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Abstract

One current explanation of the view independent representation of
space by the place-cells of the hippocampus is that they arise out
of the summation of view dependent Gaussians. This proposal as-
sumes that visual representations show bounded invariance. Here
we investigate whether a recently proposed visual encoding scheme
called the temporal population code can provide such representa-
tions. Our analysis is based on the behavior of a simulated robot
in a virtual environment containing specific visual cues. Our re-
sults show that the temporal population code provides a represen-
tational substrate that can naturally account for the formation of
place fields.

1 Introduction

Pyramidal cells in the CA3 and CA1 regions of the rat hippocampus have shown to
be selectively active depending on the animal’s position within an environment[1].
The ensemble of locations where such a cell fires – the place field – can be deter-
mined by a combination of different environmental and internal cues[2], where vision
has been shown to be of particular importance[3]. This raises the question, how
egocentric visual representations of visual cues can give rise to an allocentric rep-
resentation of space. Recently it has been proposed that a place field is formed by
the summation of Gaussian tuning curves, each oriented perpendicular to a wall of
the environment and peaked at a fixed distance from it[4, 5, 6]. While this proposal
tries to explain the actual transformation from one coordinate system to another,
it does not account for the problem how appropriate egocentric representations of
the environment are formed. Thus, it is unclear, how the information about a rat’s
distance to different walls becomes available, and in particular how this proposal
would generalize to other environments where more advanced visual skills, such as
cue identification, are required.

For an agent moving in an environment, visual percepts of objects/cues undergo a
combination of transformations comprising zooming and rotation in depth. Thus,
the question arises, how to construct a visual detector, which has a Gaussian like
tuning with regard to the positions within the environment from which snapshots
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Figure 1: Place cells from multiple snapshots. The robot is placed in a virtual
square environment with four patterns on the walls, i.e. a square, a triangle, a
Z and a X. The robot scans the environment for salient stimuli by rotating on
place. A saliency detector triggers the acquisition of visual snapshots which are
subsequently transformed into TPCs. A place cell is defined through its associated
TPC templates.

of a visual cue are taken. The internal representation of a stimulus, upon which
such a detector is based, should be tolerant to certain degrees of visual deformations
without loosing specificity or, in other words, show a bounded invariance. In this
study we show that a recently proposed cortical model of visual pattern encoding,
the temporal population code (TPC), directly supports this notion of bounded
invariance[7]. The TPC is based on the notion that a cortical network can be seen
to transform a spatial pattern into a purely temporal code.

Here, we investigate to what extent the bounded invariance provided by the TPC
can be exploited for the formation of place fields. We address this question in the
context of a virtual robot behaving in an environment containing several visual
cues. Our results show, that the combination of a simple saliency mechanism with
the TPC naturally gives rise to allocentric representations of space, similar to the
place fields observed in the hippocampus.

2 Methods

2.1 The experimental setup

Experiments are performed using a simulated version of the real-world robot Khep-
era (K-team, Lausanne, Switzerland) programmed in C++ using OpenGL. The
robot has a circular body with two wheels attached to its side each controlled by an
individual motor. The visual input is provided by a camera with a viewing angle
of 60◦ mounted on top of the robot. The neural networks are simulated on a Linux
computer using a neural network simulator programmed in C++.

The robot is placed in square arena (fig. 1, left),and in the following, all lengths will
be given in units of the side lengths of the square environment.

2.2 The temporal population code

Visual information is transformed into a TPC by a network of laterally coupled
cortical columns, each selective to one of four orientations ψ ∈ {0◦, 45◦, 90◦, 135◦}
and one of three spatial frequencies ν ∈ {high,medium, low}[7]. The outputs of
the network are twelve vectors Aψ,ν each reflecting the average population activity
recorded over 100 time-steps for each type of cortical column. These vectors are



reduced to three vectors Aν by concatenating the four orientations. This set of
vectors form the TPC which represents a single snapshot of a visual scene.

The similarity S(s1, s2) between two snapshots s1 and s2 is defined as the average
correlation ρ between the corresponding vectors, i.e.

S(s1, s2) =

〈

Z
(

ρ(As1
ν ,A

s2
ν )

)

〉

∀ν

(1)

where Z is the Fisher Z-Transform given by Z(ρ) = 1/2 ln((1 + ρ)/(1 − ρ)), which
transforms a typically skewed distribution of correlation coefficients ρ into an ap-
proximately normal distribution of coefficients. Thus, Z(ρ) becomes a measure on
a proportional scale such that mean values are well defined.

2.3 Place cells from multiple snapshots

In this study, the response properties of a place cell are given by the similarity
between incoming snapshots of the environment and template snapshots associated
to the place cell when it was constructed. Thus, for both, the acquisition of place
cells as well as their exploitation, the system needs to be provided with snapshots
of its environment that contain visual features. For this purpose, the robot is
equipped with a simple visual saliency detector s(t) that selects scenes with high
central contrast:

s(t) =

∑

e−y2

c(y, t)2
∑

c(y, t)2

where c(y, t) denotes the contrast at location y ∈ [−1,+1]2 in the image at time
t. At each point in time where s(t) > θsaliency, a new snapshot is acquired with a
probability of 0.1. A place cell k is defined by n snapshots called templates tki with
i = 1 . . . n.

Whenever the robot tries to localize itself, it scans the environment by rotating
in place and taking snapshots of visually salient scenes (fig. 1). The similarity
S between each incoming snapshot sj with j = 1 . . .m and every template tki is
determined using eq. 1. The activation ak of place cell k for a series of m snapshots
sj is then given by a sigmoidal function

ak(ik) =
(

1 + exp
(

−β(ik − θ)
))−1

where ik =
〈

max
i

(

S(tki , sj)
)〉

j
. (2)

ik represents the input to the place cell which is computed by determining the
maximal similarity of each snapshot to any template of the place cell and subsequent
averaging, i.e. 〈·〉j corresponds to the average over all snapshots j.

2.4 Position reconstruction

There are many different approaches to the problem of position reconstruction or
decoding from place cell activity[8]. A basis function method uses a linear combi-
nation of basis functions φk(x) with the coefficients proportional to the activity of
the place cells ak. Here we use a direct basis approach, i.e. the basis function φk(x)
directly corresponds to the average activation ak of place cell k at position x within
the environment. The reconstructed position x̂ is then given by

x̂ = argmax
x

∑

k

akφk(x)

The reconstruction error is given by the distance between the reconstructed and
true position averaged over all positions within the environment.
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Figure 2: Similarity surfaces for the four different cues. Similarity between a refer-
ence snapshot of the different cues taken at the position marked by the white cross
and all the other positions surrounding the reference location.

2.5 Place field shape and size

In order to investigate the shape of a place field φ(x), and in particular to determine
its degree of asymmetry and its size, we computed the two-dimensional normalized
inertial tensor I given by

Iij =

∑

r φ(r)
(

δijr
2 − rirj

)

∑

r φ(r)

with r = {r1, r2} = x − x̂ where x̂ =
∑

xφ(x)/
∑

φ(x) corresponds to the “center
of gravity” and δij is the Kronecker delta. I is symmetric and can therefore be
diagonalized, i.e. I = VTDV, such that V is an orthonormal transformation matrix
and Dii > 0 for i = 1, 2. A measure of the half-width of the place field along its two
principal axes is then di =

√
2Dii such that a measure of asymmetry is given by
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This measure becomes zero for symmetric place fields while approaching one for
asymmetric ones. In addition, we can estimate the size of the place field by approx-
imating its shape by an ellipse, i.e. πd1d2.

3 Results

3.1 Bounded invariance

Initially, we investigate the topological properties of the temporal population coding
space. Depending on the position within an environment, visual stimuli undergo a
geometric transformation which is a combination of scaling and rotation in depth.
Fig. 2 shows the similarity to a reference snapshot taken at the location of the white
cross for the four different cues. Although the precise shape of the similarity surface
differs, the similarity decreases smoothly and monotonically for increasing distances
to the reference point for all stimuli.

The similarity surface for different locations of the reference point is shown in fig. 3
for the Z cue. Although the Z cue has no vertical mirror symmetry, the similarity
surfaces are nearly symmetric with respect to the vertical center line. Thus, using
a single cue, localization is only possible modulo a mirror along the vertical center.
The implications of this will be discussed later. Concerning different distances of
the reference point to the stimulus, fig. 3 (along the columns) shows that the speci-
ficity of the similarity measure is large for small distances while the tuning becomes
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Figure 3: Similarity surface of Z cue for different reference points. The dis-
tance/angle of the reference point to the cue is kept constant along the rows/columns
respectively.

broader for large distances. This is a natural consequence of the perspective pro-
jection which implies that the changes in visual perception due to different viewing
positions are inversely proportional to the viewing distance.

3.2 Place cells from multiple snapshots

The response of a place cell is determined by eq. 2 based on four associated snap-
shots/templates taken at the same location within the environment. The templates
for each place cell are chosen by the saliency detector and therefore there is no
explicit control over the actual snapshots defining a place cell, i.e. some place cells
are defined based on two or more templates of the same cue. Furthermore, the
stochastic nature of the saliency detector does not allow for any control over the
precise position of the stimulus within the visual field. This is, where the intrin-
sic translation invariance of the temporal population code plays an important role,
i.e. the precise position of the stimulus within the visual field at the time of the
snapshot has no effect on the resulting encoding as long as the whole stimulus is
visible.

Fig. 4 shows examples of the receptive fields (subsequently also called place fields)
of such place cells acquired at the nodes of a regular 5 × 5 lattice within the envi-
ronment. Most of the place fields have a Gaussian-like tuning which is compatible
with single cell recordings from pyramidal cells in CA3 and CA1[2], i.e. the place
cells maximally respond close to their associated positions and degrade smoothly
and monotonically for increasing distances. Some place cells have multiple sub-
fields in that they respond to different locations in the environment with a similar
amplitude.

3.3 Position reconstruction

Subsequently, we determine the accuracy up to which the robot can be localized
within the environment. Therefore we use the direct basis approach for position re-
construction as described in the Methods. As basis functions we take the normalized
response profiles of place cells constructed from four templates taken at the nodes
of a regular lattice covering the environment. Fig. 5a shows the reconstruction error
averaged over the environment as a function of the number of place cells as well as
the number of snapshots taken at each location. The reconstruction error decreases
monotonically both for an increasing number of place cells as well as an increasing



Figure 4: Place fields of 5 × 5 place cells. The small squares show the average
response of 5 × 5 different place cells for all the positions of the robot within
the environment. Darker regions correspond to stronger responses. The relative
location of each square within the figure corresponds to the associated location of
the place cell within the environment. All place fields are scaled to a common
maximal response.

number of snapshots. An asymptotic reconstruction error is approached very fast,
i.e. for more then 25 place cells and more then two snapshots per location. Thus,
for a behaving organism exploring an unknown environment, this implies that a
relatively sparse exploration strategy suffices to create a complete representation of
the new environment.

Above we have seen that localization with a single snapshot is only possible modulo
a mirror along the axis where the cue is located. The systematic reconstruction
error introduced by this short-coming can be determined analytically and is ≈ 0.13
in units of the side-length of the square environment. For an increasing number
of snapshots, the probability that all snapshots are from the same pair of opposite
cues, decreases exponentially fast and we therefore also expect the systematic error
to vanish. Considering 100 place cells, the difference in reconstruction error between
1 and 10 snapshots amounts to 0.147 ± 0.008 (mean ± SD) which is close to the
predicted systematic error due to the effect discussed above. Thus, an increasing
number of snapshots primarily helps to resolve ambiguities due to the symmetry
properties of the TPC.

3.4 Place field shape

Fig. 5b-c shows scatter plots of both, place field asymmetry and size versus the
distance of the place field’s associated location from the center of the environment.
There is a tendency that off-center place cells have more asymmetric place fields
than cells closer to the center (r=0.32) which is in accordance with experimental
results[5]. Regarding place field size, there is no direct relation to the associated
position of place field (r=0.08) apart from the fact that the variance is maximal
for intermediate distances from the center. It must be noted, however, that the
size of the place field critically depends on the choice of the threshold θ in eq. 2.
Indeed different relations between place field size and location can be achieved by
assuming non homogeneous thresholds, which for example might be determined for
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Figure 5: (a) Position reconstruction error. The average error in position recon-
struction as a function of the number of snapshots and the number of place cells
considered. (b-c) Scatter plots of the place field asymmetry/size versus the dis-
tance of the place fields associated location to the center of the environment. The
correlation coefficients are r=0.32/0.08 respectively.

each place cell individually based on its range of inputs. The measure for place
field asymmetry, in contrast, has shown to be more stable in this respect (data not
shown).

4 Discussion

We have shown that the bounded invariance properties of visual stimuli encoded
in a TPC are well suited for the formation of place fields. More specifically, the
topology preservation of similarity amongst different viewing angles and distances
allows a direct translation of the visual similarity between two views to their relative
location within an environment. Therefore, only a small number of place cells
are required for position reconstruction. Regarding the shape of the place fields,
only weak correlations between its asymmetry and its distance to the center of the
environment have been found.

As opposed to the present approach, experimental results suggest that place field
formation in the hippocampus relies on multiple sensory modalities and not only
vision. Although it was shown that vision may play an important role[3], proprio-
ceptive stimuli, for example, can become important in situations where either visual
information is not available such as in the dark or in the presence of visual singu-
larities, where two different locations elicit the same visual sensation[9]. A type
of information strongly related to proprioceptive stimuli, is the causal structure
of behavior which imposes continuous movement in both space and time, i.e. the
information about the last location can be of great importance for estimating the
current location[10]. Indeed, a recent study has shown that position reconstruction
error greatly reduces, if this additional constraint is taken into account[8]. In the
present approach we analyzed the properties of place cells in the absence of a behav-
ioral paradigm. Thus, it is not meaningful to integrate information over different
locations. We expect, however, that for a continuously behaving robot this type of
information would be particularly useful to resolve the ambiguities introduced by
the mirror invariance in the case of a single visual snapshot.

As opposed to the large field of view of rats (≈ 320◦[11]) the robot used in this
study has a very restricted field of view. This has direct implications on the robot’s
behavior. The advantage of only considering a 60◦ field of view is, however, that
the amount of information contributed by single cues can be investigated. We



have shown, that a single view allows for localization modulo a mirror along the
orientation of the corresponding stimulus. This ambiguity can be resolved taking
additional snapshots into account. In this context, maximal additional information
can be gained if a new snapshot is taken along a direction orthogonal to the first
snapshot which is also more efficient from a behavioral point of view than using
stimuli from opposite directions.

The acquisition of place cells was supervised, in that their associated locations are
assumed to correspond to the nodes of a regular lattice spanning the environment.
While this allows for a controlled statistical analysis of the place cell properties,
it is not very likely that an autonomously behaving agent can acquire place cells
in such a regular fashion. Rather, place cells have to be acquired incrementally
based on purely local information. Information about the number of place cells
responding or the maximal response of any place cell for a particular location is
locally available to the agent, and can therefore be used to selectively trigger the
acquisition of new place cells. In general, the representation will most likely also
reflect further behavioral requirements in that important locations where decisions
need to be taken, will be represented by a high density of place cells.
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