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ABSTRACT Based on insight obtained from a newly developed cochlea model, we argue that
noise-driven limit cycles are the basic ingredient in the mammalian cochlea hearing process. For
insect audition, we provide evidence in favor of the persistence of this principle. We emphasize the
role of bifurcations for the emergence of broad-range sound perception, both in the frequency and
amplitude domain, and indicate that this crucially depends on the correct coupling between limit
cycles. We review the limit-cycle coupling universality, and outline how it can be used to encode
information. Cortical noise is the microscopic basis for this encoding, whereas chaos emerges as the
macroscopic expression of computation being done in the network. Large neuron firing variability
is one possible consequence of the proposed mechanism that may apply to both vertebrate and
insect hearing. Microsc. Res. Tech. 63:400–412, 2004. © 2004 Wiley-Liss, Inc.

BIFURCATIONS AND LIMIT CYCLES IN THE
MAMMALIAN COCHLEA

Since the advent of the computer age, investigations
of dynamical processes are no longer restricted to lin-
ear models. As a consequence, during the last decades,
nonlinear dynamical systems theory became a success
story. Using notions and concepts from this field, the
effects of the nonlinearities were investigated in detail,
revealing, in addition to the notion of a fixed point
known from linear theory, the importance of novel
types of invariant objects. These more general objects
are limit cycles and chaotic attractors, where chaos can
be regarded as being composed of limit cycles that have
become unstable. In this way, the latter still dictate the
general appearance and properties of a chaotic attrac-
tor. Before these limit cycles permanently get unstable
(i.e., for an interval of the control parameter space that
has a non-zero measure), they once in a while undergo
a bifurcation, where they generally change their peri-
odicity in a period-doubling manner (pitchfork-bifurca-
tion, Feigenbaum scenario; Feigenbaum, 1978). Be-
tween the occurrence of bifurcations, limit cycles are
generally very stable. An interesting engineering point
of view is that in this state, they convert an analog
control parameter into an integer-valued periodicity.
Close to the bifurcation points, they have another at-
tractive property: They can serve as small signal am-
plifiers (Derighetti et al., 1985; Wiesenfeld and Mc-
Namara, 1985). The sensitivity of the human cochlea,
and possibly that of some insect hearing organs, to
small signal input can be considered as a direct conse-
quence of this property.

In the auditory system of many vertebrate species,
receptor cells show the phenomenon of resonance upon
appropriate sensory stimulation. Hair cells in the co-
chlea, which are placed tonotopically along the basilar
membrane, are activated by mechanically sensitive
cilia, which modulate the conductance of their mem-
brane. Upon a step current stimulation, the membrane

potential responds with an exponentially damped os-
cillation, where the frequency close to the resting po-
tential is the one that the cell is most sensitive to
(Crawford and Fettiplace, 1983). At the onset, the cell
displays the characteristics of a Hopf bifurcation,
whose main property is a nonlinear amplification. In
our recently developed mammalian cochlea model
(Kern et al., 2002), this important aspect of nonlinear
signal processing is biomorphically implemented for
the first time. As it may also serve as a guideline for the
understanding of insect hearing, the model will be out-
lined below in some detail.

Cochlear modelling has a long tradition, starting
with the first model by H.L.F. Helmholtz in 1863. More
recently, von Békésy’s discovery of traveling waves
along the basilar membrane (BM) (see, e.g., von
Békésy, 1960) gave rise to passive hydrodynamic mod-
els (de Boer, 1980; Lighthill, 1981). Already in 1948,
Gold conjectured that in the cochlea an active mecha-
nism must be present (Gold, 1948). Evidence for this
property was furnished by the discovery in 1978 of
oto-acoustic emissions, i.e., the fact that the ear is itself
able to produce sounds (Kemp, 1978). In the following
years, various experiments revealed that the outer hair
cells (OHC), which reside on top of the basilar mem-
brane, are the source of active amplification (see Eguı́-
luz et al., 2000).

In Eguı́luz et al. (2000), it was advocated that the
compression of the dynamic range, sharper tuning for
softer sounds, and generation of combination tones, are
fingerprints of Hopf bifurcations. Our modeling as-
sumption, for which there now is growing experimental
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evidence (Martin et al., 2001), is that the outer hair
cells (OHC) determine the active amplification and are
the source of the Hopf behavior. The Hopf differential
equation reads

d/dt z(t) � (��i�0)z � �z�2z � Fei�t, (1)

where the last term constitutes an external periodic
forcing with frequency �, z(t) is complex, �0 is the
natural frequency of the oscillation, and � denotes the
real-valued control parameter. We will show now that
cochlear hearing properties can be precisely repro-
duced by a careful biomorphic implementation of Hopf
amplifiers. Hopf bifurcators are easily implemented in
biochemistry as well as in silicon.

If we choose F � 0 (no external driving), (1) corre-
sponds to the generic differential equation of a system
displaying a Hopf bifurcation. For � � 0, the solution
z(t) � 0 is a stable fixed point, while for positive � the
fixed-point solution becomes unstable and a stable
limit cycle z(t) � �1/2 ei �0t appears (the so-called Hopf
bifurcation, see Hopf, 1942).

In the presence of a forcing F(t) � F ei �0t, the corre-
sponding z(t) is the amplified signal. For periodic forc-
ing, assuming 1:1-locking between the input and the
response, the steady state solution is obtained by the
ansatz z(t) � R ei �0t �i� (for sinusoidal stimuli at
moderate intensities, where the cochlea behaves highly
nonlinear, no higher harmonics are generated). R can
then be determined by the bi-cubic equation

F2 � R6 � 2�R4 � ��2 � �� � �0	
2
R2. (2)

For � � 0 and close to resonance � � �0, R � F1/3. As
F tends towards zero, the gain G � R/F � F-2/3 in-
creases infinitely. Hence, the response of the system is
compressively nonlinear. For � � 0, � � �0 and weak
stimuli, it is obtained that R � �F/�. When F is in-
creased, the term R6 can no longer be neglected, and, as
R6��2 R2, the compressive nonlinear regime is entered
(the transition occurring at about F � (��)3/2 ). There-
fore, for weak stimuli F of a given frequency, the re-
sponse R is nearly linear, while for moderate stimuli,
the differential gain dR/dF decreases with increasing
stimulus intensity. Away from the resonance, the last
term in (2) dominates, so that R � F/����0�, which
yields a linear response, for every kind of input. Past
the bifurcation point (�  0), stable limit-cycles
emerge.

Passive Cochlea Behavior
The cochlear fluid is considered incompressible and

inviscid (de Boer, 1980), and, as the BM displacements
are small (�m-range), a linear theory of the passive
components is justified. This assumption is well sup-
ported by experiments: For intense sounds, where ac-
tive amplification is essentially turned off, linear BM
input-output functions are observed. The passive BM,
therefore, performs sinusoidal movements (nonlinear
behavior will later be entirely attributed to the active
process). This situation can be shown to be equivalent
to a water wave (Patuzzi, 1996), where the surface is
loaded with a mass density m and an exponentially
decreasing transversal stiffness E(x), given by

E(x) � E0e��x, (3)

where x is the distance along the BM. Physiological
measurements reveal that longitudinal coupling along
the BM, which leads to a non-vanishing surface ten-
sion, is small. For a mass-loaded stiff water surface, the
dispersion relation can be derived by linearizing the
boundary conditions of the Laplace equation, leading to

k(x, �)tanh(k(x, �)h) � ��2/�E(x) � m�2	, (4)

where k � 2�/� is the wave vector, h is the radius of the
cochlear duct, and � is the fluid density. If the charac-
teristic frequency at location x is denoted by �c(x), it is
evident that k(x,�) diverges as �3 �c(x).

For the determination of the energy density distri-
bution along the cochlear duct, the dependence of the
group velocity vG on x is of importance. From (4), it is
found that as the tonotopic location of the particular
frequency �c is approached, vG 3 0. This means that
the traveling wave stalls at the point of (passive) res-
onance, where its wavelength decays to zero, and, as a
consequence, in the absence of dissipation, energy den-
sity and wave amplitude diverge.

Given an energy density e0 � e(x � 0) at the basal
end of the cochlea, the energy propagates with group
velocity. Then, the steady-state distribution of the one-
dimensional energy density e(x) along the cochlear duct
is given by

e�x, �	 � e0�x, �	
vG�0, �	

vG�x, �	
exp���

0

x d�y, �	

vG�y, �	
dy� (5)

where d measures the hydrodynamic attenuation. Not-
ing that the kinetic and the potential energy, averaged
over one cycle, contribute equally to total energy, the
BM displacement amplitude A(x, �) is obtained as

A(x, �) � �2e(x, �	/E(x))1/2. (6)

An example of a passive response curve is given by
the dashed line in Figure 1a. It is instructive to com-
pare our model to the excitation patterns obtained by
De Boer’s one-dimensional model (de Boer, 1990),
where the Laplace equation is directly solved using the
WKB approximation method. In the long wave limit,
the response of this model grows as exp(3/4 �x). In our
model, this behavior is directly seen from the long-
wave approximation of e(x, �), using (6).

Active Amplification
Active amplification, generated by Hopf oscillators

residing in the array of outer hair cells, is described by
a local supply of energy a(.) injected into the hydrody-
namic wave. An observer moving with the traveling
wave observes the gain

�e(x, t)/�t�act � a(x, �, e(x, t)), (7)

leading to the differential equation
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�e
�x � �

1
vG�x, �	 ��vG

�x �x, �	 � d�x, �	�e�x, �	

�
a�e�x, �	, x, �	

vG�x, �	
(8)

The explicit form of the term a(.) is deduced from the
driven Hopf system

d/dt z(t) � �� � i�ch)z � ��z�2z � Fei�t, (9)

by imposing a biophysically justified relation between
the input signal F and the stationary response ampli-
tude R of the amplifier (see Eq. (2)), to the local energy
density e. Parameter � is used to rescale different mag-

nitudes of (F, R), but does not introduce an additional
degree of freedom into the system.

The dependence of F and R on e reveals clear inter-
pretations of the emergent modeling parameters �(�)
and K(�). After having fixed � for all occurring frequen-
cies �, the transition point ecnl(�) is set by �(�) for each
�. The corresponding K(�) then determines the gain. It
can be shown that the two functions can be approxi-
mated by a simple exponential rule, depending only on
the stiffness exponent � [see (3)] and on the Hopf con-
trol parameter �, which sets the amplifier’s bandwidth.

At this point, the model has a minimal number of
4 free parameters, valid for the whole frequency range.
Moreover, to each of the parameters, a clear interpre-
tation in terms of the model response is attached,
which allows easy modifications of the output. Figure
1 shows frequency response and gain of the cochlear
amplifier at a fixed location on the BM, for increasing
stapes displacement. For comparison, the passive
model response, given by the amplitude (6) correspond-
ing to (5) is given by the dashed line in Figure 1a. It is
visible that deviations from the passive response only
occur close to the active resonance location, and that
the response peak is entirely due to active amplifica-
tion.

Although the behavior of the cochlea is already very
well reproduced, the experimental curves clearly dis-
play a shift of the response peak towards lower fre-
quencies by more than 10% with increasing stimulus
intensities and an associated increase in response
bandwidth. The model’s response shapes still increase
too rapidly, followed by a flat top, and the increase in
response bandwidth, as a function of the stimulus size,
is too small.

Coupled Hopf Amplifiers
If we consider the vibrating BM loaded with an array

of Hopf oscillators, these oscillators must be seen as
weakly coupled, which implies the possibility of coher-
ent in-phase oscillations (Stoop et al., 2000a,b). These
can generate amplification in the absence of external
excitation, and, in this way, explain the emergence of
spontaneous oto-acoustic emissions. Moreover, it can
be expected that remaining deviations from the mea-
sured data can be removed, as models using coupling
schemes among oscillators (de Boer, 1990; Geisler and
Sang, 1995) show correct frequency shifts. Besides the
direct coupling between the Hopf type oscillators, lon-
gitudinal coupling mediated by the (passive) BM, by
means of surface tension, is a candidate that is compu-
tationally less intensive and will be considered first.
The inclusion of the latter coupling is of primary inter-
est, as it will remove the dissipation singularity at the
location of resonance, and will allow to shift the peak of
resonance to higher frequencies, as is required from
biological measurements (see Fig. 4).

In our model, surface tension T(x) manifests itself
through the dispersion relation (4), in which E(x) now
has to be replaced by E(x) � k(x,�)2 T(x). Our simula-
tions, with T � 0.003, indeed confirm an improvement
(Fig. 2). We now observe a peak shift of about 80 Hz for
a stimulus frequency of 1,000 Hz. The choice of � �
�200 (before: � � �100) limited the decrease in band-
width and led to more realistic response shapes: The
slopes at active resonance are now less pronounced,

Fig. 1. Local BM response from an array of Hopf bifurcators, no
coupling. a: Frequency response of the BM at xc(� � 1,000 Hz); dashed
line: frequency response of the passive model. b: Gain of the BM,
relative to vibration at the oval window.
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and the flat peaks of the simple version of our model
are no longer observed.

The results still deviate from the experimental
observation as the response around characteristic
frequency is constant for stimuli above 60 dB (see
Fig. 4). Fortunately, the direct coupling among Hopf
oscillators is also suggested by anatomical findings.
Micro-mechanical analysis of the arrangement of
OHC’s led to the conjecture that strong feed-forward
coupling between the OHC exists (Geisler and Sang,
1995). We, therefore, consider feed-forward coupled
OHC’s as the substrate for a second mode of energy
propagation ε(x, �) built up by the hydrodynamic
wave e(x, �) in the vicinity of the location of active
resonance. This second mode may be approximated
by the integral equation

ε(x, �) �
1

�x �
x��x

x

H���K��	�e(x�, �	 � Mε�x�, �		1/2	,

(10)

where H is the squared amplified signal R, represent-
ing the effect of the Hopf amplifiers. The scaling pa-
rameter �(�) is now replaced by �K(�), and e(x,�) de-
notes the energy density of the hydrodynamic wave
causing the BM vibration (first mode), by which the
second mode is essentially driven. M  0 denotes the
strength of the feed-forward coupling, which deter-
mines how fast the second mode is built up. Within the
interval [x-�x, x] for simplicity we choose uniform
weights for all contributions to ε(x, �). Then the cou-
pling to the hydrodynamic wave is given by

aK�e�x, �	, x, �	 �
KK��	

�K��	
H���K��	�e�x, �	

� FKε�x, �			1/2	 (11)

where FK(�) is the coupling strength to the amplifica-
tion of the hydrodynamic wave. In the differential
equation (8), a(.) is replaced by aK(.). With values for M
and �x large enough, the second mode behaves as
having a kind of inertia: The accumulated (and
strongly amplified) energy is gradually fed back into
the hydrodynamic wave an appreciable distance be-
yond resonance.

In Figure 3, the amplifier responses for the optimal
choice of coupling strength M, coupling range �x and
bifurcation parameter � are shown. Clearly visible ef-
fects are: (1) Increase of amplification, caused by the
accumulation of energy by the coupling. (2) Shift of
maximum response location (Fig. 3b), together with
increased amplifier bandwidth. (3) Much stronger com-
pressive nonlinearity around response peak and at
right hand tail. (4) Compression extending to smaller x
for increased amplifier input.

Frequency response and gain of the final model are
shown in Figure 4, together with the experimental
results. It is seen that the peak shift induced by the
feed-forward coupling now amounts to about 100 Hz or
10%, which corresponds well to the experimentally ob-
served value. The remaining discrepancies of our
model from the experimental response curves (if not
experimental artifacts) could be overcome by a gener-
alization of the coupling scheme. From the obtained
results, we claim that the final version of our model is
able to faithfully reproduce experimentally measured
BM response properties. In the present report, the
results are restricted to pure tone stimuli. Examina-
tions of the model response to complex, but still sta-
tionary, tones, thereby involving suppression phenom-
ena and combination tone generation, are currently
being performed, with excellent results.

HOPF BIFURCATIONS AND LIMIT CYCLES
IN INSECT HEARING

The hearing organs of insects are allegedly very dif-
ferent from those of mammals. Most prominently, the
conversion of mechanical vibrations into vibrations of
the cochlear fluid, with an associated matching of im-
pedances, does not occur in insects. However, struc-
tures that look structurally similar to the mammalian
cochlea do exist: For example, the sensory organ of field
crickets and katydids, the crista acoustica, which re-
sides on the forelegs, forms a linear array of cells that

Fig. 2. BM response of the Hopf amplification model with longitu-
dinal coupling (surface tension T � 10�9 E(x) at x � xc (1,000 Hz),
leading to T � 0.003). a: Frequency response. b: Gain.
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is the basis for tonotopic frequency coding, which is
comparable to the tonotopic map on the mammalian
BM. As a consequence, the presence of oscillators and
their coupling needs to be considered as potentially
important experimental models.

Two principal classes of acoustic detection can be
distinguished in insect audition. In close vicinity of a
sound source, the sound wave consists of a bulk move-
ment of air particles. Near-field detectors are, there-
fore, sensitive to particle velocity and relatively insen-
sitive to pressure variations. Drosophila and mosqui-
toes use thin and long sensory hairs on the body or
plumose antennae on the head for near-field detection.
Far from a sound source, the acoustic stimulus predom-
inantly arrives as a pressure wave. Therefore, instead
of particle velocities, efficient acoustic detectors oper-

ating at a distance from a sound source are most sen-
sitive to pressure variations. In insects, far-field detec-
tion is associated with tympanal hearing. Insect tym-
panal hearing organs are most diverse and can
comprise only one mechanosensory cell in some moths,
or up to several thousands in cicadas.

According to Robert and Hoy (1998), tympanal hear-
ing in insects evolved from sensory organs with a pro-
prioceptive function, for which stochastic resonance
phenomena have been reported (e.g., for the cricket
Acheta domestica; Levin and Miller, 1996). This phe-
nomenon refers to an improved recovery of a signal
when it is embedded in a (generally small amplitude)
noisy background. Stochastic resonance is present if for
noise of a certain nonzero amplitude, the signal-to-
noise ratio attains a maximum. In a study of Acheta
domestica (Levin and Miller, 1996), small amplitude
low-frequency air disturbances that are characteristic
for conspecifics or for predators, excite mechanosensory
afferent neurons that synapse onto interneurons in the
terminal abdominal ganglion (stimulation just su-
prathreshold). When a noise level of 25 times the r.m.s.
amplitude of the signal is added during the presenta-
tion to the animal, the signal-to-noise ratio measured
at the interneurons increases to a maximum above
8 dB, and then falls towards zero when the noise am-
plitude is increased.

Recent measured data (Drosophila melanogaster)
provided by M. Göpfert and D. Robert (Göpfert and
Robert, 2003) show the existence of limit cycles in in-
sect hearing. Using laser interferometry, the mechan-
ical behavior of the fruit fly’s antenna was measured at
the tip of the antennal flagellum. Spontaneous limit-
cycle oscillations were observed that could also be elic-
ited by using a chemical stimulus (DMSO, see Göpfert
and Robert, 2003). Coherent temporal oscillations that
can be found in the response are already a strong
indicator for the presence of active amplification. When
the data are further analyzed, it is seen that the typical
experimental run is divided into four different tempo-
ral periods. After the application of the chemical, fast
oscillations of small amplitude start to build up, that in
the second time slice are fully developed, but of lower
frequency. In the third time slice, the oscillation am-
plitudes have already decayed, with a slightly reduced
frequency. In the following slice, coherent responses
are absent and (possibly Brownian) noise is measured.
At this point, it is likely that the cellular elements of
the sensor are badly damaged. The observed oscilla-
tions are rather noisy; however, the underlying limit
cycles are detectable. In order to work out these struc-
tures more properly, we applied noise-cleaning meth-
ods to the data. Already after mild noise-cleaning, the
convergence of the data onto a limit cycle is evident (see
Fig. 5). From further analysis using fractal dimensions
and Lyapunov exponents, we conclude that the vari-
ability that can be observed in the data is not of a
chaotic nature, but of a noisy, stochastic nature.
Whereas the original data yield a positive largest Lya-
punov exponent (about 0.08), when the data is mildly
noise-cleaned, this exponent is reduced to less than
half that figure, which indicates that no coherent sep-
aration of trajectories exists. This means that the larg-
est exponent is noise-generated and not chaotic. After
noise-cleaning, the modified data were compared to the

Fig. 3. a: Response of Hopf oscillator array with feed-forward
coupling, for different input energies e from{104, 105, 106, ..1020},
assumed as independent from x for each curve. b: Response of inde-
pendent (dashed) and feed-forward coupled (plain) oscillators.
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original data. Using a BDS-test, it was ensured that
artificial information was not added by the noise clean-
ing, nor was existent information destroyed. The final
conclusion from the analysis is that the data can be
well approximated by a limit cycle in dimension
5. From the perspective of auditory function, this sug-
gests the existence of a mechanism of active amplifica-
tion, and that the generation of amplification is of a
low-dimensional nature, with a dimension close to
those measured in the mammalian cortex (e.g., the
cat’s visual cortex V1; Stoop et al., 2002).

These considerations fuel the need for further ques-
tions pertaining to the nature of the oscillators in-
volved. The general experimental accessibility of the
auditory system in insects may make it possible to
unveil the physical nature and the physiological pro-
cesses constituting these oscillators. Under which con-
ditions do nonlinear oscillators emerge and what char-

acteristic physical and biological properties can be ex-
pected from coupled nonlinear oscillators?

NOISE AND LIMIT CYCLES
The earliest theoretical explanations of the phenom-

enon of stochastic resonance were in the context of
perturbations of a limit cycle, where it is easy to ob-
serve (Derighetti et al., 1985; Wiesenfeld and Mc-
Namara, 1985). In biological applications, noise can be
imagined to drive a limit cycle, for which the signal acts
like a perturbation. However, more recent investiga-
tions, including one on holographic synapses (Stoop et
al., 2003), underline that the effect is very general.
Holographic synapses (a lesser known mathematical
abstraction of biological neurons), can be used for pat-
tern recognition. They show best performance, if noise
is added to the input signal. Also in this case, at the
heart of the phenomenon is an averaging process,

Fig. 4. Cochlear response with longitudinal feed-forward coupling of Hopf oscillators. a: Experimen-
tally obtained BM frequency response (adapted from Ruggero, 1992). b: Experimentally obtained BM
gain. c: Model frequency response. d: Model gain.
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Fig. 5. Limit cycles from insect hearing (Drosophila melano-
gaster). a: Response measured in the different response slices, reveal-
ing in each time very strong noise fluctuations, which using noise-
cleaning, were partially removed. Black: original data. Red: Noise-

cleaned data. b: Effect of noise cleaning for time-slice 2. The original
data is very noisy (left). Mild noise cleaning improves the limit cycle
nature of the oscillations, where structures indicating possible chaotic
behavior are absent (right, embedding dimension dE � 16).
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where effects disturbing the discrimination of signals
are averaged out.

Although insects have fewer neurons than mam-
mals, their mostly comparable physiology can be ex-
pected to work in comparable ways. From in vivo mea-
surements of cortical neurons in vertebrates, it be-
comes evident that two classes of neurons exist (Stoop
et al., 2002): One group fires in a random fashion,
whereas the other group exhibits, in some cases, very
stable firing patterns. Moreover, it appears that neu-
rons firing in patterns respond with pattern-sharpened
firing when driven by the optimal stimulus. A neuron
has a variable number of synaptic contacts, often as
many as 10,000 (Abeles, 1982). If each individual input
appears in an incoherent fashion and has about equal
weight, depending on the average activity of this pool,
their average will amount to a quasi-constant driving
current that slowly varies along with the average ac-
tivity. If the input is larger than the loss associated
with the decay of the membrane potential, the neuron
will start to fire in a regular fashion, and only if little
adaptation is present. However, firing of neurons has
been observed to be highly variable, much more than
could be expected from the situation depicted above.
Several different models have been proposed but the
issue of firing variability remains unresolved.

Shadlen and Newsome (1994) compared three mod-
els of synaptic integration, distinguished according to
the number n of synaptic inputs needed for spike acti-
vation (scaled by time), where they used Poisson-dis-
tributed input (a somewhat arbitrary assumption), giv-
ing rise to a random walk similar to the one in Figure
6. Integrate and fire neurons, with n � 300, show
clock-wise regular firing, due to the central limit theo-
rem (e.g., Feller, 1971). Coincidence detector neurons
asking for n � 35 synaptic inputs within 1 ms to fire,
fire rather variably, albeit at a somewhat increased
mean membrane potential. Neurons requiring for fir-
ing n � 25 excitatory events above resting potential in

a balanced inhibitory-excitatory network also achieve a
large degree of variability, where it has been claimed
that the network activity is chaotic.

In general, the simplest cortical in vitro preparations
lead to regular firing behavior. In vivo measurements
(anesthetized preparation, visual stimulation), how-
ever, show two broad classes of neurons: One with
low-dimensional firing properties, and another with
stochastic/noisy firing characteristics. Therefore, going
from the in vitro to the in vivo situation encompasses a
qualitative and a quantitative increase towards chaotic
behavior of the involved neurons.

To bring a neuron to chaotic firing, there are three
possibilities.

1. A neuron can become chaotic if it has relatively
strong interaction with other chaotic neurons.

2. As a biological neuron is a device acting within a
limited working range, it can be exhibiting a
strongly nonlinear behavior. It is generic that such
devices, when driven hard enough, will respond
with chaotic behavior. Therefore, internal strongly
nonlinear interaction, e.g., of ion currents, could
bring neurons into chaotic firing. It seems that in
the well-investigated neural network of the gastro-
somatic ganglion of crayfish, such behavior has been
observed (A. Selverston, private communication).

3. The last possibility has been discussed in the liter-
ature to a very small extent. It is the question of how
stable the external inputs can be assumed to be,
especially in the in vivo condition. If the driving
activity is varying in a chaotic fashion, the individ-
ual neurons’ firing behavior will very likely follow
this behavior, especially since we can assume that
for certain stimulations, different cortical circuits
will become active, which will lead to a strong sep-
aration property within the network. It can even be
imagined that under relatively stable external con-
ditions, interaction between different sensory corti-
cal subsystems may generate a chaotic interplay,
possibly driven by the non-occurrence of final ac-
tions in the anesthetized animal.

We would like to point out that, if the neuron fires
chaotically, the firing should be composed from funda-
mental patterns hidden within chaos. Furthermore, as
we will expect the activity to be driven externally, the
patterns have to be rescaled to standard activity. Oth-
erwise, possible chaotic behavior will be mistaken as
stochastic (unfortunately, an analysis distinguishing
between both behaviors seems not to have been per-
formed). Chaos has some advantages over stochastic
behavior: It is composed of different patterns that may
lead to well-defined actions in the population. These
patterns can be unstable, if supplemented by a control-
ling device, or marginally stable, if input-driven. In
either case, the advantages this property has is that of
fast adaptibility, and that it enables the (potentially
very stable) synchronization of ensembles of unstable
patterns.

For insects, ensembles of neurons of the size required
by the third scenario seem not to exist, and different
justifications for inhibitory neurons from balanced net-
works can be given (e.g., increased potential for syn-
chronization). We will, therefore, describe how an in-

Fig. 6. In vitro random walk (resulting in regular firing). This
system can be modeled by a one-sided quasi-one-dimensional random
walk with a drift towards the firing threshold. The limit cycle behav-
ior is just a mathematical mesoscopic description of this situation.
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tegrating neuron can become chaotic according to the
first scenario. When a neuron only obtains a small
amount of noisy, uncorrelated input, it will remain in
equilibrium. Upon sufficient sustained input, however,
it will enter a state of regular oscillation—a bifurcation
has taken place. If the oscillation onset is abrupt, start-
ing at a frequency remote from zero, the bifurcation is
called hard or subcritical; if its onset is continuous, it is
called soft or supercritical. Whereas hard Hopf bifur-
cations are typically generated from coupled nonlinear
differential equations [e.g., FitzHugh-Nagumo equa-
tions (FitzHugh, 1961), experimentally: non-adapting
interneurons], soft Hopf bifurcations can emerge from
simpler systems as one parameter changes. Moreover,
an effect similar to a soft Hopf bifurcation is generated
by a saddle-node bifurcation. In this case, regular firing
with an arbitrarily low frequency can be achieved, as is
observed, e.g., for pyramidal cells in the cortex.

Whereas the non-spiking neuron behavior is associ-
ated with a (stable) fixed-point of the equations de-
scribing the system’s evolution, regular firing by neu-
rons is usually associated with the mathematical
model of a limit cycle. Stable fixed-points are attracting
with respect to perturbations in all possible directions
(as many as the algebraic dimension of the evolution
equation indicates). After the bifurcation, all but one
direction are still attractive: Along the motion, the
stability has become neutral. How can, from this reg-
ular firing behavior, chaotic patterns emerge? In
Shadlen and Newsome’s (1994) simulations, only syn-
aptic contacts of the same size and strength were taken
into account, which is a strongly artificial setting. It
has been observed that synapses undergo long-term
synaptic potentiation and depression, respectively, de-
pending on the time at which the pre-synaptic spike
arrives at the post-synaptic neuron, with respect to its
own spike. As a consequence, what a neuron receives as
input is much more precisely described by the following
scheme:

● Small-scale input (e.g., from remote synapses) drives
the neuron towards regular spiking with well-de-
fined periodicity. This small-scale input will be re-
ferred to as noisy input. Note that such a type of
input is able to reflect local gradients of excitation in
the network

● Strong input from next neighbors (neurons or a
group of synchronized neurons)

● Medium-size interactions that may reflect specific
conditions in the neighborhood of the neuron, trans-
mitted most likely by interneurons

As small-scale input will drive the neuron into limit-
cycle firing behavior, the question is how these objects
interact under strong exchange of perturbations. If
limit cycles interact, it is in a generic way. Generically,
they will have incommensurable firing frequencies
(with irrational frequency � � f0/fs, where f0 is the
frequency of the target and fs is the frequency of the
perturbation) as there are abundantly more irrational
than rational numbers in the unit interval. When, how-
ever, the coupling is activated, with a strength mea-
sured by K, neuron pairs start to lock their firing in
rational frequency ratios, which naturally give rise to
the notion of periodicity. As K is increased further,

neurons with dissimilar firing frequencies are re-
cruited by different locked frequencies at the same
time. As a consequence, chaotic firing behavior of the
neurons is observed.

The outlined paradigm was experimentally verified
for cortical neurons (Stoop et al., 2000a): A neuron was
driven by a constant input current to regular firing.
From an afferent nerve, a regular stimulation signal
was applied, closely resembling pre-synaptic neuronal
signals. As a result, the postsynaptic neuron locked its
firing behavior to the frequency of the stimulation.
Investigation of the returned periodicities p as a func-
tion of {�,K} results in typical Arnol’d tongue struc-
tures (e.g., Glass and Mackey, 1988) (see Fig. 7 and 8).
For each periodicity p there are different “tongues,”
which comprise areas in the {�,K}-parameter space
having solutions of the same periodicity p and same
effective (locked) rational frequency. Note that all pe-
riodicities appear, according to the Farey-tree, but with
ever smaller basins of attraction. For the different ar-
eas, the stability properties of the solutions, which are
measured by the Lyapunov exponent �{�,K}, are of
interest.

Zooming in on the Arnol’d tongues reveals that for
inhibition, chaotic behavior is possible (�{�,K}  0;
Peinke et al., 1992), at least from the numerical point
of view. However, relatively large input strengths are
needed to generate this response. Analytic investiga-
tions prove that chaotic behavior indeed occurs on a set
of non-zero Lebesque measure in the relevant param-
eter space (Stoop et al., 2000b). This is the area where
chaos of the first scenario can be generated. The results
obtained for binary interaction generalize to higher
n-ary interaction, for which similar results can be ob-
tained (see Baesens et al., 1991).

That biological neurons are indeed on limit cycle
solutions has been shown experimentally: When the
frequency ratio is changed, firing along the Farey-tree
is found (Stoop et al., 2000a). This is the (first) exper-
imental proof that biological neurons, when stimulated
by a constant current, are on limit cycles.

ENCODING OF INFORMATION BY
LIMIT CYCLES

In order to see what coupling of limit cycles can
contribute towards a better understanding of neuronal
activity, we focus on a code that is intrinsic to the
Arnol’d tongues. A code is a partition of a usually
continuous physical phase-space of the evolving system
into areas that then are symbolically labeled, for exam-
ple, by some letters. Each time the system’s trajectory
enters a specific area of the phase-space, the associated
letter is reported. The code is useful if it succeeds in the
discrimination of states in an unambiguous way up to
a chosen precision by a symbol sequence of sufficient
length. Our coding system consists of a small number
(say: 2) of coupled noise-driven limit cycles. The noise
level and the two excitabilities then fully describe the
system. Alternatively, these inputs are coded by the
periodicity of the spiking of the targeted neuron and by
its spiking frequency. Schematically, we may, there-
fore, write:

�f1, f2�3 �p, f2� , (12)
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where f1 is the frequency of the perturbing neuron and
p labels the periodicity. How this coding scheme is
experimentally observed is shown in Figures 7 and 8. It
is now worth emphasizing the special properties of this
code. It is a code that is

● robust towards adaptation and relaxation processes
● independent of the excitability level in homoge-

neously excited area, in the sense that � � f1/f2
remains fixed, but only responds to local gradients of
the noise level

● nearly optimal: higher probabilities correspond to
lower periodicities (likewise to the Huffman code;
e.g., Ash, 1965)

● able to code phase-coding as well as frequency-cod-
ing.

To illustrate the last point we emphasize that

● phase-coincidence essentially triggers an increase of
K.

● frequency-coded input to the neuron essentially
changes �

The result of the interaction between the two neu-
rons can be seen as a computation, as it drastically

decreases the potentially accessible forms of spike
trains. Moreover, the result of this computation can be
read out from a third neuron. The interesting observa-
tion here, of course, is that the result of the computa-
tion is interpreted in different ways, according to the
state of the read-out neuron (where in the state again
information is contained). Figure 9 illustrates this
point.

Fig. 7. Lyapunov exponents indicate the stability of the emerging
response for inhibitory binary neuron interaction, on the natural
parameter space. Higher Lyapunov exponents indicate less stability.
Observe the emergence of the so-called Arnol’d tongues (scars in the
plot). On each scar, the periodicity p of the perturbed neuron’s re-
sponse is fixed (partially exemplified in the figure). The more stable

the neuron’s response, the lower generally is p. The circle indicates
the location where chaotic response occurs. A similar result is ob-
tained for excitation. However, excitation fails to reach the region
associated with chaotic behavior (the cell cannot sustain such strong
excitatory inputs and dies).

Fig. 8. Evolution of the locking between two neurons as one firing
frequency, and consequently �, is changed (from 0.75 to 0.9), but K is
held constant at K � 0.85. Experimental data (rat somatosensory
barrel cortex, pyramidal neurons). The periodicity evolves exactly
according to the prediction by the Farey-tree, proving that the exper-
imental neurons are indeed on limit cycle solutions.
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How important is locking in extended neural net-
works? Even in the simplest nearest neighbor neuronal
networks based on measured perturbation profiles and
firing frequencies of rat barrel cortex pyramidal neu-
rons, mild self-organized activities emerge. For the in-
dividual neuron, this leads to small oscillations around
the mean firing frequency. For appropriate neighbor-
ing neuronal activities, even in this quasi-stationary
setting, locked neuronal firing can be observed, albeit
slowly modulated by the underlying network oscilla-
tion. In Figure 10, two typical responses from this
model are shown. At the site illustrated (Fig. 10, left),
the influence by the network is so strong that no coher-
ent response to the stimulation by the neighboring
sites is found. In contrast, the response is locked at the
site (Fig. 10, right) (period 8). One interpretation of
these results is the following: More strongly coupled
clusters can be relatively stable, if the network modu-
lation does not change the internal relations between
neurons too much. When the network activity induces
a time-varying competition among the neighboring
neurons, the considered neuron will fall from one
locked state into another, which leads to firing in an
erratic manner. In terms of the observations made
previously, the set of neurons falls into two classes:
Neurons that perform temporally stable computations,
in contrast to neurons that are not firing in a coherent
fashion. The latter nevertheless may transmit informa-
tion by means of their firing frequency. According to
the principles of synaptic potentiation and depression,
they, however, will target mostly weakly coupled neu-
rons.

Driving Locked States Generate
Large Variability

Is there any supporting indication for the proposed
way of information processing? Below, we sketch two
scenarios that might be a consequence of the proposed
encoding. Although endowed with appealing mathe-
matical properties, locked states are seldom observed
in in vivo neuronal firing, where the closest findings
are from hippocampal place cells. An explanation of the

difficulty of observation can be given on the basis of the
following arguments. External sensory input or inter-
nal collective spatio-temporal self-organization may
lead to a strong driving of the neural activity. The
essential observation now is that locked states can
persist under strong driving, if their firing frequency is
relationally affected by the driving. This is the case,
whenever the condition � � f1(t)/f2(t) � const is met.
From the computational point of view, this indicates
that the relationship between the neurons has not been
changed, hence an unchanged result of computation is
returned. The response, however, will not be recog-
nized as locked, since the driving affects the time axis
similarly to a nonlinear transformation. As we are used
to measure locking by assuming a homogeneously
scaled time axes, and normally do not rescale by activ-
ity, we are generally unable to recognize locked re-
sponses under dynamic driving conditions. Figure 11
illustrates this observation, where driving, spike train,
and activity-rescaled phases of perturbations are
shown.

As a result, we propose the following interpretation
of the behavior of biological noise-driven cortical net-
works:

1. Locked neuron firing is a simple, emergent way of
expressing local neuronal computation. While for
weak local interaction the local spiking behavior is
dominated by a wealth of different periodicities, for
stronger interaction, there is a tendency for the re-
sponse to settle towards more simple and more sta-
ble spiking patterns.

2. In the quasi-stationary case, locally, low-periodic
locked spiking behavior may be expected in abun-
dance. This periodic response is organized along
Arnol’d tongues.

3. In the case of strong driving of the network, these
lockings may persist, but will be difficult to observe.

4. These “regular” spiking patterns are in sharp con-
trast to local chaotic response, which exists for
strong inhibition on a nonzero Lebesque measure of
the parameter space. The latter expresses that

Fig. 9. Read-out neuron. Left: Input signal. Displayed is the n’th
interspike interval as a function of n. Right: Response by the read-out
neuron as a function of its excitability. The read-out neuron is mod-

eled by a constant level of activity (“excitability”) and an exponential
decay towards this state for strong perturbations. At low excitability,
only fast successions of input spikes trigger a firing event.
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chaos should be observable, or that systems could be
tuned to this state. It is noteworthy that chaos re-
quires comparatively strong local coupling, and oc-
cupies only a small portion of the parameter space.
Local chaotic response enables synchronization
among different neuronal ensembles.

5. This form of chaos, however, needs to be distin-
guished from more global, spatio-temporal chaos,
which is generated by chaotic driving, either by sen-
sory input or by principles of self-organization.

We propose that locking plays a role similar to the
unstable periodic orbits in chaotic systems (Grebogi et al.,

1988). It provides the backbone for the complex structure
hidden in the seemingly intractable chaotic motion.

Long-Tailed Interspike Interval Distributions:
Indicators for Driving by Activity

It is usually assumed that interspike interval distribu-
tions are described by Poissonian probability distribu-
tions. In states of quasi-equilibrium brain activity, we
may reasonably expect neurons to be close to marginally
stable states. From these states, however, interspike dis-
tributions governed by Lévy-type probability laws
emerge. In near-to-equilibrium states, neurons change
their perturbation partners quite randomly, probably suf-

Fig. 10. 2-d next neighbor network, with interaction based on measured perturbation profiles (pyra-
midal neurons of barrel cortex). Left: Incoherent neuronal firing, dominated by long-range network
effects. Right: Embedded locked neuronal firing (period 8).

Fig. 11. Left: Driving current and spike train of by external activity driven, in period-2 interacting
limit cycle neurons (simulation). Right: Phases, when the driving is transformed away, indicating that
period-2 persists.
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fering from a (log-normal) random number of inhibitory
and excitatory perturbations between the spikes. Imple-
menting this point of view in a simulation, we indeed
observed perfect power-law decay behavior, superim-
posed by self-similar structures (e.g., Teich, 1992), that
are most prominent for strong local activity (large local
K-values). We checked this understanding against an
experiment in which we recorded neuron spiking activity
in cat striate cortex. Anesthetized cats were shown iso-
tropic random point patterns with varying granularities,
moving in the preferred direction of the observed neuron
(e.g., Ahmed et al., 1997). A reasonable assumption is
that the excitability K directly corresponds to the coarse-
ness of the point pattern. Indeed, our experimental ob-
servations verify these predictions (see Fig. 12). From our
sample of 11 files comprising between 2,000–15,000
spikes, 9 files showed clear power-law behavior, while
two were probably not asymptotic enough.

CONCLUSIONS
Using the example of a novel model of cochlear hearing,

we have reviewed and presented new evidence for the
importance of limit cycles in audition. We elucidated the
universality properties of these objects and presented
illustrative data, though most of them not directly con-
nected with hearing. A generic model for information
processing in noisy environments was proposed. In this
model, comparing analog signals results in a digital out-
put, the periodicity. In addition to contributing to a gen-
eral understanding of audition and its active components,
the evidence presented here also sheds some light onto
the co-existence between order and noise in neural sys-
tems, and on the origin of chaotic behavior.
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Fig. 12. Interspike interval distributions from cat striate cortex
recordings (see text). a: A fine grating, resulting in a smooth proba-
bility distribution. b: Using a coarser grating shows the “second
frequency” predicted by the model. The corresponding log-log scale
plots show an almost perfect power-law for (a) (indicated by a line), in
contrast to (b).
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