
population CS and IS population . Despite the possibility of

attaining negative values, is kept greater than or equal to
0 at all times. The representations of CS events constructed in
this way will ultimately express the average CS state condi-
tional to particular IS states. This solution allows the use of local
learning rules, while preventing problems such as overgeneral-
ization, primacy, and saturation [25].

DAC has been investigated using formal approaches [26] and
robots [22], [25], [27], [28], and has been shown to be compat-
ible with formal Bayesian models of human decision-making
[1]. In one task, a mobile robot associated colored patches on
the floor of an arena with actions in order to minimize the trav-
elled distance between targets. For many different task config-
urations, the model would find the shortest route between tar-
gets in this robot equivalent of a random foraging task [28]. The
DAC architecture has established itself as a standard in the field
of artificial intelligence and behavior based robotics [29]–[34].
The principles investigated at the level of reactive and adaptive
control have been translated into biophysically detailed models
of key structures involved in classical conditioning, i.e., the ex-
perience-dependent reshaping of receptive fields in the primary
auditory cortex [35], [36] and the adaptive timing of responses
by the cerebellum [37]–[39].

A. Newell defined general intelligence as the ability to make
anything a task [14]. This implies that any architecture under-
lying such an ability must be shown to generalize easily to dif-
ferent task domains. Although DAC was originally developed
as a model of classical and operant conditioning as applied to
mobile robots, here, we assessed whether it generalizes to other
learning situations. In Ada, DAC was applied to the learning of

cues for guiding visitors to a particular location. For both the
mobile robots and Ada, the DAC architecture was employed as
a model of adaptive action selection where the generic learning
problem consists of two elements: 1) stimulus identification,
i.e., deciding which events are behaviorally relevant 2) and ac-
tion selection, i.e., deciding which action allows the system to
achieve its goals given these salient stimuli. In this respect, DAC
deviates from popular machine-learning approaches, such as re-
inforcement learning that aim at solving the latter problem as-
suming a priori definition of an input space [40].

To learn how to guide visitors, Ada must choose a behavior (a
cue), deploy it (show the cue to a visitor), and evaluate the effect
on the environment (the visitor’s subsequent action). It is not
known a priori what types of cues will be effective. If the vis-
itor follows the cue and moves toward the goal location, then it
was effective; if the visitor moves away (or does not move at all),
then it was not. This provides a mapping of visitor movement to-
ward the goal position as appetitive US and movement away
as aversive US . Ada was given a library of four different cue
colors (red, green, blue, and white) and two types of cue (single
flashing tile and travelling bullet toward goal), giving a total
of eight different cues. Thus, there are eight different types of
US UR and eight corresponding US UR stimuli—one for
each cue in the library. For the results presented here, the goal
was placed in a fixed location that was usually avoided by vis-
itors, but in principle, it could easily be placed in dynamically
changing positions.

In principle, the initially neutral CS could be composed of
many multimodal components combining tactile, audio, and
visual information. However, for simplicity the CS was set to
reflect the general level of crowdedness of the space, with four
neurons coding increasing levels of visitor crowdedness. The
rationale behind this choice was twofold. First, the CS should
ideally be provided by passive visitor interaction—the visitor
should not have to perform special actions to provide Ada
with the necessary information to provide cues. Second, we
expected that the visitor density could affect the likelihood that
they would be able to see and react to different cues (e.g., due
to occlusion by other visitors in crowded situations), hence,
making different cues more appropriate for different visitor
density scenarios.

Fig. 4 illustrates the operation of the group process. Topo-
graphic maps of visitor locations are continually fed into the
ranger module, and the motion of the most “salient” visitor
(as determined by the compliance testing procedure described
in Section II) is tracked. An error signal calculated by the
ranger module, indicating motion toward or away from the
goal position, is fed into the cue module. Once activated by
behavior server, the cue module converts and gates the error
signal into DAC as a US or US coded with the current
UR (i.e., the last selected cue). At the same time, the visitor
density coding from floor server is gated into DAC as the CS.
The density coding consists of four cells which are active as
follows: 0–10 visitors cell 0; 11–20 visitors cell 1; 21–30
visitors cell 2; visitors cell 3.

Within DAC, the association of US and CS takes place. The
resulting UR (or CR, if caused by a CS) will either be a forced
action or a default explore action. If an explore action UR
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Fig. 4. Overview of neural pathways within the group process. Boxes inside
the dashed rectangle provide for the core functionality of this behavioral mode.
Behavior server, Floor server, and Object server provide the key interface
processes to the Ada infrastructure. (a) The process is activated when signalled
by the Behavior server. (b) The topographic location of the most salient visitor
provided by the Object server is compared with (c) the goal position and
(d) a motion error signal is generated is generated by the Ranger module.
(e) The motion error signal and (e) the current visitor density form the (f) US
and CS signals, respectively. (h) The UR coming from DAC can then be output
to produce (i) the selected cue. If no US or strong enough CS is available,
(g) a default explore behavior is triggered, which maps a random action onto
the output.

occurs, the explore cell groups are activated to provide a ran-
domly chosen UR, which is then mapped back into DAC to
provide a real action. Finally, the resulting UR passes through
cue into floor server, where the cues seen by the visitors are
generated.

The predefined reflexes within DAC for the learning scheme
are very simple. Two basic rules apply that define the essence of
trial and error learning: if something works, do it again; other-
wise try something else at random. This basic learning process
in DAC provides for the selection of cues that were successful.
In addition, these cues will be associated with the CS, allowing
DAC to identify those cues that are effective and ineffective
given the crowdedness of the space. DAC uses a weight matrix
to initialize these rules.

IV. ADAPTIVE BEHAVIOR SELECTION TESTS

Groups of approximately 25–30 visitors were exposed to the
normal exhibit behavior cycle of about 5-min duration. Before
entering the space, the visitors were given the normal explana-
tion of the interactions in Ada, but were not told anything about
group mode. During group mode, which was fixed to about 30-s
duration, all tracked visitors were exposed to cues generated
by DAC. The cues were all directed to one corner of the space
(Fig. 5), which previous measurements had shown that visitors
were very unlikely to visit during a typical stay in the space.
Three different cases were tested:

1) no grouping cues (18 visitor cycles);
2) DAC learning of grouping cues (19 visitor cycles);
3) fixed-grouping cues (white bullet of tiles toward target,

length four tiles, cycle time Hz) (11 visitor cycles).
Visitor tracking and tile-occupancy data were recorded si-

multaneously, along with a digital video record of the experi-
ments. At the start of every trial started, the synapse weights be-

Fig. 5. Tile layout of Ada main space (360 tiles) and location of target tile for
group mode experiments (marked with an asterisk). Each tile is about 0.66 m
across. The entire space was surrounded by half-mirrored walls, except for the
entry and exit, which were left open. The sliding door was not used.

tween the CS and IS populations were set to 0. During each trial
with a visitor group in the DAC learning condition, the synapse
weights evolved by the DAC module were recorded.

V. RESULTS

Two different measures were considered to evaluate the ef-
fects of DAC on visitor behavior: their global CoG, and their
tendency to visit the area around the target tile. These mea-
sures are discussed in the following Sections V-A and V-B,
respectively.

A. Visitor Distribution: CoG

One of the most simple measures of overall group distribution
is their CoG. The CoG is defined as the mean and coordi-
nates of all loaded tiles at each point in time. Fig. 6 shows a
comparison of the progression of the visitor CoG for the DAC
learning and no cues cases. When the group process is switched
on, there is a relative CoG shift during group mode of up to

in the ( ) direction. The effect of the shift
tended to persist during the following (game) mode, and lasted
until about halfway through end mode. This represents a change
of visitor behavior lasting for over a minute. However, the shift
was not found to be significant (two-tailed test, ) in ei-
ther the or direction due to the large variability of the visitor
CoG at any timestep. The deviations between the curves in sleep
and end modes are due to normal fluctuations in the entry/exit
patterns of groups of visitors.

These results could mean that there was no significant under-
lying change in visitor behavior, but this interpretation seems
unlikely since visual observation indicated that a large propor-
tion of the visitors did follow the learned cues. Rather, it is pos-
sible that visitor behavior may have changed but maintained the



72 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 1, JANUARY 2005

Fig. 6. Effect of group mode on visitor CoG. Shown are the x and y coordinates of the visitor CoG during a behavioral cycle with DAC learning enabled (solid
lines, averaged over 13 cycles) and disabled (dotted lines, averaged over 18 cycles). The learning-enabled data are shown after the synaptic weights have stabilized
(after six cycles). The length of each cycle is normalized on the horizontal axis as follows: sleep 0–1; wake 1–2; explore 2–3; group 3–4; game 4–5; and end 5–6.

same overall average, e.g., if half of the visitors follow the cues
and the other half remain stationary, then their overall CoG will
not change much. As will be seen in the following section, this
is indeed what happened in the grouping experiments.

B. Visitor Distribution: Tile Occupancy and Tile Event Rate

Two measures of visitor activity will be referred to in this
section: tile occupancy and tile event rate. Tile occupancy is
defined as the fraction of the total length of the behavior mode
that a particular tile is loaded (someone is standing on it). This
is a static measure of visitor behavior, since a person could be
standing on a single tile without moving—this would lead to
high occupancy for that tile, even though the visitor is probably
not doing very much. In contrast, the tile event rate is defined as
the frequency of step-on or step-off events for a particular tile.
This is a dynamic measure of visitor behavior, as a tile which is
constantly being jumped on will have a high event rate, without
necessarily having a high average occupancy. Both measures are
required to gain an overall understanding of the movements of
visitors in the space.

A comparison of visitor behavior during group mode, with
DAC switched on or off, is shown in Fig. 7. These plots show the
difference between the DAC on and off cases; i.e., identical vis-
itor behavior would show up as a difference of 0. The difference
in occupancy shows a bias toward the lower righthand corner
of the space (middle panel). There are also some dark patches
with negative relative occupancy, which is to be expected since
the overall visitor occupancy, for the whole floor should remain
roughly the same if nothing else changes in the behavior mode.
Each plot considered on its own appears to be highly noisy, even
though it represents the average of many trials. The main reason
for this is that there are many more tiles than there are visitors,
and group mode is relatively short, meaning that the probability

of any tile being loaded during a given behavior mode is low. As
a result, there are many isolated peaks in the plots, representing
places where a single visitor lingered on a tile (in the case of tile
occupancy) or was particularly active (in the case of tile event
rate).

While both the tile occupancy and the tile event rates are in-
creased for group mode with DAC learning switched on, the
separate plots are not visually convincing. This is largely due to
the high noise levels, and the fact that we are considering two
partly complementary aspects of visitor behavior: occupancy
and event rate. What is needed is a combination of the two mea-
sures to quantify areas with high activity, i.e., those with both
high tile occupancy and high tile event rates. A straightforward
way of doing this is to define the visitor activity difference
as the weighted sum of the changes in the normalized visitor oc-
cupancy distribution and the tile event distribution

difference in activity at tile between group

mode learning on and off

difference in averaged occupancy at tile

between group mode learning on and off

difference in averaged tile event rate at tile

between group mode learning on and off.

(Here, the weighting factors have been set to 0.5 in both
terms, but this need not necessarily be the case, depending on



ENG et al.: INTERACTIVE SPACE THAT LEARNS TO INFLUENCE HUMAN BEHAVIOR 73

(a) (b) (c)

Fig. 7. Effect of group mode on (a) tile occupancy, (b) tile event rate, and (c) activity distributions (averaged data). Positive values on the contour scale indicate
areas of positive changes in occupancy, tile event rates, or activity as caused by DAC. The target tile is indicated by a black asterisk in the lower-right corner of
the space.

Fig. 8. Comparison of average changes in target and nontarget areas of the floor during group mode for DAC-learned cues and no cues. Shown are differences in
tile occupancy, tile event rate, and tile activity. Error bars indicate one standard deviation.

the relative importance given to tile occupancy and tile event
rates.) The resulting visitor activity plot (Fig. 7, right panel)
shows a much clearer shift of visitor activity during group
mode in the direction of the target location induced by DAC.

To check whether the observed changes are significant, we
can compare the visitor activity measures for two different re-
gions: the target area and the rest of the floor. We define the
target area as being all tiles within a five-tile radius of the target
(Fig. 8). Fig. 8 was chosen to allow for the size of the different
cues which could be up to four tiles long. As can be seen, the

mean changes in the tile occupancy, tile event rate, and activity
level were all higher for the target area than in the rest of the
floor. The differences are significant for all measures (two-tailed

test, ), with the most significant change for the
combined activity measure. No similar change was seen for ex-
plore mode. This significant, mode-dependent change in activity
shows that the cues learned by DAC during group mode are ef-
fective in influencing visitor behavior.

One objection that could be raised to this result is that any
cue might have worked to influence visitor behavior, i.e., DAC
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Fig. 9. Averaged comparison of changes in target and nontarget areas of the floor for fixed white bullet cues and DAC-learned cues for group mode. Shown are
differences in tile occupancy, tile event rate, and tile activity. Error bars indicate one standard deviation.

did not learn anything useful. This can be addressed by using a
control case, where visitors were always exposed to a constant
cue during group mode. This cue—an animated white bullet
shooting four tiles in the cue direction at a rate of 1 Hz—was
chosen as a very visually salient cue. Moreover, visitors were
already attuned to the color white as a cue color, since the com-
pliance testing during explore mode made use of cues consisting
of single flashing white tiles. A comparison of the change in vis-
itor behavior in group mode (Fig. 9) shows that the changes in
the target area were significantly smaller for the white bullet cue
than for DAC (occupancy: , event rate: , ac-
tivity: ). Thus, we can conclude that DAC was more
effective at influencing visitor behavior than the selected control
case cue.

Overall, we can conclude that enough of the visitors followed
the cues enough of the time to cause a measurable increase
in their activity in the area near the cue target. However, their
overall CoG was not significantly changed, suggesting that their
distribution relative to each other changed during group mode.

C. Synapse Weights

In the previous sections, we saw that the cues acquired by
DAC were able to effectively influence visitor behavior. In order
to verify that the observed difference in visitor behavior is due to
the internal processing in DAC, its learning performance must
be analyzed and the selected cues identified. If learning was ef-
fective one would expect to see the association of one partic-
ular action (cue type CR) with a particular value of crowdedness
(CS). The evolution of the synaptic weights of the DAC learning

system for a typical run is shown in Fig. 10. There are eight dif-
ferent cues (US) and four visitor density categories (CS), giving
a total of 32 (US , CS) and 32 (US , CS) possible associations.
Most of the synapse weights remain close to zero; however, for
both US and US a few weights emerge that dominate the
others. The US developed weights are generally much larger
than the US weights. The evolution of the synaptic strength
between the CS and IS populations, representing the learned
cue, shows that learning occurs very rapidly. In the case of IS ,
the synaptic weights converge after nine group mode cycles
(trials); in this example, a cue consisting of a single flashing blue
tile was selected. A second action was also reinforced (single
flashing red tile), but it did not translate into overt actions due to
the winner-take-all mechanism in DAC. For IS , learning pro-
gresses more rapidly, and after five trials a cue is identified that
is not effective (single flashing blue tile). The fact that the single
flashing blue tile appears in both and IS and IS is evidence
of the inconsistent input provided by different most compliant
visitors; however, this does not cause DAC to fail as the weight
in IS remains stable and much higher than the IS weight. The
weights continue to change over time, suggesting a competition
among several cues.

In addition to the learning phase, recall tests were conducted
in which learning was allowed to proceed for about 10–12 cycles
(about 1 h), after which the synaptic weights were frozen and
the signals cut off from DAC. Thus, the input that DAC
would receive was the CS signal, which should be enough to
elicit a consistent UR on its own. Visual observation of the recall
tests conducted in this way indicated that the CS-driven recall
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Fig. 10. Typical evolution of DAC weights in group mode. The weights shown are at the end of each visitor cycle (1 cycle = 1 trial). Shown are typical
developments of learned (A) appetitive and (B) aversive DAC synapse weights for cue selection during one experiment. The different traces (line colors/symbols)
indicate the development of synapse weights for different cues.

did indeed occur as expected, demonstrating that DAC had been
able to store its learned knowledge correctly.

VI. DISCUSSION

This study assessed the ability of the DAC architecture for
classical conditioning to generalize from mobile robot based
paradigms to an interactive space. In parallel our experiments
evaluated whether the behavior of the visitors to this space could
be influenced in an adaptive and dynamic fashion. Our results
show that DAC is able to learn to select cues that are effective
in influencing the positions of visitors despite high variability
in the visitor reactions to the cues. Visitors were not aware of
the DAC learning system or instructed to react in any particular
way to the cues it generated. They were told about the com-
pliance test in explore mode, and it is possible that they may
have extrapolated this information to the multicolored, multitile
cues used by DAC. However, the control test we ran showed that
DAC was still able to learn a cue that was more effective than
one similar to that used in the compliance test (which visitors
already knew how to respond to). DAC was able to consistently
develop and rapidly adapt stable weights, and it did not show
catastrophic forgetting due to exceptions despite the highly vari-
able user input, a known problem of other learning models de-
veloped in the field of reinforcement learning [40]. Thus, the
DAC architecture, operating as designed, was able to learn to

perform the task of adaptively influencing human behavior by
extracting an effective relationship between the crowdedness of
the space and the cues that should be deployed to guide the
visitors.

The change in visitor behavior resulted in a significant local
increase in activity around the target tile, without a corre-
sponding significant change in the overall CoG of visitors. This
probably reflects the observation that some visitors followed the
cues, while others did not. Thus the system was acting as a sort
of spatial visitor filter, i.e., at the end of group mode, the more
interactive visitors were probably those nearest to the target
tile. This effect of grouping visitors with similar behavioral
properties could be used to allow future interactive spaces to
customize their interactions according to broad similarities
between spatially separated groups of visitors. Such a scheme
could be particularly useful in situations where collecting data
from single visitors over extended time periods is difficult or
impractical, since the space can group similar visitors rather
than trying to keep track of each visitor’s individual char-
acteristics. Moreover, this learning mechanism can allow an
interactive space to shape its cues to its inhabitants.

Our analysis of two components of visitor behavior as mea-
sured by a tactile floor—tile occupancy and tile event rate—led
to the definition of visitor activity as a normalized sum of the
two components. This measure was able to provide convincing
evidence of the effect that DAC had on the visitors. Based on this
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result, we suggest that it is possible that the concept of visitor
activity as defined here may reflect some key aspects of visitor
behavior in interactive spaces. Such a multicomponent measure
could be extended in the future to include other sensory modali-
ties to provide richer visualizations and more accurate quantifi-
cation of human behavior in these spaces.

The successful generalization of DAC to the task of influ-
encing human motion suggests that it at least partly satisfies
Newell’s requirement for a generally intelligent system in which
anything can be a task [14]. In general, DAC could be applied
to any classical and operant conditioning learning task where
a set of appetitive and aversive stimuli need to be matched to
appropriate behaviors. The most significant challenge in doing
this would be taking timing into account, which is important
for achieving behavior switching on appropriate timescales for
visitors. Timing issues in the cue-learning application discussed
here were handled in an ad-hoc manner, but a more systematic
approach would be needed to handle different tasks. The im-
plementation of DAC used here (DAC2) does not include any
timing mechanisms; however, later versions such as DAC3 and
DAC5 do contain notions of action timing and sequencing [24].
Incorporating the notion of time (such as that found in later ver-
sions of DAC) into environmental control learning tasks will be
important for supporting more advanced, finer-grained commu-
nication between environments and their inhabitants.
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