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Encoding of sensory events in internal states of the brain requires that
this information can be decoded by other neural structures. The encoding
of sensory events can involve both the spatial organization of neuronal
activity and its temporal dynamics. Here we investigate the issue of decod-
ing in the context of a recently proposed encoding scheme: the temporal
population code. In this code, the geometric properties of visual stimuli
become encoded into the temporal response characteristics of the summed
activities of a population of cortical neurons. For its decoding, we evalu-
ate a model based on the structure and dynamics of cortical microcircuits
that is proposed for computations on continuous temporal streams: the
liquid state machine. Employing the original proposal of the decoding
network results in a moderate performance. Our analysis shows that the
temporal mixing of subsequent stimuli results in a joint representation
that compromises their classification. To overcome this problem, we in-
vestigate a number of initialization strategies. Whereas we observe that a
deterministically initialized network results in the best performance, we
find that in case the network is never reset, that is, it continuously pro-
cesses the sequence of stimuli, the classification performance is greatly
hampered by the mixing of information from past and present stimuli.
We conclude that this problem of the mixing of temporally segregated
information is not specific to this particular decoding model but relates
to a general problem that any circuit that processes continuous streams of
temporal information needs to solve. Furthermore, as both the encoding
and decoding components of our network have been independently pro-
posed as models of the cerebral cortex, our results suggest that the brain
could solve the problem of temporal mixing by applying reset signals at
stimulus onset, leading to a temporal segmentation of a continuous input
stream.
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1 Introduction

The processing of sensory events by the brain requires the encoding of infor-
mation in an internal state. This internal state can be represented by the brain
using a spatial code, a temporal code, or a combination of both. For further
processing, however, this encoded information requires decoding at later
stages. Hence, any proposal on how a perceptual system functions must
address both the encoding and the decoding aspects. Encoding requires the
robust compression of the salient features of a stimulus into a representation
that has the essential property of invariance. The decoding stage involves
the challenging task of decompressing this invariant and compressed rep-
resentation into a high-dimensional representation that facilitates further
processing steps such as stimulus classification. Here, based on a combi-
nation of two independently proposed and complementary encoding and
decoding models, we investigate sensory processing and the properties of
a decoder in the context of a complex temporal code.

Previously we have shown that visual stimuli can be invariantly encoded
in a so-called temporal population code (Wyss, König, & Verschure, 2003).
This encoding was achieved by projecting the contour of visual stimuli onto
a cortical layer of neurons that interact through excitatory lateral couplings.
The temporal evolution of the summed activity of this cortical layer, the
temporal population code, encodes the stimulus-specific features in the rel-
ative spike timing of cortical neurons on a millisecond timescale. Indeed,
physiological recordings in area 17 of cat visual cortex support this hypoth-
esis showing that cortical neurons can produce feature-specific phase lags
in their activity (König, Engel, Rolfsema, & Singer, 1995). The encoding of
visual stimuli in a temporal population code has a number of advantageous
features. First, it is invariant to stimulus transformation and robust to both
network and stimulus noise (Wyss, König, & Verschure, 2003; Wyss, Ver-
schure, & König, 2003). Thus, the temporal population code satisfies the
properties of the encoding stage outlined above. Second, it provides a neu-
ral substrate for the formation of place fields (Wyss & Verschure, in press).
Third, it can be implemented without violating known properties of cortical
circuits such as the topology of lateral connectivity and transmission delays
(Wyss, König, & Verschure, 2003). Thus, the temporal population code pro-
vides a hypothesis on how a cortical system can invariantly encode visual
stimuli.

Different approaches for decoding temporal information have been sug-
gested (Kolen & Kremer, 2001; Mozer, 1994; Buonomano & Merzenich, 1995;
Buonomano, 2000). A recently proposed approach is the so-called liquid
state machine (Maass, Natschläger, & Markram, 2002; Maass & Markram,
2003). We evaluate the liquid state machine as a decoding stage since it is a
model that aims to explain how cortical microcircuits solve the problem of
the continuous processing of temporal information. The general structure of
this approach consists of two stages: a transformation and a readout stage.



Decoding a Temporal Population Code 2081

The transformation stage consists of a neural network, the liquid, which
performs real-time computations on time-varying continuous inputs. It is
a generic circuit of recurrently connected integrate-and-fire neurons cou-
pled with synapses that show frequency-dependent adaptation (Markram,
Wang, & Tsodyks, 1998). This circuit transforms temporal patterns into high-
dimensional and purely spatial patterns. A key property of this model is that
there is an interference between subsequent input signals, so that they are
mixed and transformed into a joint representation. As a direct consequence,
it is not possible to separate consecutively applied temporal patterns from
this spatial representation. The second stage of the liquid state machine is
the readout stage, where the spatial representations of the temporal patterns
are classified.

Whereas most previous studies considered Poisson spike trains as inputs
to the liquid state machine, in this article, we investigate the performance
of this model in classifying visual stimuli that are represented in a temporal
population code. Although the liquid state machine was originally pro-
posed for the processing of continuous temporal inputs, it is unclear how
this generalizes to the continuous processing of a sequence of stimuli that
are temporally encoded. By analyzing the internal states of the network, we
show that in its original setup, it tends to create overlaps among the stimu-
lus classes. This suggests that in order to improve its performance, a reset
locked to the onset of a stimulus could be required. We compare different
strategies on preparing this network to the presentation of a new stimu-
lus, ranging from random and deterministic initialization strategy to pure
continuous processing with no stimulus-triggered resets. We find a large
range of classification performance, showing that the no-reset strategy is
significantly outperformed by the different types of stimulus-triggered ini-
tializations. Building on these results, we discuss possible implementations
of such mechanisms by the brain.

2 Methods

2.1 Temporal Population Code. We analyze the classification of visual
stimuli encoded in a temporal population code as produced by a cortical
type network proposed earlier (Wyss, König, & Verschure, 2003). This net-
work consists of 40× 40 integrate-and-fire cells that are coupled with sym-
metrically arranged excitatory connections having distance-specific trans-
mission delays. The inputs to this network are artificially generated “visual”
patterns (see Figure 1). Each of the 11 stimulus classes consists of 1000 sam-
ples. The output of the network (see Figure 2) is the sum of activities recorded
during 100 ms with a temporal resolution of 1 ms—that is, a temporal pop-
ulation code. We are exclusively interested in assessing the information in
the temporal properties of this code. Thus, each population activity pattern
is rescaled such that the peak activity is set to one. The resulting popula-
tion activity patterns (which we also refer to as temporal activity patterns)
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Figure 1: Prototypes of the synthetic “visual” input patterns used to generate
the temporal population code. There are 11 different classes where each class
is composed of 1000 samples. The resolution of a pattern is 40 times 40 pixels.
The prototype pattern of each class is generated by randomly choosing four
vertices and connecting them by three to five lines. Given a prototype, 1000
samples are constructed by randomly jittering the location of each vertex using
a two-dimensional gaussian distribution (σ = 1.2 pixels for both dimensions).
All samples are then passed through an edge detection stage and presented to
the network of Wyss, König, & Verschure (2003).

constitute the input to the decoding stage, the liquid state machine (see
Figure 3). Based on a large set of synthetic stimuli consisting of 800 classes
and using mutual information, we have shown that the information content
of the temporal population code is 9.3 bits given a maximum of 9.64 bits
(Wyss, König, & Verschure, 2003; Rieke, Warland, de Ruyter van Steveninck,
& Bialek, 1997).
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Figure 2: Temporal population code of the 11 stimulus classes. Shown are the
mean traces of the population activity patterns encoding the number of active
cells as a function of time (1 ms temporal resolution, 100 ms length) after rescal-
ing.

2.2 Implementation of the Liquid State Machine. The implementation
of the liquid state machine evaluated here, including the readout config-
uration, is closely based on the original proposal (Maass et al., 2002; see
the appendix). The liquid is formed by 12 × 12 × 5 = 720 leaky integrate-
and-fire neurons (the liquid cells) that are located on the integer points of
a cubic lattice where 30% randomly chosen liquid cells receive input, and
20% randomly chosen liquid cells are inhibitory (see Figure 3). The simu-
lation parameters of the liquid cells are given in Table 1. The probability
of a synaptic connection between two liquid cells located at a and b is
given by a gaussian distribution, p(a, b) = C · exp(−(|a − b|/λ)2), where
|.| is the Euclidian norm in R

3 and C and λ are constants (see Table 2). The
synapses connecting the liquid cells show frequency-dependent adaptation
(Markram et al., 1998; see the appendix).
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Figure 3: General structure of the implementation of the liquid state machine.
A single input node provides a continuous stream to the liquid that consists of
recurrently connected integrate-and-fire neurons that are fully connected with
11 readout groups. Each of the readout groups consists of 36 integrate-and-fire
neurons. Weights of the synaptic connections projecting to the readout groups
are trained using a supervised learning rule.

Table 1: Simulation Parameters of the Neurons of the Liquid.

Name Symbol Value

Background current Ibg 13.5 nA
Leak conductance gleak 1 µS
Membrane time constant τmem 30 ms
Threshold potential vθ 15 mV
Reset potential vreset 13.5 mV
Refractory period tref r 3 ms

Note: The parameters are identical to Maass et al.
(2002).

The readout mechanism is composed of 11 neuronal groups consisting
of 36 integrate-and-fire neurons with a membrane time constant of 30 ms
(see Figure 3 and the appendix). All readout neurons receive input from
the liquid cells and are trained to classify a temporal activity pattern at a
specific point in time after stimulus onset, tL. Thus, training occurs only
once during the presentation of an input. A readout cell fires if and only if
its membrane potential is above threshold at t = tL; that is, the readout cell
is not allowed to fire at earlier times. This readout setup is comparable to
the original proposal of the liquid state machine (Maass et al., 2002). Each
readout group represents a response class, and the readout group with the
highest number of firing cells is the selected response class. Input classes are
mapped to response classes by changing the synapses projecting from the
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Table 2: Simulation Parameters of the Synapses Connecting the Liquid Cells.

Value

Name Symbol EE EI IE II

Average length of connections λ 2 (independent of neuron type)
Maximal connection probability C 0.4 0.2 0.5 0.1
Postsynaptic current time constant τsyn 3 ms 3 ms 6 ms 6 ms
Synaptic efficacy (weight) wliq 20 nA 40 nA 19 nA 19 nA
Utilization of synaptic efficacy U 0.5 0.05 0.25 0.32
Recovery from depression time constant τrec 1.1 s 0.125 s 0.7 s 0.144 s
Facilitation time constant τf ac 0.05 s 1.2 s 0.02 s 0.06 s

Notes: The neuron type is abbreviated with E for excitatory and I for inhibitory neurons.
The values of wliq, U, τrec, and τf ac are taken from a gaussian distribution of which the
mean values are given in the table. The standard deviation of the distribution of the
synaptic efficacy is equal to the mean value, and it is half of the mean value for the last
three parameters. The parameters are identical to Maass et al. (2002).

liquid onto the readout groups. A supervised learning rule changes these
synaptic weights only when the selected response class is incorrect (see the
appendix). In this case, the weights of the synapses to firing cells of the
incorrect response class are weakened, whereas those to the inactive cells of
the correct response class are strengthened. As a result, the firing probability
of cells in the former group, given this input, is reduced while that of the
latter is increased. The synapses evolve according to a simplified version of
the learning rule proposed in Maass et al. (2002) and Auer, Burgsteiner, and
Maass (2001), the main difference being that the clear margin term has been
ignored. (Control experiments have shown that this had no impact on the
performance.)

The 1000 stimulus samples of each class are divided into a training and
test set of 500 samples each. The simulation process is split into two stages.
In the first stage, the synaptic weights are updated while all training sam-
ples are presented in a completely random order until the training process
converges. In the second stage, the training and test performance of the net-
work is assessed. Again, the sequence of the samples is random, and each
sample is presented only once. In both stages, the samples are presented as
a continuous sequence of temporal activity patterns where each stimulus is
started exactly after the preceding one.

Regarding the initialization of the network, any method used can reset
either the neurons (membrane potential) or the synapses (synaptic utiliza-
tion and fraction of available synaptic efficacy), or both. A reset of any of
those components of the network can be deterministic or random. Combin-
ing some of these constraints, we apply five different methods to initialize
the network at stimulus onset: entire-hard-reset, partial-hard-reset, entire-
random-reset (control condition), partial-random-reset (as used in Maass et
al., 2002; Maass, Natschläger, & Markram, 2003) and no-reset (see Table 3 for
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Table 3: Initialization Values of the Liquid Variables: Membrane Potential,
Synaptic Utilization, and Fraction of Available Synaptic Efficacy.

Membrane Synaptic Fraction of Available
Reset Method Potential Utilization Synaptic Efficacy

Entire-hard-reset 13.5 mV U 1
Partial-hard-reset 13.5 mV – –
Entire-random-reset [13.5 mV, 15 mV] [0, U] [0, 1]
Partial-random-reset [13.5 mV, 15 mV] – –
No-reset – – –

Notes: Five different methods are used to initialize these variables. The symbol [ , ] de-
notes initialization values drawn from a uniform distribution within the given interval.

the corresponding initialization values). Whereas only the neurons are ini-
tialized by means of the partial reset, the entire reset initializes the neurons
and the synapses. The initialization values are deterministic with the hard-
reset methods, and they are random with the random-reset methods. The
random initialization is used to approximate the history of past inputs. The
validity of this approximation will be controlled below. Finally, the network
is not reset in case of the no-reset method.

2.3 Liquid State and Macroscopic Liquid Properties. The state of the
network is formally defined as follows: Let z(t) be a time-dependent vector
that represents the active cells at time t in the network with a 1 and all
inactive cells with a 0. We call z ∈ R

p the liquid output vector (with p the
number of liquid cells). The liquid-state-vector z̃ (usually called only the
liquid state) is now defined as the component-wise low-pass-filtered liquid
output vector using a time constant of τ = 30 ms.

We introduce three macroscopic liquid properties. In all of the following
equations, z̃ijk ∈ R

p denotes the liquid state after the kth presentation of
sample j from class i where i = 1, . . . , n, j = 1, . . . , m, and k = 1, . . . , r with
n the number of classes, m the number of samples per class and r the number
of presentations of the same sample, and p the number of liquid cells. For
simplicity, we omit the time dependence in the following definitions. We
compute a principal component analysis by considering all the vectors z̃ijk
as n ·m · r realizations of a p-dimensional random vector. Based on the new
coordinates ẑijk of the liquid state vectors in the principal component system,
the macroscopic liquid properties are defined.

The center of class i, ci, and the center of a sample j from class i, sij, are
defined as the average values of the appropriate liquid state vectors:

ci = 1
mr

m∑
j=1

r∑
k=1

ẑijk
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sij = 1
r

r∑
k=1

ẑijk.

Since these vectors are defined as average values over several presentations
of the same sample, the liquid noise (see below) is not considered in these
values if the number of repetitions r is large enough.

The liquid-noise σ liq is defined as the average value of the vectorial stan-
dard deviation (the standard deviation is computed for each component
separately) of all presentations of a sample,

σ liq = 1
mn

n∑
i=1

m∑
j=1

stdk(ẑijk),

and can be interpreted as the average scattering of a sample around its center
sij.

The average distance vector between the centers of all classes, the liquid-
class-distance dliq

C , is defined as

dliq
C =

2
n(n− 1)

1,...,n∑
i<j

|ci − cj|,

where |.| is the absolute value.
The liquid-sample-distance dliq

S is defined as the vectorial standard devi-
ation of the sample centers of one class, averaged over all classes,

dliq
S =

1
n

n∑
i=1

stdj(sij),

where the subscript S stands for sample.

3 Results

In the first experiment, we investigate the performance of the liquid state
machine in classifying the temporal activity patterns by initializing the net-
work according to the control condition (entire-random-reset; see section 2).
The readout cell groups are trained to classify a sample at 100 ms after stim-
ulus onset. We run 10 simulations, each using the complete training and
testing data sets. Each simulation comprises a network where the synaptic
arborization and the parameters controlling the synaptic dynamics are ran-
domly initialized (see Table 2). We find that after training, 60.6±2% (mean±
standard deviation) of the training samples and 60.2±2% of the test samples
are classified correctly. The corresponding values of the mutual information
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between stimulus and response class are 1.725± 0.056 bits using the train-
ing data set and 1.696 ± 0.053 bits using the test data set. The maximum
value of the mutual information is log2(11) ≈ 3.459 bits. Thus, although the
generalization capability of the network is excellent (the performances on
the test and training sets are virtually identical), it achieves only a moderate
overall performance comparing it to a statistical clustering of the temporal
activity patterns that shows 83.8% correct classifications (Wyss, König, &
Verschure, 2003).

In order to elucidate the mechanisms responsible for this moderate per-
formance, we take a closer look at how the temporal activity patterns are
represented in the network. Since we always triggered the training of the
readout cell groups at 100 ms after stimulus onset, we are particularly inter-
ested in the liquid state (see section 2) at this point. Due to the fact that the
liquid state is high-dimensional, we employ a principal component analy-
sis to investigate the representation of the temporal activity patterns in the
network. The first 50 samples of each class are presented 20 times to the
network, which results in 20 repeats per sample × 50 samples per class ×
11 classes = 11,000 liquid state vectors. Each of these 720-dimensional vec-
tors is considered as a realization of 720 random variables. On these data, a
principal component analysis is applied. Based on the new coordinates of
the liquid states in the principal component system, we compute the three
macroscopic liquid properties: the liquid-class-distance, the liquid-sample-
distance, and the liquid-noise (see section 2). For the projection of the liquid
states onto each principal component, these three properties describe the
average distance between the centers of the classes, the average distance
between the centers of the samples of one class, and the average variability
of the liquid states of one particular sample. Thus, by means of the liquid-
sample-distance and the liquid-noise, the extent of all samples of one class
along each principal axes can be assessed. This extent is limited by the av-
erage distance between the samples of one class (liquid-sample-distance)
and the sum of this distance with the liquid-noise, the average variabil-
ity of the liquid states of one sample. Hence, the projection of the liquid
states of different classes onto a principal component is separated if the
corresponding liquid-class-distance is greater than the sum of the liquid-
sample-distance and the liquid-noise. Conversely, the projection of liquid
states onto a particular principal component overlaps if the corresponding
liquid-sample-distance is greater than the liquid-class-distance. On the ba-
sis of this interpretation of the macroscopic liquid properties, we are able to
quantitatively assess the separation among the classes.

The above analysis of the liquid states is summarized in Figure 4. First, we
find that the liquid-noise exceeds the liquid-class- and the liquid-sample-
distance for dimensions greater than or equal to 26. Thus, there is little
stimulus- or class-specific information but mostly noise in these compo-
nents. Second, the liquid-sample-distance is greater than the liquid-class-
distance for all dimensions greater than or equal to 5; the liquid states of
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Figure 4: Liquid state distances versus principal component dimensions. The
network is initialized using the entire-random-reset method. The solid line
shows the liquid-class-distance, the dashed line the liquid-sample-distance, the
dotted line the liquid-noise, and the dash-dotted line the sum of the liquid-
sample-distance and the liquid-noise. For dimensions greater than 26, the liquid-
noise is greater than the liquid-sample-distance, which is greater than the liquid-
class distance. For dimensions 1 to 4, the liquid-class-distance is greater than the
sum of the liquid-sample-distance and the liquid-noise.

different classes overlap for these dimensions. Third, for dimensions less
than or equal to 4, the liquid-class-distance is greater than the sum of the
liquid-sample-distance and the liquid-noise. As a result of this, the liquid
states of different classes have little overlap for these dimensions. Fourth,
as a consequence of the third point, the liquid-class-distance is also greater
than the liquid-sample-distance for dimensions between 1 and 4. Given
these macroscopic liquid properties, we can conclude, from the third ob-
servation, that the projection of the liquid states onto principal components
1 to 4 has little overlap. Therefore, class-specific information can be found
only in the first four principal components. This finding is somewhat sur-
prising, given the dimensionality of the temporal population code, which is
of the order of 20 (Wyss, Verschure, & König, 2003) and considering that the
liquid states were originally proposed to provide a very high-dimensional
representation of the input (Maass et al., 2002). Finally, it follows from the
second observation that the liquid states projected onto principal compo-
nents greater than or equal to 5 do not carry class-specific information, with
or without liquid-noise. Therefore, the liquid state machine appears to en-
code the stimuli into a low-dimensional representation.
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Taking the above observations into account, how can the liquid state
machine be modified in order to increase its ability to separate the stimulus
classes? Since the liquid state machine does not a priori contain class-specific
information (that is, class-specific features cannot be detected), the liquid-
class- and the liquid-sample-distance cannot be changed independently.
Thus, it is not possible to selectively increase the liquid-class-distance while
decreasing the liquid-sample-distance. However, as a result of the entire-
random-reset method used to initialize the network, the liquid-noise is in-
dependent of the stimuli and could be eliminated by resetting the liquid
variables to predefined values at stimulus onset. According to the macro-
scopic liquid properties, this would therefore lead to an increased separation
between the classes, which improves the classification performance of the
liquid state machine.

We examine the classification performance of the liquid state machine
using four reset methods: the entire-hard-, partial-hard-, partial-random-,
and no-reset methods (see section 2 and Table 3). We use the same exper-
imental protocol as above, and the results are summarized in Figure 5.
First, initializing the network with the entire-hard-reset method yields a
better performance than with the entire-random-reset method, as predicted
above. Quantitatively, this amounts to approximately a 10% increase in per-
formance. Second, comparing the performance of the entire-hard-/entire-
random-reset method to its partial counterpart, we find that initializing the
network with the partial-hard-/partial-random-reset method results in a
higher performance (see Figure 5). Employing a two-way ANOVA on the
classification performance using the results of the testing data set, we find for
α = 0.01, pentire/partial ≈ 0.0002, phard/random ≈ 4 · 10−15, and pInteraction ≈ 0.11.
Thus, both entire and partial as well as hard and random resets result in
significant differences of the average classification performance and the
mutual information. The only difference between the partial and the entire
reset is that the former does not reset the synapses (see Table 3), that is,
the synaptic utilization and the available fraction of synaptic efficacy are
never reset. Thus, this difference has to account for the observed improve-
ment of the classification performance. Third, using the no-reset method, the
network yields a performance that is significantly lower than a network ini-
tialized with any other reset method (for instance, performance comparison
of entire-random-reset and no-reset, t-test of mutual information of testing
data set, α = 0.01, p ≈ 2 · 10−16). Thus, resetting the network is required to
achieve a satisfying classification performance.

We investigate in more detail the performance difference yielded by the
entire and the partial reset methods. As we found above, entire and partial
reset render approximately the same performance. Since the only difference
between them is that the synapses are not reset in case of the partial reset
method, this suggests that the synaptic short-term plasticity has no effect on
the performance of the network. Consequently, the decoding of the temporal
activity pattern would be a result of the membrane time constant only.
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Figure 5: Evaluation of different reset mechanisms. (a) Classification perfor-
mance and (b) mutual information of the readout cell groups trained 100 ms
after stimulus onset with the input classes. Five different initialization meth-
ods are used (see section 2). Gray and white bars show the performance for
the training and test data set, respectively, and 10 simulations are run per reset
condition.
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Figure 6: Liquid state distances versus principal component dimensions. The
network is initialized using the no-reset method. The solid line shows the liquid-
class-distance, the dashed line the liquid-sample-distance, the dotted line the
liquid-noise, and the dash-dotted line the sum of the liquid-sample-distance
and the liquid-noise. The liquid-class-distance is greater than the sum of the
liquid-sample-distance and the liquid-noise only for dimensions 2 and 6. All
other dimensions are dominated by the liquid-noise.

Hence, we effectively remove synaptic short-term depression by setting the
recovery time constant, τrec, for all synapse types to 1 ms. This results in
a training and testing performance of 10.0 ± 2.8%, which is almost chance
level. A further analysis of this very low performance reveals that it is caused
by the saturation of activity within the network. Thus, synaptic short-term
depression is required for the proper operation of the network as it balances
the amount of excitation.

Since a reset of the network has a large effect on its classification perfor-
mance, we again explore the representation of the temporal activity patterns
in the network in order to explain this effect quantitatively (see Figure 6).
However, here we use the no-reset method to record the liquid states at 100
ms after stimulus onset. We apply the same analysis as before to plot the
three macroscopic liquid properties versus the principal components (see
section 2 and Figure 4). This analysis shows that the liquid-class-distance is
greater than the sum of the liquid-sample-distance and the liquid-noise only
for dimensions 2 and 6. As this difference is only marginal for dimension 6,
virtually only the projection of the liquid states onto principal component 2
have a small overlap. Hence, only the second principal component carries
class-specific information. Comparing this result with the previous analysis
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of the liquid states obtained using the entire-random-reset method (see Fig-
ure 4), we find that not resetting the network results in an enormous increase
in the overlap of the liquid states between different classes. Thus, in case
of the no-reset method, there is a rather critical dependence between the
initial state of the network at stimulus onset and the liquid state recorded
after stimulus presentation.

In all previous experiments, we trained the readout cell groups exactly
at 100 ms after stimulus onset. Since it was shown that the information
encoded in the temporal population code increases rapidly over time and
already 60% of the total information is available after 25 ms (Wyss, König,
& Verschure, 2003), it is of interest to investigate how fast the classification
performance of the liquid state machine rises. Moreover, it is unclear from
the previous experiments whether the classification performance is better at
earlier times after stimulus onset. In the following experiment, this will be
examined by training the readout cell groups at one particular time between
2 and 100 ms with respect to stimulus onset. The network is initialized using
the entire-hard-reset, the entire-random-reset, or the no-reset method. For
each fixed training and testing time and initialization method, 10 simula-
tions are performed (as in previous experiments). The results depicted in
Figure 7 show that up to 26 ms after stimulus onset, the classification per-
formance stays at chance level (0.09) and 0 bits of mutual information for
both training and testing. Thus, the first two bursts of the temporal activity
pattern do not give rise to class-specific information in the network. The
best performance is achieved by initializing the network with the entire-
hard-reset method, whereas the no-reset method again results in the lowest
classification performance. As already shown in Wyss, König, & Verschure
(2003), here we also find a rapid increase in the classification performance
(see Figure 7). The performance does not increase after 55 ms but rather fluc-
tuates at a maximum level. Consequently, processing longer temporal activ-
ity patterns does not augment the mutual information or the classification
performance.

4 Discussion

In this study, we investigated the constraints on the continuous time pro-
cessing of temporally encoded information using two complementary net-
works; the encoding network compresses its spatial inputs into a tempo-
ral code by virtue of highly structured lateral connections (Wyss, König,
& Verschure, 2003), while the decoding network decompresses its input
into a high-dimensional space by virtue of unstructured lateral connections
(Maass et al., 2002). Our analysis of the decoding network showed that
it did not sufficiently separate the different stimulus classes. We investi-
gated different strategies to reset the decoding network before stimulus
presentation. While resetting the network leads to a maximal performance
of 75.2%, the no-reset method performs dramatically below the other meth-
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Figure 7: Performance of the liquid state machine at varying temporal length of
the temporal population code using different reset methods. (a, b) Classification
performance and (c, d) mutual information during training and testing as a
function of the time of training and testing (chance level in a and b is 1/11 ≈
0.091). Up to 50 ms, the performance shows an oscillation, which results from
the strong onset response in the temporal population code.

ods investigated—35.4±1.9% correct classifications. A quantitative analysis
showed that this performance difference is caused by overlaps of the classes
in the high-dimensional space of the decoding network. Thus, in order to
decode and classify temporal activity patterns with the liquid state ma-
chine successfully, the latter needs to be clocked by the presentation of a
new stimulus as opposed to using a true continuous mode of operation.

The liquid state machine was successfully applied to the classification of
a variety of temporal patterns (Maass et al., 2002; Maass & Markram, 2003).
In this study, we investigate yet another type of stimulus: a temporal pop-
ulation code. While our input stimuli are continuously varying, most other
studies consider spike trains. Given the maximal performance of 75.2% cor-
rect classifications of the test stimuli, however, we believe that in principle,
the liquid state machine is capable of processing this kind of temporal activ-
ity patterns. Since the liquid state machine was put forward as a general and
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biologically based model for computations on continuous temporal inputs,
it should be able to handle these kinds of stimuli.

The liquid state machine was originally proposed for processing contin-
uous streams of temporal information. This is a very difficult task, as any
decoder of temporal information has to maintain an internal state of previ-
ously applied inputs. However, continuous streams of information can often
be divided into short sequences (that is, temporally confined stimuli). The
knowledge of the onset of a new stimulus would certainly be beneficial for
such a network, as the single stimuli could be processed separately and the
network could be specifically initialized and reset prior to their presentation.
Thus, as opposed to a regime where a continuous stream of information is
processed, there would be a possibility of avoiding interferences of stimuli in
the internal state of the network and the network should therefore perform
better. However, while the performance difference between continuous or
stimulus-triggered processing of temporal information is very intuitive, it is
unclear how big its effect would be on the performance and the internal state
of the information in the decoding network. Moreover, in previous work on
liquid state machines, this difference was not assessed (Maass et al., 2002,
2003; Maass & Markram, 2003; Legenstein, Markram, & Maass, 2003). Here,
we quantitatively investigated this difference in the context of the temporal
population code where the input is not a continuous stream but composed
of temporally confined stimuli. The initial hypothesis was that the decoding
network can process a continuous stream of temporal activity patterns gen-
erated by the encoding network. We found, however, that for the decoding
network to perform reasonably, it required a reset of its internal states at
stimulus onset. The resulting percentage of correctly classified stimuli prac-
tically doubled for both hard- and random-reset. A mathematical analysis
revealed a critical dependence between the initial state of the network at
stimulus onset and its internal state after stimulus presentation. Whereas
this dependence is fairly low in the case of any reset method, not resetting
the network drastically increases it, which results in much larger overlaps of
the internal states between different stimulus classes. Our analysis suggests
that although the mixing of previously temporally segregated information
is of central importance for the proper operation of the liquid state machine,
the mixing of information across stimuli leads to an inevitable degradation
of its classification performance and the internal representation of the stim-
uli. In the original study, the decoding network was actually initialized
with a method that is similar to the partial-random-reset method used here
(Maass et al., 2002, 2003). This raises the question whether the liquid state
machine operated in a true continuous mode in the cited studies. In conclu-
sion, our results suggest that a reset mechanism is an essential component
of the proposed encoding-decoding system.

Any reset system consists of two components: a signal that mediates the
onset of a stimulus and a mechanism triggered by this signal that allows
resetting the components of the processing substrate. Potential candidate
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neural mechanisms for signaling a new stimulus are the thalamic suppres-
sion found during saccades (Ramcharan, Gnadt, & Sherman, 2001) or the
hyperpolarization observed in the projection neurons of the antennal lobe
of moths coinciding with the presentation of a new odor (Heinbockel, Chris-
tensen, & Hildebrand, 1999). The temporal population code naturally gen-
erates such a signal, characterized by a pronounced first burst that can be
easily detected and used to trigger a reset mechanism.

Regarding reset mechanisms, we have distinguished several approaches
that differ mainly in how they could be implemented by the brain. While
the hard-reset method could be implemented by strongly inhibiting all cells
in the processing substrate, implementing the random-reset method ap-
pears difficult. It could possibly be approximated by driving the processing
substrate into a transient chaotic state, which could be achieved by selec-
tively increasing and decreasing the synaptic transmission strength in a
short time window after stimulus onset. This approach has similarities with
simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) as well as the an-
nealing mechanism presented in Verschure (1991) where chaotic behavior
in a neural network is attained by adaptively changing the learning rate.
Comparing the classification performance with and without resetting the
synapses (entire versus partial reset) reveals that the latter outperforms the
former. Thus, not to reset the synapses is rather an advantage than a short-
coming of the proposed mechanisms. Furthermore, these considerations
suggest that such a reset system could be implemented in a biologically
plausible way.

From a general point of view, not only the liquid state machine but any
decoder of continuous streams of temporal information has to maintain
previously applied inputs in an internal state. Thus, inputs applied at tem-
porally segregated times are mixed into a joint internal state. Our results
demonstrate that in the absence of a stimulus-locked reset of this internal
state, the effect of mixing strongly degrades the specificity of this internal
state, which results in a significant decrease of the network’s performance.
Thus, since the liquid state machine is seen as a model of cortical microcir-
cuits, this raises the question how these circuits solve the problem of the
mixing of temporally segregated information. On the basis of our results,
we predict that it is solved by employing stimulus-onset specific-reset sig-
nals that minimize the mixing of information from past and present stimuli.
Although some evidence exists that could support this hypothesis, further
experimental work is required to identify whether the brain makes use of
a form of temporal segmentation to divide a continuous input stream into
smaller “chunks” that are processed separately.

Appendix: Details of the Implementation

We consider the time course of a temporal activity pattern of the encoding
network, Iinp(t), as a synaptic input current to the decoding network. This



Decoding a Temporal Population Code 2097

current is arbitrarily normalized to a maximal value of 1 nA. The dimen-
sionless weights of the input synapses, winp, are chosen from a gaussian
distribution with mean value and standard deviation of 90 that is truncated
at zero to avoid negative values. As only 30% of the liquid cells receive input
from the temporal activity pattern (see section 2), a random subset of 70%
of the input weights is set to zero.

The recurrent synapses in the liquid show short-term plasticity (Markram
et al., 1998). Let 
t be the time between the (n − 1)th and the nth spike in
a spike train terminating on a synapse; then un, which is the running value
of the utilization of synaptic efficacy, U, follows:

un = un−1e
− 
t

τf ac +U
(

1− un−1e
− 
t

τf ac

)
, (A.1)

where τf ac is the facilitation time constant. The available synaptic efficacy,
Rn, is updated according to

Rn = Rn−1(1− un)e−

t
τrec + 1− e−


t
τrec , (A.2)

where τrec is the recovery from depression time constant. The peak synaptic
current, Îsyn, is defined as

Îsyn = wliqRnun, (A.3)

where wliq is the weight of the synapses connecting the liquid cells. The
excitatory and inhibitory postsynaptic currents Isyn,exc(t) and Isyn,inh(t) are
given by an alpha function,

Isyn,x(t) = Îsyn
e

τsyn,x
te
− t

τsyn,x , (A.4)

where the subscript x stands for exc or inh, Îsyn is the peak synaptic current
(see equation A.3), and τsyn,x is the time constant of the postsynaptic poten-
tial. Finally, the connection probability, p(a, b), of two liquid cells located at
the integer points a and b of a cubic lattice follows a gaussian distribution,

p(a, b) = C · e(−(|a−b|/λ)2), (A.5)

where |.| is the Euclidian norm in R
3 and C and λ are constants. The values

of all the synaptic parameters listed above are given in Table 2.
The liquid cells are simulated as leaky integrate-and-fire neurons. The

membrane potential, v(t), is updated according to

v(t+ dt) = v(t)+ dt
τmemgleak

× (Ibg + winpIinp(t)+ Isyn,exc(t)− Isyn,inh(t)− gleakv(t)), (A.6)
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where dt is the simulation time constant, τmem the membrane time constant,
gleak the leak conductance, Ibg the background current, winpIinp(t) the synaptic
input current from the temporal activity pattern, and Isyn,exc(t) and Isyn,inh(t)
are synaptic currents (see equation A.4). If v(t) > vθ , that is, the membrane
potential is greater than the threshold potential, a spike is generated, and
v(t) is set to the reset potential, vreset, and the neuron is quiescent until the
refractory period of duration tref r has elapsed. The values of the parameters
listed above are given in Table 1.

The readout neurons are simulated as leaky integrate-and-fire neurons.
Let i = 1, . . . , I be the index of a readout group (I = 11), j = 1, . . . , J the
index of a readout neuron in group i (J = 36), and k = 1, . . . , K the index of
a liquid neuron (K = 720). Then the membrane potential of readout neuron
j of readout group i, rij(t), follows

rij(t+ dt) = rij(t)+ dt
τmem,R

(rij,syn(t)− rij(t)), (A.7)

where dt is the simulation time constant, τmem,R = 30 ms the readout neuron
membrane time constant, and rij,syn(t) the postsynaptic potential given by

rij,syn(t) =
K∑

k=1

sgijkak(t). (A.8)

s = 0.03 is an arbitrary and constant scaling factor, gijk are the synaptic
weights of liquid cell k to readout neuron j of readout group i, and ak(t) is the
activity of liquid cell k, which is 1 if the liquid cell fired an action potential
at time t and 0 otherwise. A readout cell may fire only if its membrane
potential is above threshold, rθ = 20 mV, at t = tL, that is, rij(tL) > rθ . tL is
a specific point in time after stimulus onset. After a spike, the readout cell
membrane potential, rij, is reset to 0 mV and the readout cell response, qij,
is set to 1 (qij is zero otherwise). The readout group response, qi, of readout
group i is then

qi =
J∑

j=1

qij. (A.9)

A simplified version of the learning rule described in Maass et al. (2002)
and Auer et al. (2001) is used to update the synaptic weights gijk. Let N be
the index of the stimulus class (the correct response class) and M the index
of the selected response class, that is, M = arg(maxi=1,...,I qi) is the readout
group with the highest number of activated readout cells. Then two cases
are distinguished: if N = M, that is, the selected response class is correct, the
synaptic weights are not changed. And if N �= M, then for all j = 1, . . . , J and
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k = 1, . . . , K, the synaptic weights are updated according to the following
rule:

gMjk ← gMjk +
{
η(−1− gMjk) if (rMj(tL) > rθ ) and ak(tL) �= 0

0 else (A.10)

gNjk ← gNjk +
{
η(1− gNjk) if (rNj(tL) < rθ ) and ak(tL) �= 0

0 else , (A.11)

where η is a learning parameter. Thus, synapses to firing readout cells of the
incorrect response class M are weakened (see equation A.10), whereas those
to the inactive readout cells of the correct response class N are strengthened
(see equation A.11).
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