
An FPGA Dynamically Reconfigurable Framework for Modular
Robotics
Andres Upegui, Rico Moeckel, Elmar Dittrich, Auke Ijspeert, Eduardo Sanchez
Ecole Polytechnique Fédérale de Lausanne – EPFL
Logic Systems Laboratory - LSL
(andres.upegui, Rico.Moeckel, auke.ijspeert, eduardo.sanchez)@epfl.ch, elmar.dittrich@web.de

Abstract

Dynamic Reconfiguration has always constituted a challenge for embedded systems designers. Nowadays, tech-
nological developments make possible to do it on Xilinx FPGAs, but setting up a dynamically reconfigurable sys-
tem remains a painful and complicated task. In this paper we propose a framework for performing it in an easy way,
for a specific application: Modular Robotics. We propose an architecture containing a Microblaze processor and a
reconfigurable module. The module is defined in VHDL and synthesized by the user; then we provide the scripts
for easily generating the corresponding configuration bitstreams for a dynamic partial reconfigurable controller
for our Modular Robot. The proposed framework is easily extendable to other applications.

1 Introduction

1.1 Self-Reconfigurable Machines

A Self-Reconfigurable Machine is a machine that has
the possibility to modify its own hardware configura-
tion. This feature provides an enhanced flexibility that
intends to reduce product and computational cost –
defining computational cost C in terms of power con-
sumption P and execution time T by the equation C =
aP + (1-a)T where a is a trade-off term for giving
more importance to P or T, given the application.
These reductions would be mainly achieved by two
facts:
- Reusability: The same hardware substrate allows
any number of functionalities without increasing chip
area, just by reconfiguring the hardware.
- Power Consumption: For low power applications,
specialized low power circuits can be loaded when
required. Additionally, the reusability should avoid
consumption in unused circuits.
Our platform intends to provide the possibility of self-
configuring a system implemented on an FPGA, taking
advantage of the Dynamic Partial Reconfiguration
(DPR) property from Xilinx FPGAs. The proposed
reconfiguration is module based, providing the possi-
bility of self-reconfiguring a full peripheral (or several
of them), a full processor, the full system, or just some
components of a peripheral. For our purposes a pe-
ripheral can be a neural network, a fuzzy controller, or

a coupled oscillators set. Several algorithms implemen-
tations on FPGAs have been documented as being
faster than on processors , while for power consump-
tion just some case studies have demonstrated that
FPGAs can be less energy demanding [1].
The reconfiguration is driven by an embedded soft-
processor as shown in figure 1. This processor loads
partial bitstreams from a bitstream repository via wire-
less communication, and stores them on an on-board
memory; previous works on wireless sensor networks
platforms [2, 3] provide an appropriate low power
framework. This processor partially reconfigures the
system looking for minimizing the computational cost,
given a set of operations to be performed for a given
task. Operations should be exe cutable by hardware or
software as described in [4]; the choice should be
done according to the expected computation cost.
Future developments on FPGAs technologies should
allow a pipelined reconfiguration as described in [5],
thanks to reductions in reconfiguration latencies, or
storage of backplane bitstreams.
The applicability of Self-Reconfigurable Machines
extends to diverse fields such as Wearable Computing
[1], Wireless Sensor Networks [6], and Modular Ro-
botics as described in this paper. The first board pro-
totype is described in section 3. This board provides
the requirements needed to implement our Self-
Reconfigurable Machines. It supports DPR as well as
the implementation of a soft-processor, taking into
account a set of constraints specified for these types
of designs. It provides also a Bluetooth interface for
allowing access to the bitstream repository

Figure 1 Self-Reconfigurable Machine schema.

1.2 Modular Robotics

A modular robot can be defined as a robotic system
consis ting of a set of discrete comp onents (which we
will call units) that can be assembled in different ways
to obtain diverse shapes such as snake, quadruped,
biped, or hand-like robots . Each one of these units
should be autonomous, and should have the possibil-
ity “to do” something independently from other units
(i.e. to move, to sense, to compute …).
Self-reconfigurable modular robots arise as a great
engineering challenge. These systems are composed
of homogeneous or heterogeneous comp onents and
have the ability of self- assembling or disassembling
multi-unit structures, configuring their shapes without
human intervention. This feature allows also the robot
to self-repair in case of a unit failure by replacing it. [7,
8]
This special field of robotics holds many interesting
challenges in fields as diverse as mechatronics,
MEMS (Micro Electro-Mechanical Systems), smart
actuators, distributed control, autonomous strategies,
learning algorithms, ad-hoc networks, nanotechnolo-
gies, bio-inspired systems, etc.
One can foresee that a system with such degree of
mechanical flexibility can largely benefit from the logic
flexibility offered by self-reconfigurable machines.
Different types of controllers and functionalities could
be tested for different robot shapes, and it can be
interesting for exploring locomotion controllers [9],
bio-inspired architectures [10], learning algorithms,
evolutive controllers [11, 12], etc.
In our case, we are particularly interested in the adap-
tive control of movement and locomotion in the multi-
unit structures. The units described in this art icle will
be used to implement adaptive control of locomo tion
based on the biological concept of central pattern
generators (CPGs) [9]. CPGs are neural networks capa-

ble of producing coordinated oscillatory signals with-
out any oscillatory inputs. The CPGs for swimming
and walking can be simulated using neural network
models or coupled oscillator models [13]. CPGs are an
interesting concept for modular robotics because of
their distributed nature (they are made of multiple
coupled oscillatory networks) and because of their
robustness against perturbations and lesions. In our
implementation, movements of each robotic unit will
be controlled by one or several nonlinear oscillators
which will synchronize with their neighbors through
coupling connections implemented with the Bluetooth
communication protocol.
In this paper we present a framework for performing
DPR for a modular robot controller. However, discus-
sions about hardware implementations of any specific
controller are beyond the scope of this paper. Anyway,
related work is described in [10, 12]. In section 2 we
describe our robot mechanical characteristics, section
3 describes the electronics, section 4 gives an intro-
duction to DPR, in section 5 we propose our frame-
work including the system architecture and the bit-
streams generation, and finally section 6 concludes.

2 YaMoR, our Modular Robot

One of the essential features of YaMoR (Yet another
Modular Robot) [14] is its simple and low cost me-
chanical design (figure 2). Each unit has a one-degree
of freedom rotational actuator. The body of the ele-
ment can be described as a block with a round shaped
side. For connecting and transmission of the torque, a
pivotable u-shaped aluminium profile is connected
with the actuator.
The support structure of YaMoR is composed of two
layers of printed circuit board in a sandwich-like de-
sign. The motor is positioned perpendicularly between
the two layers and fixed directly to the lower layer. The
actuator is a standard rc-servo, an off-the-shelf motor
with integrated position controller. To operate the
units we use two Li-Ion batteries, which theoretically
allow the unit to work up to 45 min depending on the
load.
YaMoR units are simple and robust, but require man-
ual reconfiguration due to passive connectors. The
problem with connectors in Modular Robotics is that
they should be reliable and must withstand high
forces and on the other hand they should be compact
and easy to open or attach. For our first experiments
we used a combination of strong Velcro fasteners and
screws to support the structure at heavy load.
Because of the genderless characteristic of the used
Velcro we can interconnect any surface onto another.
Interesting properties show up when connecting the
alu-levers of two units. In this way we can obtain
configurations similar to M-TRAN [7]. The first ex-

periments showed usability for achieving different
types of locomotion like crawling, hopping and snake-
or inchworm-like locomotion. (See movies in [14])

Figure 2. YaMoR robot: A single unit and a rolling
track configuration.

With the help of some passive connection element
(like in the interesting configurations of Polybot [8])
one can easily build up some pedal structures (like
spiders or reptiles). Last but not least, with a minimum
of six YaMoR units one can configure a rolling track,
which turns its construction wheel-like on the ground
(figure 2).

3 The Hardware platform

YaMoR includes two separated control boards: one
board containing a Bluetooth-ARM System and one
carrying a Spartan-3 FPGA. Furthermore there is a
service board containing power supply and battery
management inside each robot unit. This architecture
with distributed electronic components gives a flexible
solution where the pins of the microcontroller and the

FPGA can be connected together as necessary or one
of the boards can be left out or be replaced if useful.

3.1 FPGA board

The main electronic component of this board is a Spar-
tan-3 XC3S400 FPGA with 400.000 gates meeting most
requirements for reconfigurable hardware. The FPGA
board supports two different reconfiguration modes:
Slave Serial and Boundary Scan (JTAG). It supports
partial reconfiguration and Microblaze implementa-
tions. The FPGA board also contains a 4 MBit high
speed SRAM directly connected to the Spartan-3.
Because for modular partial reconfiguration inside a
Xilinx FPGA one may divide the device in columns, we
respected the constraints for connecting the SRAM to
the pins of the Spartan-3 so that a MicroBlaze can take
advantage of the SRAM while using the partial recon-
figuration feature (See board in figure 3).

Figure 3. FPGA Board

The FPGA is directly driven by a 50 MHz oscillator.
However, the Digital Clock Manager included in the
Spartan-3 FPGA allows modifying the internal clock
frequency. General purpose Input-Output pins distrib-
uted around the FPGA are accessible through micro-
match connectors on the PCB for debugging pur-
poses . A push button allows the implementation of a
reset or test input.

3.2 Bluetooth board

The second control board inside the YaMoR unit in-
cludes a Bluetooth-ARM System on Chip (SoC) driven
by a 12 MHz clock. The ARM containing the embed-
ded Bluetooth stack also allows running user defined
code e.g. for reconfiguring the FPGA via Bluetooth or
for doing the partial reconfiguration of the FPGA.
Communication between FPGA and ARM can be es-
tablished through the flexible connection system and
an UART. It is possible to send commands from a
Microblaze implemented on the Spartan-3 to the ARM
to ask the ARM to perform a reconfiguration of the
FPGA. The necessary bit file for the FPGA configura-
tion and the program code for the SoC are stored in-

side a 16 MBit Flash memory on the microcontroller
board.

3.3 Power supply board

The third electronic board is a service board contain-
ing the power supply for the other electronics: Three
high efficiency step-down converters produce the
different voltages necessary to drive the motor and
the electronics of each unit. Furthermore, the power
supply board contains the components used for bat-
tery management like protection from discharging the
batteries too much and a battery charger.

4 Dynamic Partial Reconfigura-
tion

FPGAs are programmable logic devices that permit, by
software reconfiguration, the implementation of digital
systems. They provide an array of logic cells that can
be configured to perform a given function by means of
a configuration bitstream. This bitstream contains the
configuration information for all the internal comp o-
nents. Some FPGAs allow performing partial recon-
figuration, where a reduced bitstream reconfigures
only a given subset of internal comp onents. Dynamic
Partial Reconfiguration (DPR) is done while the device
is active: certain areas of the device can be reconfig-
ured while other areas remain operational and unaf-
fected by the reprogramming [15]. For the Xilinx’s
FPGA families Virtex, Virtex-E, Virtex-II, Virtex-II Pro
(applicable also for Spartan-II and Spartan-IIE) there
are two documented flows to perform DPR: Module
Based and Difference Based.
With the Difference Based flow the designer must
manually edit low-level changes. Using the FPGA
Editor the designer can change the configuration of
several kinds of components such as: look-up-table
equations, internal RAM contents, I/O standards,
multiplexers, flip-flop initialization and reset values.
After editing the changes, a partial bitstream is gener-
ated, containing only the differences between the
before and the after designs. For complex designs, the
Difference Based flow results inaccurate due to the
low-level edition in the bitstream generation.
The Module Based flow allows the designer to split
the whole system into modules. For each module, the
designer generates a configuration bitstream starting
from an HDL description and going through the syn-
thesis, mapping, placement, and routing procedures,
independently of other modules. Placement and timing
constraints are set separately for each module and for
the whole system. Some of these modules may be
reconfigurable and others fixed (see figure 4). A com-
plete initial bitstream must be generated, and then,

partial bitstreams are generated for each reconfigur-
able module.
Hardwired Bus Macros must be included. These mac-
ros guarantee that each time partial reconfiguration is
performed the routing channels between mo dules
remain unchanged, avoiding contentions inside the
FPGA and keeping correct inter-module connections.
On the same way, the Modular Based flow impose
some placement constraints: (1) the size and the posi-
tion of a module cannot be changed, (2) input-output
blocks (IOBs) are exclusively accessible by contigu-
ous modules, (3) reconfigurable modules can commu-
nicate only with neighbor mo dules through bus mac-
ros (See Figure 4), and (4) no global signals are al-
lowed (e.g., global reset), with the exception of clocks
that use a different bitstream and routing channels
[15].

Figure 4. Design Layout with Two Reconfigurable
Modules. (From [15])

5 Reconfigurable Controllers

The process for implementing partially reconfigurable
designs in Xilinx devices is a task that remains painful
and complicated for FPGA designers (even for ex-
perts!!); our goal is to provide the framework neces-
sary to profit from the advantages that DPR offers for
Self-reconfigurable Machines. We present here a basic
architecture, and the scripts needed for allowing a
non-expert designer, with just some knowledge on
VHDL, to implement his own reconfigurable controller
for YaMoR.
The approach consists on proposing an initial struc-
ture, application-dependant. In this case the system
will not offer the maximum flexibility, but just the flexi-
bility that should be useful for a given application and
for a given board. In this way we provide user-
friendliness under the cost of losing unneeded flexibil-
ity. It is clear that the concept of “unneeded flexibility”
remains very subjective and nobody can determine
what kind of structure is the most appropriated for a
given application.

Our modular robot control unit disposes of a hard-
ware-software platform. The user can describe the
whole controller in software, to be run on a soft-
processor, getting rid of all the hardware stuff. Or he
can also describe his own hardware peripherals, hav-
ing the possibility to replace them in a dynamical way,
for reducing power consumption or execution time as
discussed in section 1.1.

5.1 System Architecture

Our basic architecture contains two modules (see
figure 5). The first one is a fixed mo dule that mainly
contains a Microblaze processor from Xilinx [16], fea-
turing a RISC architecture with Harvard-style, separate
32-bit instruction and data busses running at full
speed to execute programs and access data from both
on-chip and external memory. The second one is a
reconfigurable module, allowing the implementation of
the user defined logic: the robot controller.

Figure 5. Reconfigurable controller.

Fixed module: The fixed module contains a Microblaze
processor including some peripherals: 2 UART ports –
one for communicating with the Bluetooth chip, and
the second one for monitoring from a PC –, a PWM
generator for controlling the servomotors, two 32 bits
general purpose input-output (GPIO) for interfacing
with the reconfigurable module, and the necessary
peripherals for memory managing: external SRAM
controller and internal block RAM (BRAM) data and
instructions controllers.
Reconfigurable Module: The reconfigurable mo dule is
connected to the Microblaze GPIOs through a Bus
Macro, making the module content a peripheral. This
module can also access four external pads, connected
to an external micromatch, allowing a direct interface of
the reconfigurable module from outside the FPGA for
debugging purposes. This module allows reconfigur-
ing a peripheral while keeping the processor core.
Different kinds of hardware controllers are interesting
for us, namely: non-linear oscillators, neural networks,
and fuzzy logic.

5.2 DPR on Spartan-3 devices

DPR is supported for Virtex families (E, II, II-pro, IV),
however, even if the Spartan families (E, II, II-E, 3) can
be partially reconfigured the dynamic feature is not
supported – i.e. the FPGA can be partially reconfig-
ured, but the unaffected logic is disabled. This limita-
tion on Spartan-3 FPGAs does not allow reconfiguring
modules directly by the soft-processor contained in
the FPGA as described in 1.1. Instead of this, the par-
tial reconfiguration, as well as the initial configuration,
is done by the ARM microcontroller. Future robot
versions using FPGAs that support dynamic recon-
figuration should allow doing it directly.
As explained in section 4, Modular Partial Reconfigu-
ration requires Bus Macros. However, Xilinx does not
provide them for Spartan-3 FPGAs. That is the reason
why we designed our own Bus Macros. Bus Macros
are usually implemented with internal 3-state buffers,
with the goal of guaranteeing a fixed connectivity
among modules for every reconfigurable module. In-
stead of 3-state buffers (not available in Spartan-3) we
used slices’ LUTs. We provide two bus macros: one
for signals going from left to right, and another one for
the inverse. Specifically, for the Spartan-3 XC3S400 it
allows a maximum bus macro width of 132 bits.
Additionally, the Modular Based flow on the Spartan-3
family is currently not documented and supported by
Xilinx. The bitgen tool (bitstream generator) does not
allow generating partial bitstreams for Modular Based
designs, but just for Difference Based designs. For
dealing with this problem we use the Difference Based
bitstream generation for emulating the Modular Based
one by executing the following steps: (1) Assembling
of a complete design for each possible configuration
of the system – i.e. a full system including fixed and
reconfigurable module. (2) Generation of partial bit-
streams containing the difference between the initial
system and each one of the remaining configurations
and vice versa. (3) Configuration of the FPGA with the
initial bitstream. (4) For loading a module, we
download the partial bitstream containing the differ-
ence between the initial and the second system. (5)
Before downloading a new partial bitstream containing
a third system, unlike in regular Module Based flow,
we must come back to the initial system, since directly
downloading it may result in internal contentions. If
the number of possible systems is not very large it
would be possible to generate the partial bitstreams
for switching from any system to any other one, for
avoiding to come back to the initial configuration.
Given that the proposed reconfiguration is Difference
Based, it would be possible to get rid of all the Modu-
lar Based flow, and it would still be correct. However,
doing that would dramatically increase the size of the
partial bitstream, since the modular flow ensures that
the difference bitstream will just contain the recon-

figurable module, keeping unchanged the microproc-
essor module.

5.3 Bitstream Generation

As stated before, the bitstream generation uses to be
complicated. Given the huge complexity of FPGAs
configuration bitstreams , Xilinx tools are still not very
well debugged and for each reconfigurable design you
have to deal with lots of incomprehensible error mes-
sages. A given system working properly on a given
FPGA can generate errors when changing the FPGA or
when modifying the system. Usually, these errors can
be solved by “finding alternative paths”: dealing with
placements constraints, with tools options, or manu-
ally placing and routing components.
Given that we propose a base architecture for a spe-
cific application and hardware platform and that we
have already solved several problems, it will save a lot
of time to the user if he has not to solve them again.
We provide a set of scripts that deals with the prob-
lems. However, it is clear that for complex reconfigur-
able modules new problems should appear.
Some of the proposed scripts are:
create_project n: creates the required directory struc-

ture, for a number n of reconfigurable modules, and
copies the required initial files – user constraint
file, bus macros, and netlists files for top level and
the fixed module.

run_rec_module i: runs the ngdbuild, map, par, and
pimcreate for the module i . i can be “system”
(standing for the fixed module) or “1”,”2”…” n”
(index number of the reconfigurable module).

assemble_complete i: runs the final assembly phase
for the module i, generating a complete bitstream
containing the processor and the mo dule i.

assemble_partial i k: runs the final assembly phase
for the module i, generating a partial bitstream con-
taining the module i considering the module k as
the initial system.

run_all: after creating a project and copying the mo d-
ules’ netlists, this script calls the scripts
run_initial, run_rec_module, assemble_complete,
and assemble_partial, for generating a complete
bitstream with the processor module and the re-
configurable module 0, as well as the partial bit-
streams for remaining mo dules.

It must be noticed that these scripts should be reus-
able for other designs and applications, and can be
easily modified when new problems are found and
solved.

6 Conclusions and future work

In this paper we mainly present our motivations and
our initial platform and methodology proposals. We
are convinced that an application such as Modular
Robotics where mechanical flexibility is maybe the
main goal can benefit a lot from the flexibility of recon-
figurable controllers. Dynamically modifying control-
lers for different types of robot shapes (dynamically
modified too) can largely enhance the capabilities of
these robots .
We also present a technique for performing partial
reconfiguration on Spartan-3 FPGAs. By using Differ-
ence Based partial reconfiguration we emulate a Mod-
ule Based one. We discuss about the advantages,
limitations and possible improvements for this tech-
nique.
The presented approach may increase system flexibil-
ity thanks to DPR, while keeping low memory require-
ments given the Bluetooth access to a bitstream re-
pository. This wireless channel may also simplify the
process of loading an initial bitstream – i.e. a complete
bitstream – as well as a partial bitstream, which can be
very painful when reconfiguring a set of robots.
The proposed framework remains simple and user-
friendly; additionally it provides enough flexibility for
the specific application. Our approach can be extended
to more demanding applications by adding more re-
configurable modules, or other peripheral interfaces
for connecting to modules such as IPIF instead of
GPIO.
Currently we are working on the development of con-
trollers for validating the proposed framework. Non-
linear coupled oscillators seem to be a promising ap-
proach for exploring modular robotics locomotion [9,
13], previous work on evolving neural networks using
DPR [10, 11], and co-evolution of Fuzzy Systems [12]
can be also of special interest for our system.

Acknowledgements

We would like to acknowledge all the people who have
worked in the robot construction, mainly André Bad-
ertscher for the technical support and Alessandro
Crespi for helping us to solve all kind of software and
hardware problems . We acknowledge also the Swiss
National Science Foundation for supporting the pro-
ject Towards Smart Adaptive Artefacts and for the
Young Professorship Award granted to Auke Ijspeert .

References

[1] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platz-
ner, and L. Thiele, "Reconfigurable Hardware in
Wearable Computing Nodes," presented at Sixth

International Symposium on Wearable Compu-
ters, Seattle, Washington, 2002.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister, "System architecture directions for
networked sensors," Acm Sigplan Notices, vol.
35, pp. 93-104, 2000.

[3] J. Beutel and O. Kasten., "A minimal Bluetooth-
based computing and communication platform.,"
Technical Report, Computer Engineering and
Networks Lab, Swiss Federal Institute of Techno-
logy (ETH) Zurich 2001.

[4] P. Waldeck and N. Bergmann, "Dynamic Hard-
ware-Software Partitioning on Reconfigurable
System-on-Chip," presented at The 3rd IEEE In-
ternational Workshop on System-on-Chip for Re-
al-Time Applications (IWSOC'03), Calgary, Alber-
ta, Canada, 2003.

[5] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi,
M. Moe, and R. R. Taylor, "PipeRench: A reconfi-
gurable architecture and compiler," Computer,
vol. 33, pp. 70-77, 2000.

[6] A. A. Gray, C. Lee, P. Arabshahi, and J. Sriniva-
san, "Object-oriented reconfigurable processing
for wireless networks," presented at IEEE Inter-
national Conference on Communications, 2002.
ICC 2002., New York, USA, 2002.

[7] S. Murata, E. Yoshida, A. Kamimura, H. Kuroka-
wa, K. Tomita, and S. Kokaji, "M-TRAN: Self-
reconfigurable modular robotic system," Ieee-
Asme Transactions on Mechatronics, vol. 7, pp.
431-441, 2002.

[8] M. Yim, Y. Zhang, K. Roufas, D. Duff, and C.
Eldershaw, "Connecting and disconnecting for
chain self-reconfiguration with PolyBot," Ieee-
Asme Transactions on Mechatronics, vol. 7, pp.
442-451, 2002.

[9] A. J. Ijspeert, "Vertebrate locomotion," in The
handbook of brain theory and neural networks,
M. Arbib, Ed.: MIT Press, 2003, pp. 649-654.

[10] A. Upegui, C. A. Peña-Reyes, and E. Sanchez,
"An FPGA platform for on-line topology explora-
tion of spiking neural networks," Microproces-
sors and Microsystems. In press, 2005.

[11] A. Upegui, C. A. Peña-Reyes, and E. Sanchez, "A
methodology for evolving spiking neural-
network topologies on line using partial dynamic
reconfiguration," presented at ICCI - Internatio-
nal Conference on Computational Inteligence,
Medellin, Colomb ia, 2003.

[12] G. Mermoud, A. Upegui, C. A. Peña-Reyes, and E.
Sanchez, "A Dynamically-Reconfigurable FPGA
Platform for Evolving Fuzzy Systems," in The 8th
International Work-Conference on Artificial Neu-
ral Networks (IWANN'2005), (submitted) 2005.

[13] A. J. Ijspeert, "A connectionist central pattern
generator for the aquatic and terrestrial gaits of a

simulated salamander," Biological Cybernetics,
vol. 84, pp. 331-348, 2001.

[14] BIRG (Biologically Inspired Robotics Group),
"YaMoR modular robot Webpage."
http://birg.epfl.ch/page53469.html.

[15] Xilinx Corp., "XAPP 290: Two Flows for Partial
Reconfiguration: Module Based or Difference
Based," www.xilinx.com, Sept, 2004.

[16] Xilinx Corp., "MicroBlaze™ Soft Processor
Core," www.xilinx.com/microblaze.

