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Abstract

During sensory processing, cortical areas continuously exchange information in different directions along the hierarchy. The
functional role of such interactions, however, has been the subject of various proposals. Here, we investigate the role of bottom-up
and top-down interactions in processing stimulus structure and their relation to expected events. Applying multivariate autoregressive
methods to local field potentials recorded in alert cats, we quantify directed interactions between primary (A17 ⁄ 18) and higher (A21)
visual areas. A trial-by-trial analysis yields the following findings. To assess the role of interareal interactions in processing stimulus
structure, we recorded in naı̈ve animals during stimulation with natural movies and pink noise stimuli. The overall interactions
decrease compared with baseline for both stimuli. To investigate whether forthcoming events modulate interactions, we recorded in
trained animals viewing two stimuli, one of which had been associated with a reward. Several results support such modulations. First,
the interactions increase compared with baseline and this increase is not observed in a context where food was not delivered.
Second, these stimuli have a differential effect on top-down and bottom-up components. This difference is emphasized during the
stimulus presentation and is maximal shortly before the possible reward. Furthermore, a spectral decomposition of the interactions
shows that this asymmetry is most dominant in the gamma frequency range. Concluding, these results support the notion that
interareal interactions are more related to an expectancy state rather than to processing of stimulus structure.

Introduction

Sensory stimuli are processed across many cortical areas joined by a
network of complex connectivity (Felleman & Van Essen, 1991; Van
Essen et al., 1992). By the virtue of this connectivity, sensory areas
continuously exchange information along the two hierarchical direc-
tions: bottom-up and top-down. Concerning bottom-up signals, the
general consensus is that they reflect the physical properties of the
stimulus and relay this information to higher areas. In contrast, the role
of top-down signals is the subject of various proposals.

In the visual system, top-down signals have been suggested to
modulate activity in lower areas according to the global structure of the
stimulus. Thus, they should play an important role in perceptual
grouping and figure-ground segmentation. Support for this hypothesis
comes from experiments in which inactivation of higher areas decreased
the sensitivity of cells to stimuli of low salience (Hupe et al., 1998;
Bullier et al., 2001), altered their tuning properties (Wang et al., 2000;
Galuske et al., 2002) and abolished figure-ground segmentation
(Lomber et al., 1994). Correlates of figure-ground segmentation were
found in the responses of single neurons. Whether the receptive field of
a neuron lies within the same texture as part of the figure or as part of the
background affects neuronal responses. However, this effect occurs

only with a delay, which supposedly reflects top-down influences
(Lamme et al., 1998; Lamme & Roelfsema, 2000).
Another line of research focuses on the relationship between

interareal interactions and the predictive power of behavioural
contexts (see Engel et al., 2001 for a review). These studies emphasize
the role of top-down signals in transmitting predictions generated by
higher areas to lower processing stages. As a consequence, expecta-
tions should be manifested in sensory areas. Evidence comes from
experiments where expected stimuli induce synchronization between
local field potentials at different hierarchical levels (Roelfsema et al.,
1997). A phase analysis of local field potentials suggests that this
effect is attributable to top-down signals (von Stein et al., 2000).
Here, we evaluate the role of directed interareal interactions in

processing stimulus structure and their relation to expected events. We
recorded local field potentials in the primary visual cortex (A17 ⁄ 18)
and the higher visual area A21a of alert cats. We use multivariate
autoregressive (MVAR) modelling of the data to quantify the directed
interactions between these areas. First, in trained animals, we compare
interactions during passive viewing of two gratings, one of which
predicts a forthcoming food delivery. If top-down signals carry
information about expected events, they should dominate the inter-
actions for the stimulus associated with the food compared with the
other stimulus. Then we compare the strength of interactions in naı̈ve
animals during stimulation with natural movies and a derived pink
noise stimulus. If top-down signals are related to the stimulus
structure, they should dominate the interactions upon stimulation with
natural movies compared with the noise.
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Materials and methods

Subjects and recording technique

Data were obtained from four female cats. Two of them were trained
to recognize two orthogonal sine-wave gratings, referred to as S+ and
S–. The animals had to indicate the presence of S+ by pressing a lever
in order to receive a food reward (for details about the training
procedure, see Salazar et al., 2004). The other two animals are referred
to as naı̈ve animals. The raw data of the experiments presented below
have already been used for different analyses in two previous studies
(Kayser et al., 2003; Salazar et al., 2004).
In each subject, a small microdrive featuring four movable

electrode bundles was implanted under sterile conditions using
halothane ⁄N2O anaesthesia (1–1.5% and 70%, respectively; for
details, see Kayser et al., 2003). Two bundles were placed over the
primary visual areas A17 ⁄ 18 and two over the visual area A21a.
The two bundles within the same area were spaced 1–2 mm apart
laterally. Each bundle consisted of four electrode wires twisted
closely together (< 50 lm apart). The local field potential on each
of these four electrodes was very similar. The average within-
bundle correlation was 0.82, whereas the cross-bundle correlation
was only 0.27. Therefore, we averaged the signals of the four
electrodes of each bundle to obtain one local field potential from
the respective recording site. The depth of each electrode bundle
was changed regularly, usually every couple of days. Overall, we
obtained data from 23 different groups of recording sites (each
group ¼ 4 sites) in the trained animals and 15 different groups of
sites in the naı̈ve animals. The correct positioning of the electrodes
in the respective anatomical areas was verified later using standard
histological procedures (anaesthesia with ketamine/xylazine and
overdose of pentobarbital intravenously; heart perfusion with saline
and then paraformaldehyde; cortical slices stained with Nissl). For
each recording site and stimulus, we recorded between 45 and 180
repeats of the stimulus.

Recording procedures and stimulation protocol

For recordings, the animals were first restrained by a sleeve equipped
with adjustable Velcro fasteners and then placed in an acrylic tube
allowing stable positioning in front of the monitor. The animal’s head
was fixed using screws inserted into the chronic implants. During the
experiment, the state of alertness of the animal was assessed with an
infrared camera system and by examining the local field potential
online. Based on these controls, the animals seemed to be alert and
were not drowsy or sleeping. All procedures were in accordance with
the Zürich cantonal guidelines for the use of experimental animals and
conformed to the American National Institutes of Health and Society
for Neuroscience regulations.
During recording, the animals passively viewed different stimulus

paradigms.

Grating–food

The trained cats viewed presentations of the two orthogonal drifting
sine-wave gratings that they previously learned to recognize in a
go ⁄ no go paradigm (spatial frequency 0.16 cycles ⁄ �, temporal
frequency 1.6 cycles ⁄ s). One of them, referred to as S+, was
associated with a food reward upon correct response. The other
grating, referred to as S–, was never rewarded. To maintain the
association of S+ with food reward during passive viewing, drops
of liquefied cat food were delivered after stimulus offset (see
Salazar et al., 2004 for details).

Movie–noise

Both the trained and the naı̈ve animals viewed two types of stimuli
differing in their global structure. The first type consisted of three
natural movies. These movies were recorded from a camera placed on
the head of a freely moving cat in a natural environment (Betsch et al.,
2004). The second type was a modified version of the natural movies
in which the higher order structure was randomized. This stimulus is
known as pink noise and has the same spatio-temporal power
spectrum as the original movie (see Kayser et al., 2003 for details).

Grating

Both the trained and the naı̈ve animals viewed sine-wave gratings of
the same spatial and temporal frequency and orientation as S+ and S–.
In contrast to the grating–food set, these stimuli were shown in a
different context. They were randomly mixed with other gratings of
different orientation and no food was delivered.
In all paradigms, stimuli were shown in a random order and

separated by a uniform grey screen (blank). All stimuli had the same
mean luminance as the blank and same root mean squared (r.m.s.)
contrast. Stimuli were presented on a 19¢ Hitachi CRT monitor
(120 Hz refresh rate) placed 0.5 m in front of the animal in a darkened
room. The stimuli were presented using MATLAB (Mathworks,
Natick, USA) code based on the psychophysics toolbox extensions
(Brainard, 1997; Pelli, 1997).

Signal processing and data analysis

Signals picked up by the electrodes were first passed through a
24-channel preamplifier (Neurotrack, 10-fold amplification), then
amplified and digitized using a Synamps system (Neuroscan, El Paso,
USA) at a temporal resolution of 20 kHz using a high-pass filter of
5 Hz. Off-line analysis of the local field potentials was carried out in
MATLAB. The local field potential was extracted by band-pass
filtering the data between 5 and 125 Hz and resampling at 250 Hz.
The analysis of the interactions was based on a MVAR modelling of

the local field potential time series. From these MVAR models, a
measure of directed interactions, the Wiener–Granger causality and its
spectral decomposition were extracted. Details of these methods have
been described in the literature in detail (Bernasconi & König, 1999;
Ding et al., 2000). It was previously shown that these measures of
interactions can be effectively applied to local field potential recordings
from in vivo preparations and awake animals (Bernasconi & König,
1999; Freiwald et al., 1999;Ding et al., 2000; Liang et al., 2000; Baccala
& Sameshima, 2001; Kaminski et al., 2001; Liang et al., 2002).

MVAR model

Let Xt denote the vector describing the two channels from area
A17 ⁄ 18 and let Yt be the vector containing the two channels from area
A21a. Let Z denote the vector containing the data from all four
channels, i.e. Z ¼ [X, Y]. The MVAR model expresses the values at
time t as a weighted sum of the past values and thus describes a linear
prediction of future data based on past values (Fig. 1). There are three
models. Two of them describe the channels of the two areas based on
their own data and one model expresses the data of each channel based
on the data from all four channels:

Xt¼ cx þ A1;xXt�1 þ :::þ Ap;xXt�p þ et;x
Yt¼ cy þ A1;yYt�1 þ :::þ Ap;yYt�p þ et;y
Zt¼ cz þ A1;zZt�1 þ :::þ Ap;zZt�p þ et;z

ð1Þ
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Here c are constants, p is the order of the model, the matrices Ai

contain the model coefficients and et are the residuals, which are white
noise processes. Thus, E[et,x] ¼ 0 and E[et,x es,x¢] is non-zero only if
t ¼ s; similarly for y and z.

E½et;xet;x0�¼ X17=18;

E½et;yet;y 0�¼ X21 and

E½et;zet;z 0�¼ ~Xall

ð2Þ

Because Z consists of X and Y, the latter can be decomposed into:

~Xall ¼
~X17=18 C
C ~X21

� �

with C being the cross-area covariance matrix. The matrices W are the
important characteristics for the computation of the causality measures
(see below). The models for X and Y can be obtained as a subset of the
model for Z, and in the following we will concentrate on the latter
when describing the quality of the fitted models.

The model coefficients are chosen such that the model optimally
reproduces the original data in the mean square sense. Here the
coefficients were obtained using the Levinson, Wiggins, Robinson
algorithm (Haykin & Kesler, 1983).

The order of the model p needs to be specified in advance and
requires a compromise between a good fit to the data and a good
prediction of future data. A widely used criterion is based on the

Akaike Information Criterion (AIC; Akaike, 1974; Bernasconi &
König, 1999):

AICðpÞ ¼ logðdetðXÞÞ þ 2nest=T

where W is the estimated noise covariance, nest is the total number of
free parameters (4*4*p) and T is the length of the data window used to
estimate the model. The first term decreases with increasing p, while
the second term punishes models with a high order. We tested all
values of p between 4 and 14 on our entire set of data. Example values
of AIC are shown in Fig. 1B for one typical recording session. These
curves have a minimum between p ¼ 5 and 7. As a compromise, we
choose the order of the model to be p ¼ 6.
There are two ways in which the model can be determined for a

given dataset. In a first approach, the model is fitted to the data of each
trial separately and the causality measures are computed for each trial.
Then, only these measures are averaged across trials to yield one result
for a given group of recording sites. This conservative approach
regards different trials as potentially different processes and reduces
the variance only in the last step when averaging the causality
measures across trials. In a second approach (Ding et al., 2000) the
data of different trials are taken as realizations of the same underlying
stochastic process. To compute the model coefficients, the different
trials are first combined and only one set of MVAR coefficients is
obtained for this dataset. This approach has the advantage that the
variance is reduced before fitting the MVAR model, which is the non-
linear step in the analysis. In the following, we will refer to the first

Fig. 1. Example data and autoregressive modelling. (A) Local field potentials recorded at four sites during the presentation of a stimulus. The MVAR model
expresses the data of one site at time point t (small circle, Chan 2) using a linear combination of the data from all channels at the past time points t, t ) 1, …, t ) p,
where p represents the order of the MVAR model. (B) The graph shows the AIC for several recording sites. The AIC is used to choose the optimal model order and
characterizes the balance between a minimal p and a good fit to the data. The local minimum represents the optimal choice and is between 5 and 7. (C) The
coefficients of the MVAR model for one group of recording sites during the movie–noise condition. The model order was 6 and thus there are 6 coefficients for each
pair of channels. The boxes represent the distribution of coefficients (mean ± SD) obtained for 60 repeats of the stimulus. Black boxes represent coefficients for
which the mean is significantly different from zero (t-test, P < 0.05), grey boxes represent insignificance.
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approach as ‘trial-by-trial’ analysis and to the second as ‘ensemble’
analysis. For the main part of the analysis, we focus on the trial-by-
trial approach and use the ensemble approach as a control.
For both approaches, the MVAR models were estimated separately

for several windows (800 ms long): one during the blank screen
(800 ms prior to and until stimulus onset); one window shortly
after stimulus onset but excluding the initial evoked response
(200–1000 ms after stimulus onset); a second stimulus window
(1200–2000 ms after stimulus onset). For the grating–food paradigm,
which lasted 3000 ms, a third stimulus window (2200 and 3000 ms
after stimulus onset) was used in some specified cases.

Prerequisites and quality of the fitted MVAR models

In order for the MVAR description of the experimental data to be
valid, several conditions must be satisfied. First, the data must have
a Gaussian distribution. This was verified by computing the
histogram of the data for each trial, window and electrode. The
histogram was then compared with a normal distribution of the
same variance using a Kolmogorov–Smirnov test (see Fig. 2a for
examples). In more than 98% of the cases the data did indeed
follow a Gaussian distribution (based on a P-value of 0.01, no
correction for multiple testing).
A second important prerequisite for the MVAR modelling is that

the data must be stationary. To test this, each data window was split
into half and the data from the first half were compared with the
data from the second half. Stationary was assumed if these two
distributions did not differ significantly (Kolmogorov–Smirnov test,
P > 0.05, no correction for multiple test). A previous study showed
the reliability of this procedure (Bernasconi & König, 1999). Two
example trials are shown in Fig. 2B. The left part shows the local
field potentials from the four recording sites. The right part shows
the two histograms used for stationary testing for the data of one of
these channels. In the upper trial, the data are stationary while in
the lower trial the data are not. In the latter case, the signal
amplitude increases during the second half. For each window, the
data were accepted as stationary if the signals at all four recording
sites were stationary. Overall, 85% of the windows were accepted
as stationary. Figure 2B shows the distribution of stationary trials
across the different stimulation conditions. Interestingly, during the
presentation of a stimulus the data were more likely to be stationary
(88.1% of the windows) than during the blank (78.2% of the
windows), and this difference was significant (t-test, P < 0.01). In
contrast, the different stimuli did not differ significantly in the
percentage of stationary trials (P > 0.05 for all pairwise compar-
isons).
If the MVAR model correctly describes the data and thus

incorporates all the temporal structure, the residual et [cf. Eq. ( 1)]
will describe a white noise process. We verified this in the following
way (see Ding et al., 2000 for more details). For each residual, all
auto- and cross-correlations were computed up to lag 6. We then tested
the null hypothesis that the residual had no correlations and, thus, all
correlation coefficients should be within a 5% significance interval
around zero based on a t-statistic. For each trial and window, we
counted the number of correlation coefficients that were outside of this
interval. In all cases, less than 3% of the correlation coefficients were
significantly different from zero.
In a second step, we quantified what proportion of the correlation

structure of the original data was actually captured by the MVAR
models (see Ding et al., 2000 for more details). To do so, for each
fitted MVAR model, an artificial dataset was created by iterating the
model on the initial values of the experimental data. Then, all auto-

and cross-correlations were computed for both the artificial and
experimental datasets. The two vectors defined by all correlation
coefficients (Rreal and Rartif, respectively) were then compared to yield
the following consistency measure:

Fig. 2. Prerequisites for a successful MVAR modelling of the neuronal data.
(A) Testing for Gaussian distribution of the data. For three windows the
histograms of the data are shown together with a fitted Gaussian distribution of
the same mean and variance (solid line). In all cases, these two distributions do
not differ significantly (t-test, P > 0.05). (B) Testing for stationarity of the
data in two example trials (upper and lower panels). On the left, the data from
the four recording sites are shown (different grey scales for different channels).
On the right, the histograms of the data during the first and the second half are
shown, always for one of the four channels. In the upper example the data are
stationary. The two histograms from the first and second half do not differ
significantly (Kolmogorov–Smirnov test, P > 0.05). In the lower example the
data are not stationary: the amplitudes increase during the second half. The two
histograms differ significantly and this was the case for all four channels
(P < 0.05). (C) Consistency of the temporal structure in the original data and
in the MVAR model. The percent consistency measure (PC) indicates how well
the temporal structure of experimental and modelled data matched. The graph
shows the histogram of the PC values for all trials and data windows. The
overall mean was 83%. The different paradigms differ slightly in their mean
consistency (triangles on top): 78.4% for the grating–food (black triangle);
83.3% for the movie–noise (dark grey) paradigms, respectively; and 81.1%
during the blank (light grey).
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PC ¼ 1� jRreal � Rartif j
jRrealj

� �
� 100 ð3Þ

Here, |…| denotes the 1-norm (sum of absolute values of all vector
elements). Figure 2C shows the distribution of the consistency
measure for all data windows including blank and stimulus. On
average the consistency was 83%, which is close to values reported in
another study (Ding et al., 2000). Models fitted to the trials of the
grating–food paradigm showed a slightly lower consistency than those
of the movie–noise paradigm (78.4% vs. 83.3%). These numbers were
not significantly different (P > 0.05) from the consistency obtained
during the blank (81.1%). Concluding, we can confidently say that the
MVAR models captured the temporal structure of the experimental
data.

As a last control, we computed the average r.m.s. error between the
experimental data and those predicted using the model. On average,
this r.m.s. error was only 4.75% of the standard deviation of the
respective signal. However, for a few trials the model gave an
inaccurate description of the data and the error was large. As a good
description of the raw data is crucial for the validity of the measured
interactions, we employed the following criterion to detect these trials.
We computed the distribution of all r.m.s. errors. The trials, for which
the r.m.s. error was more then two standard deviations above the mean
of this distribution, were denoted as ‘large error trials’.

We performed the entire analysis of the interactions twice. First, we
just used trials that were stationary and did not belong to the ‘large
error trials’. These two criterions together lead to an exclusion of 32%
of the data windows (24% for the grating–food and 34% for the
movie–noise paradigm, respectively). Second, we used all the trials. In
this case, some of the trials do not fulfil the criteria necessary for a
valid description by a MVAR model. The purpose of this second
analysis was to check whether the selection of trials affects the main
results. However, this is not the case and the results of both analyses
were qualitatively the same (see the Results for details).

Causality measures

The direction of information flow between the recorded channels was
studied using structural analysis of the time series. Two methods to
quantify the interactions were used: the Wiener–Granger causality
measure and the directed transfer function. The Wiener–Granger
measure of causality (Granger, 1963, 1969, 1980) is based on
the intuitive idea that if a time series X causes the time series Y, the
knowledge of the past of X and Y should improve predictions of the
present value of Y, compared with knowledge of the past of Y alone.
For multivariate stationary processes, Geweke proposed a measure of
linear dependence (information) between two groups of variables that
can be obtained form the MVAR coefficients (Geweke, 1982). Define
var(X|Y) as the mean square error of the prediction of the best linear
forecast of a time series X based on the knowledge of Y. Let X– be the
past and X+ the past and present of X, and let X indicate the whole time
series. Then the following represents a measure of linear dependence
between the time series X and Y:

FX ;Y¼ log
det½varðX=X�Þ�

det½varðX=X�; Y Þ�

� �

¼ log
det½varðY =Y �Þ�

det½varðY =Y �;X Þ�

� � ð4Þ

Here, det denotes the determinant of the matrix. This quantity can be
decomposed into directional measures of linear interactions, FX fi Y

and FY fi X, and into an instantaneous interaction Finst: FX,Y ¼
FX fi Y + FY fi X + Finst. Here, FX fi Y can be interpreted as a number
quantifying how much the generalized variance of the prediction error
of Y is reduced, when Y is predicted not only based on itself alone but
also based on X. Furthermore, these measures can be expressed in the
frequency domain (for details, see Bernasconi & König, 1999). Given
the MVAR model of the data, these interaction measures can be
obtained from the error variance matrices in Eq. (2):

F17=18!21a¼ logðdetðX21a=detð~X21aÞÞ
F21a!17=18¼ logðdetðX17=18=detð~X17=18ÞÞ

Finst¼ logðdetð~X17=18Þ�detð~X21aÞ=detðXallÞÞ
ð5Þ

The instantaneous interaction Finst reflects either a flow of information
too fast to be detected by the sampling rate used, or common inputs to
the time series. However, as can be seen from the formula, it does not
carry any directed information. Thus, in the following, we focus on the
two directional measures. F17 ⁄ 18 fi 21a and F21a fi 17 ⁄ 18 reflect the
bottom-up and top-down components of the signal, respectively, and
will be referred to as such. To investigate the relative changes of
interareal interactions induced by the stimulus, we computed the
percent change of the information flow with respect to the blank. We
define the modulation of the top-down (TD) and bottom-up (BU)
components as the following:

BU ¼ 100�
F Stimulus
17=18!21a � F Blank

17=18!21a

F Blank
17=18!21a

ð6Þ

TD ¼ 100�
F Stimulus
21a!17=18 � F Blank

A21a!17=18

F Blank
21a!17=18

ð7Þ

The following analysis concentrates on these two quantities. These
quantities were averaged across all stimulus repeats for a given group
of recording sites yielding one number for top-down and bottom-up,
respectively. For statistics, these numbers were averaged across groups
of recording sites and the significance level was assessed using t-tests.
As a second measure of interactions, we employed the concept of

the directed transfer function (Jenkins & Watts, 1968; Ding et al.,
2000). The directed transfer function is obtained from a spectral
decomposition of the MVAR model and is closely related to the
Wiener–Granger interaction measure (see Baccala & Sameshima,
2001 for details).

Results

Effect of expectations

To quantify the overall modulation of the interareal interactions by the
different stimuli, we first investigate the total interactions: the sum of
the bottom-up and top-down components (Fig. 3, left). This total
interaction was averaged across the two windows during the stimulus
presentation. For both stimuli of the grating–food paradigm, the total
interaction increases during the stimulus presentation. Both increases
are significant (S+: stimulus associated with food, P < 0.0001;
S–: stimulus not associated with food, P < 0.05). Furthermore, this
effect is specific to a situation where forthcoming events are
predictable. When the same stimuli were shown interleaved with
other stimuli and without food deliveries, as in the grating paradigm,
the total interaction is not affected (P > 0.05).
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To characterize the role of bottom-up and top-down components,
we investigate the differential interaction defined by the difference
between top-down and bottom-up (TD ) BU). As before, the data
were averaged across the two windows during the stimulus presen-
tation (Fig. 3, right). We find that the two stimuli of the grating–food
paradigm emphasize different components of the interactions. The
stimulus S+ leads to a dominance of top-down interactions, whereas
the other stimulus S– leads to a dominance of bottom-up. This
difference between the two stimuli is close to significance (P ¼ 0.08).
On the other hand, in the grating paradigm, both the top-down and
bottom-up components are similar (P > 0.05).
To further investigate the dynamics of bottom-up and top-down

interactions in the grating–food paradigm, we analyse each window
separately (Fig. 4A). Interestingly, the difference between the two
stimuli is more and more pronounced towards the end of the stimulus
presentation, that is, in proximity to a possible delivery of food. More
precisely, during the first window, bottom-up and top-down interac-
tions are in balance for both stimuli (P > 0.05). In the second window,
the differential interactions are dominated by top-down signals
(positive value) during S+ and by bottom-up signals during S–

(negative value). The difference between stimuli is significant
(P < 0.05). In the third window, this latter effect is even more
pronounced (P < 0.01), although a significant difference from zero is
only reached for S– (P < 0.05) and not for S+ (P > 0.05). Thus, the
relation between top-down and bottom-up signals is dynamic and
depends on the proximity of expected events.
The results presented above indicate that bottom-up and top-down

signals are differently related to expected events. To further charac-
terize this asymmetry and localize it within the signal’s spectrum, we
compute a frequency decomposition of the Wiener–Granger causality
measure. The difference between normalized top-down and bottom-up
interactions is computed in each window separately. In the first
window, no evident difference is observed between the stimuli S+ and
S–. In accordance with the above results, in the second stimulus
window, the stimulus S+ is dominated by top-down interactions and
the stimulus S– is dominated by bottom-up interactions. This
difference is even more prominent in the last window, which is
displayed in Fig. 4B. This figure shows that the difference between the

two stimuli is most pronounced between 20 and 60 Hz. Thus, the
effect of expectancy is most prominent in the gamma frequency range.

Effect of stimulus structure

The movie–noise paradigm is analysed separately for the trained
(Fig. 5, upper panel) and the naı̈ve animals (Fig. 5, lower panel).
Nevertheless, both groups of animals yield similar results. The total
interaction decreases for both stimuli significantly (P < 0.01 and
P < 0.05 for movie and noise in the trained animals, and P < 0.001
for both stimuli in the naı̈ve animals; Fig. 5, left). This effect is
specific to complex stimuli such as natural movies and pink noise but
not to simpler stimuli such as gratings. In the grating paradigm, the
total interaction is not different from zero (P > 0.05) in trained as well
as in naı̈ve animals. Thus, the spatial complexity of a stimulus affects
the flow of information between areas.
The differential interactions during the movie–noise paradigm show

a general tendency for a dominance of top-down interactions. Indeed,
the differential interactions are positive in both the trained and naı̈ve
animals. However, none of these interactions is significantly different
from zero and thus is similar to the differential interactions induced in
the grating paradigm (P > 0.05 in all cases). Furthermore, the
differences between natural movies and the pink noise are much

Fig. 4. Temporal development and frequency decomposition of the differen-
tial interaction in the grating–food paradigm. (A) The differential interaction
analysed in the different windows separately. The time intervals indicated are
referenced to the stimulus onset. (B) Frequency analysis of the differential
interaction during the last window (2.2–3 s after stimulus onset). In both
panels, means are computed across groups of recording sites and error bars
denote the SEM. Significant differences between stimuli are marked with
asterisks at *P < 0.05, **P < 0.01.

Fig. 3. Interactions during the grating–food and grating paradigms (trained
animals). Left panel: total interaction defined as the sum of top-down and
bottom-up interactions (TD + BU) and normalized as percent change compared
with the preceding blank. Right panel: differential interaction defined as the
difference of top-down and bottom-up (TD ) BU). The data were averaged
across the two stimulus windows. The bars and the error bars represent the
mean across groups of recording sites and the SEM, respectively. Significant
differences from zero are marked with asterisks at *P < 0.05 and
***P < 0.001.
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smaller than the difference between S+ and S– as reported above for
the grating–food paradigm.

To further investigate the temporal dynamics of interareal interac-
tions, we analyse the different windows separately. In the naı̈ve
animals, there is no difference between movie and noise in any of the
windows (P > 0.05). In the trained animals, the difference between
movie and noise reaches significance only in the second window
(P < 0.05) but not the first one (P > 0.05). This difference is due to a
dominance of top-down interactions for natural movies (data not
shown). Nevertheless, the difference between movie and pink noise
(7.25%) is still smaller than the difference between S+ and S–

(11.36%) in the same window. Summarizing, the stimulus structure
has only a weak effect on interareal interactions compared with those
induced by stimuli in the grating–food paradigm. Furthermore, the
relative strength of bottom-up and top-down interactions does not
show a tendency that is consistent between both groups of animals.

Methodological controls

The above results were obtained by neglecting trials during which the
data were not stationary or for which the fitted MVAR model did not
reproduce the original data well. We performed an additional analysis,
but this time included all available data, even if the trial did not fulfil
the prerequisites of the MVAR modelling. Although the results
obtained differ numerically from those presented above, they are
qualitatively the same. To test this more rigorously, for each of the
quantities shown in Figs 3 and 5 we performed a pair-wise compar-
ison between the results obtained using either all or only the restricted
set of trials. In all cases, the two analyses yield similar results (t-test,

P > 0.05). Therefore, we can rule out the possibility that the results
presented above are biased by the selection of the trials.
There are two approaches, based on different assumptions, to

compute the MVAR models for a given set of trials (see Materials and
methods). One approach is to compute the model for each trial
separately and then average the interaction measures across trials
(‘trial-by-trial’ analysis). As the model is computed for each trial
separately, this approach does not assume any similarity across trials
of the underlying multivariate model describing the interactions. In
principle, the pattern of the interactions could differ completely in
each trial and the results obtained represent only the average effect.
This approach was used to obtain the results presented above. A
second approach is to assume that all trials for a given stimulus are
realizations of the same stochastic process and that fluctuations from
trial to trial are small deviations from a fixed model. To estimate this
model, the different trials are combined before fitting the MVAR
model (‘ensemble analysis’). On one hand, the variance is reduced
before the non-linear fitting process resulting in a better signal to noise
ratio. On the other hand, the ensemble analysis makes the additional
assumption of stationarity over all trials.
For a comparison of the two approaches, we perform the ensemble

analysis on the same dataset, again excluding trials, which shows no
stationarity already within the trial (Fig. 6). Overall we find that the
results differ quantitatively from the trial-by-trial analysis. The
stimulus-induced changes of the interactions are much larger (roughly
by a factor of 5) than the results obtained from the trial-by-trial

Fig. 6. Control analysis in which the MVAR model was computed using the
ensemble approach. (A) The results for the trained animals in the grating–food
and grating paradigms. Note that this figure should be compared with Fig. 3.
(B) The results for the naı̈ve animals in the movie–noise and grating
paradigms. Note that this figure should be compared with Fig. 5B. The mean
was computed across groups of recording sites and error bars denote the SEM.
Significant differences from zero are marked with asterisks at *P < 0.05,
**P < 0.01 and ***P < 0.001.

Fig. 5. Interactions in the movie–noise and grating paradigms for the trained
animals (A) and naı̈ve animals (B). Left panel: total interaction. Right panel:
differential interaction. As in all figures the mean was computed across groups
of recording sites and error bars denote the SEM. Significant differences from
zero are marked with asterisks at *P < 0.05, **P < 0.01 and ***P < 0.001.
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analysis. This indicates a greater sensitivity of the ensemble analysis to
stimulus-induced interactions. In the following, we will show that
despite these quantitative changes some of the main findings are
preserved, especially in the grating–food paradigm. However, the
significance of other findings, mainly in the movie–noise and grating
paradigms, is altered. More precisely, for the trained animals, both
stimuli of the grating–food paradigm lead to a significant increase of
the total interactions (Fig. 6A, left). In the ensemble analysis, however,
the dominance of bottom-up components for S– is significant already
when averaged across all windows (P < 0.001; Fig. 6A, right). In the
grating paradigm, the trial-by-trial analysis did not reveal any
significant effect of the stimulus on the interactions. In contrast, the
ensemble analysis yields a significant increase of the interactions
(48 ± 13%, P < 0.01). Consistently in both analyses, there is no
difference between the two directions of the interactions (12 ± 7%,
P > 0.05). In the movie–noise paradigm, we find that the decrease of
the total interactions found in the trial-by-trial analysis is not
reproduced in the ensemble analysis for the naı̈ve animals (movie:
)12 ± 14%; noise: )10 ± 13%; P > 0.05 in both cases, see Fig. 6B,
left) as well as for the trained animals (movie: 31 ± 18%; noise:
33 ± 20%; P > 0.05 in both cases). But consistently between the two
analyses, neither bottom-up nor top-down dominates in this paradigm
in naı̈ve (movie: 31 ± 18%; noise: 12 ± 15%; P > 0.05 in both cases,
see also Fig. 6B, right) or in trained animals (movie: 17 ± 12%; noise:
15 ± 14%; P > 0.05 in both cases). Finally, in the grating paradigm,
both types of analysis yield the same result for naı̈ve animals, that is,
no effect of the stimulus (total interaction: 70 ± 41%; differential
interaction: 15 ± 17%, P > 0.05 in both cases). Altogether, the
significance of some of the results depends on the type of analysis
and, thus, on the initial assumption about the uniqueness of the
process underlying interareal interactions. But other results were found
consistently in the two analyses: the lack of relation between the
differential interactions and the stimulus structure and, more import-
antly, the increase of the total interactions by S+ and S–.
We furthermore employ a different frequency analysis of the

interactions, the so-called directed transfer function. This is computed
from the MVAR models obtained using the ensemble analysis. For the
grating–food paradigm we compute the frequency spectra of the
differential interactions in a similar way to the results presented in
Fig. 3B. In agreement with those results, the prominent difference
between the two stimuli S+ and S– occurs in the gamma frequency
range mainly between 30 and 70 Hz.

Discussion

In the present study, we measured local field potentials in alert cats and
quantified the flow of information between primary visual cortex
(A17 ⁄ 18) and area A21a. To determine the effects of stimulus
structure and of expectancy on the modulation of interareal interac-
tions, we analysed data from two different paradigms. In a first
paradigm, natural movies and their derived pink noise stimuli
decreased the total interareal interactions. This result, however,
reached significance only in the trial-by-trial and not in the ensemble
analysis; these analyses differ in their assumption about the unique-
ness of the process underlying interareal interactions and this issue is
discussed below. Nevertheless, there was no consistent dominance of
either bottom-up or top-down interactions in this paradigm. In a
second paradigm, during the presentation of stimuli associated with a
possible delivery of food, the total interactions were found to increase
in the two types of analysis. Furthermore, whether a ‘reward’ could be
expected or not influenced the contribution of top-down and bottom-

up signals to interareal interactions. This effect was maximal in
proximity to the expected event and mostly expressed in the gamma
range of the local field potential.
One issue about the causality measures used here is that the

influence of a third area cannot be ruled out. In general, two variables
X and Y could be driven by a third variable Z that is not measured.
Assume that the coupling between Z and X has a shorter latency than
the coupling of Z to Y. Then, applying the Wiener–Granger causality
analysis to the pair (X, Y) would yield a directed interaction from Y to
X. Therefore, common input to the two areas is not only reflected in
the instantaneous interaction but can also affect bottom-up and top-
down components. However, such common input should play only a
minor role in the present case. First, the two areas of interest, A17 ⁄ 18
and A21a, are joined by direct connections both in bottom-up and in
top-down directions (Stone et al., 1979; Rosenquist, 1985; Wang
et al., 2000). Second, bottom-up connections from A17 ⁄ 18 provide a
major excitatory drive to area A21a (Michalski et al., 1993) and top-
down input from A21a modulates responses in A17 (Wang et al.,
2000). Last, there are only few areas providing a major and direct
common input: two areas 17 ⁄ 18 and 21a (see Burke et al. 1998 for an
example). Areas 19 and posteromedial lateral suprasylvian area
(PMLS) are possible candidates though. These points support the
assumption that most of the interactions reported in this study are
actually due to direct interactions between areas A17 ⁄ 18 and A21a
and not due to common input.
A second issue is the common reference used for recording the local

field potentials. The four local field potentials recorded simultaneously
at the different recording sites were all amplified with respect to the
same common reference. This introduces a signal common to all
channels and might influence the interaction measures. One way to
overcome this problem is to use bipolar electrodes where electrode and
reference are closely spaced together (see von Stein et al., 2000 for an
example). However, this approach requires a specifically designed
electrode and amplification set up. Instead of performing such a local
differentiation using the amplifier hardware, one could consider doing
so offline. This requires that all channels have been recorded with
exactly the same amplification gain factor. This gain, however,
depends not only on the details of the amplifier set up but also on the
electrode impedance. The latter could in principle be measured even
after implantation, but is subject to uncontrollable and continuous
changes, e.g. due to tissue reactions. Thus, offline differentiation could
in principle be done, but the quality of the result is uncertain and it is
practically impossible to determine what proportion of the signal is
due to a common reference. We thus relied on the signals as they were
recorded without adding a further step of uncertainty. Furthermore, a
common signal originating from the same reference should mainly
affect the instantaneous component of the interactions, a measure that
was not included in the study (see Materials and methods).
A third issue requiring discussion is the different results obtained

from the trial-by-trial and ensemble analyses. The fundamental
difference between the two approaches is the assumption that, in the
ensemble analysis, all the trials are the realizations of the same
stochastic process and thus follow (up to small noise) the same
multivariate model. Based on this assumption, the ensemble analysis
combines the data from all trials to find the ‘mean model’ that fits the
observed interactions. On the other hand, the trial-by-trial analysis
allows a different model for each trial and describes the interaction
based on these varying models. Both methods have their advantages
and it is, a priori, not clear which method is more valid. If we assume
that bottom-up and top-down signals strictly follow a fixed scheme
that depends only on their level of involvement and thus on the
experimental paradigm, the ensemble analysis would be a good
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choice. However, it might well be that these interactions follow certain
dynamics and, thus, are not stationary from trial to trial; as it is well
documented for neuronal responses (Schiller et al., 1976; Vogels et al.,
1989). In this case, the best approach is to describe interareal
interactions by using different models in different trials, which can be
achieved by the trial-by-trial analysis. In contrast, the ensemble
analysis would yield less accurate, if not plainly misleading, results.
For example, the behavioural relevance of a stimulus could influence
the consistency of interareal interactions by reducing the trial-by-trial
variability in the grating–food paradigm compared with the movie–
noise paradigm. If this were the case, both types of analysis would
yield similar results in the first but not in the latter paradigm, which is
what we observed. To conclude, which method of analysis is adequate
might well depend on multiple factors and, in general, needs further
investigation. Nevertheless, the trial-by-trial analysis rests on fewer
assumptions than the ensemble analysis. One consequence may be a
weaker sensitivity to stimulus-induced interactions but, more import-
antly, it is less restrictive and its results have a more general validity.

The results from the trial-by-trial analysis show that the relative
changes of interareal interactions decrease when viewing natural
movies and their derived pink noise. This is an unexpected result
because both realistic and noise stimuli were shown to induce strong
activations of local field potentials within area A17 ⁄ 18 (Kayser et al.,
2003) and similarly within area A21a (unpublished data). One possible
explanation is that the complexity and, in the present experimental
context, the unpredictability of movie and noise stimuli emphasizes
local and intra-areal interactions at the detriment of interareal
processing. Furthermore, these results do not support an important
role of top-down signals in structuring and grouping information in
lower areas of the visual system (Hupe et al., 1998; Lamme et al.,
1998; Lamme & Roelfsema, 2000; Bullier et al., 2001). However, we
cannot completely rule out this hypothesis for the following reasons.
First, the interactions of trained cats are dominated by top-down
signals, albeit only during the second half of the stimulus presentation.
Second, the method used to quantify these interactions is based on an
MVAR model of the local field potentials and thus is limited to a
certain timescale that is determined by the order of the model and by
the sampling rate of the data. Therefore, it is still possible that top-
down signals carry information about perceptual grouping on a fast
timescale (Hupe et al., 2001).

In contrast, simple gratings do not affect interactions between areas
in naı̈ve animals and lead to an imbalance of top-down and bottom-up
components when presented in a context where food deliveries can be
expected. Interestingly, this increase in interareal interactions occurs in
a similar manner for both top-down and bottom-up directions between
200 and 1000 ms from stimulus onset. Whether food delivery can be
expected or not changes the contribution of top-down and bottom-up
signals in the later part of the response. As the differential interaction
(top-down minus bottom-up) has a positive value when a reward is
predictable, albeit not significantly different from zero, this result is in
favour of a role for top-down signals in processing predictions (Rao &
Ballard, 1997, 1999; Engel et al., 2001). Furthermore, the character-
ization of these discriminative signals in the gamma range is in
accordance with previous reports (see Engel et al., 2001 for a review).

What are the internal processes modulating interactions when
forthcoming events are predictable? Theoretically, motor planning
could affect interactions between visual areas. However, this is unlikely
in the present case because the animal was passively viewing the
stimuli and no instrumental response was required. Indeed, the only
obvious action expressed was the consumption of the food delivered
after stimulus offset. Even if such an action was planned, it is
inconceivable that this planning occurred more than 1 s in advance, the

time at which differential interactions discriminate between stimuli.
Thus, motor planning solely cannot account for the full extent of the
modulations. Another possibility is that forthcoming events activate
several mental processes such as predictions, expectations, attention
and alertness. These processes interact and influence each other
dynamically. For example, the food delivery can be predicted upon
identification of the stimulus. Such a prediction could generate a state of
expectancy and increase the general level of attention and alertness.
Thus, these processes are very difficult to differentiate and this is not
within the scope of the present study. As the key component of these
processes is the generation of predictions, we emphasize this aspect.
The neuronal correlate of predictions, such as expected rewards, has

been assessed both with firing rates (see Schultz, 2000 for a review)
and spike synchronization (Vaadia et al., 1995; de Oliveira et al.,
1997). Expectations are supposedly formed in the frontal cortex, but
are also visible as changes of synchrony in other areas such as in the
primary motor cortex (Riehle et al., 1997). This suggests that
predictions spread through the cortex in a top-down manner. Our data
are in agreement with this idea, and furthermore emphasize the
cooperation between top-down and bottom-up signals in interareal
interactions. Indeed, statistical significances were consistently found
for the total interactions and not for the differential interactions.
Furthermore, as gamma oscillations are considered as a good index of
synchronous spiking (Fries et al., 1997; Gray & Viana Di Prisco,
1997; Herculano-Houzel et al., 1999; Gail et al., 2000; Maldonado
et al., 2000), our results are compatible with a role of synchrony in
encoding expectations.
Perceptual learning (Ahissar et al., 1992; Recanzone et al., 1992,

1993; Merzenich & Sameshima, 1993; Logothetis et al., 1995; Ahissar
& Hochstein, 1997; Kobatake et al., 1998; Crist et al., 2001; Schoups
et al., 2001; Hochstein & Ahissar, 2002; Lee et al., 2002) and
visuomotor training (Salazar et al., 2004) have been associated with
changes in sensory cortices. Common supervised learning schemes
require that a reinforcement signal reaches the site of learning. Thus,
there is a timing restriction for this signal if it has to induce changes in
distant areas. At the level of synapses, plasticity operates within a
temporal window of 10s of milliseconds (Gerstner et al., 1996;
Markram et al., 1997). If the changes observed after perceptual
learning and visuomotor training follow supervised learning schemes
and are induced by synaptic plasticity, then sensory and reinforcement
signals have to reach single neurons within this time range. One way
to decrease the time delay between these signals is to anticipate future
events in order to transmit the reinforcement signal in advance. To
facilitate learning and synaptic plasticity, higher areas may generate
expectations and predictions about future sensory events (Schultz,
1998; Waelti et al., 2001; Schultz, 2002; Fiorillo et al., 2003), which
are transmitted to sensory areas in a top-down manner. Thereby,
bottom-up information about the sensory stimulus and top-down
predictions could operate on a timescale suitable for synaptic
plasticity.
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