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Fiete, Ila R., Richard H. R. Hahnloser, Michale S. Fee, and H.
Sebastian Seung. Temporal sparseness of the premotor drive is
important for rapid learning in a neural network model of birdsong. J
Neurophysiol 92: 2274–2282, 2004. First published April 7, 2004;
10.1152/jn.01133.2003. Sparse neural codes have been widely ob-
served in cortical sensory and motor areas. A striking example of
sparse temporal coding is in the song-related premotor area high vocal
center (HVC) of songbirds: The motor neurons innervating avian
vocal muscles are driven by premotor nucleus robustus archistriatalis
(RA), which is in turn driven by nucleus HVC. Recent experiments
reveal that RA-projecting HVC neurons fire just one burst per song
motif. However, the function of this remarkable temporal sparseness
has remained unclear. Because birdsong is a clear example of a
learned complex motor behavior, we explore in a neural network
model with the help of numerical and analytical techniques the
possible role of sparse premotor neural codes in song-related motor
learning. In numerical simulations with nonlinear neurons, as HVC
activity is made progressively less sparse, the minimum learning time
increases significantly. Heuristically, this slowdown arises from in-
creasing interference in the weight updates for different synapses. If
activity in HVC is sparse, synaptic interference is reduced, and is
minimized if each synapse from HVC to RA is used only once in the
motif, which is the situation observed experimentally. Our numerical
results are corroborated by a theoretical analysis of learning in linear
networks, for which we derive a relationship between sparse activity,
synaptic interference, and learning time. If songbirds acquire their
songs under significant pressure to learn quickly, this study predicts
that HVC activity, currently measured only in adults, should also be
sparse during the sensorimotor phase in the juvenile bird. We discuss
the relevance of these results, linking sparse codes and learning speed,
to other multilayered sensory and motor systems.

I N T R O D U C T I O N

Birdsong is a complex, learned motor behavior driven by a
discrete set of premotor brain nuclei with well-studied anat-
omy. Neural activity, too, has been characterized in these
nuclei, through recordings in awake singing birds, making the
birdsong circuit a uniquely rich and accessible system for the
study of motor coding and learning.

Juvenile male songbirds learn their songs from adult male
tutors of the same species. Singing is used for courtship and
territorial displays, and in evolutionary terms is an important
skill for birds to master. A zebra finch song consists of 3 to 5
identical repetitions of an approximately 1-s song motif.

Syringeal and respiratory motoneurons responsible for song
are driven by precisely executed sequences of neural activity in

the premotor nucleus robustus archistriatalis (RA) (Simpson
and Vicario 1990) of songbirds. Activity in RA is driven by
excitatory feedforward inputs from the forebrain nucleus high
vocal center (HVC, Bottjer et al. 1984; Nottebohm et al. 1982,
1976), whose RA-projecting neural population displays tem-
porally sparse, precise, and stereotyped sequential activity.
Individual RA-projecting HVC neurons burst just once in an
entire approximately 1-s song motif (�unary” coding), and fire
almost no spikes elsewhere in the motif (Hahnloser et al.
2002). Each HVC burst is of high firing rate (600–700 Hz) and
typically lasts for about 6 ms. Burst-onset times for different
RA-projecting HVC neurons are distributed across the motif.
However, each HVC neuron bursts reliably at precisely the
same time point (referenced to some acoustic landmark in the
motif) in repeated renditions of the motif.

Song learning is thought to involve plasticity of synapses
from HVC to RA. This is because these synapses display
anatomical evidence of extensive synaptic growth and redis-
tribution (Herrmann and Arnold 1991; Sakaguchi and Saito
1996) and physiological evidence of synaptic change and
maturation (Mooney 1992; Stark and Perkel 1999) during the
critical period. The temporal sparseness of HVC activity im-
plies that these HVC–RA synapses are used in a very special
manner during song: that is, each synapse is used during only
one instant in the motif. Is there any functional significance to
this way of using synapses? Here we investigate the possibility
that it facilitates song learning.

Intuitively, the situation where each synapse participates in
the production of just one short part of the motif seems ideally
suited for minimizing interference between different synapses
during learning. In this paper we make the intuitive argument
more concrete through both computer simulations and mathe-
matical analysis of a simple neural network model of birdsong
learning.

It has been observed that interference between synapses can
hinder learning in artificial recurrent neural networks (Her-
mann et al. 1995; Meunier et al. 1991; Tsodyks and Feigelman
1988; Willshaw et al. 1969). Because of the multilayered
architecture of the song motor system, we are here motivated to
study the effect in a feedforward multilayer network.

Experiments indicate that the young bird uses the mismatch
or error between its own vocalizations and a desired song
template (an internally stored copy of a tutor song) to itera-
tively modify its song to match the template (Brainard and
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Doupe 2000; Konishi 1965). Thus, the goal of learning in our
feedforward model network (of HVC, RA, and an output motor
layer), is to alter the initial output sequence of motor activity
by gradual adjustment of the HVC-to-RA weights, until the
output sequence matches a specified desired sequence (Doya
and Sejnowski 1995; Troyer and Doupe 2000).

It is not known how the brain translates goal-directed prob-
lems such as song imitation into prescriptions for synaptic
change, although it is thought that if distance to the goal is
quantified in a reward (error) function, neural and synaptic
changes may occur in directions that increase the reward
(decrease error), thus performing hill-climbing on the function.
A common computational approach in modeling this phenom-
enon is to define such an error function, then move on the error
surface toward the minimum along the gradient, or direction of
steepest descent. This can be done by direct gradient calcula-
tion in single-layer networks, or by backpropagation, a simple
technique for gradient descent in multilayer networks. Hill
climbing can also be achieved by more biologically plausible
learning algorithms that perform a stochastic approximation of
gradient following without needing to explicitly compute the
gradient (Bartlett and Baxter 1999; Seung 2003; Williams
1992). For simplicity, we apply learning by direct gradient
following (backpropagation). Because the various gradient-
based learning rules described above are in a mathematically
similar class, we expect sparseness arguments made in the
context of one learning rule to generalize to the others in the
same class.

M E T H O D S

General framework

We study a multilayer feedforward network (Fig. 1) with an HVC
layer that provides sequential inputs to the network and drives activity
in the hidden layer RA; the output layer of motor units is driven by
activity in RA. HVC activities are written as hi(t), RA activities as
rj(t), and output activities as ok(t), with

rj�t� � f ��
i�1

Nh

Wjihi�t� � �j� (1)

and

Ok�t� � �
j�1

Nr

Akjrj�t� (2)

where Nh , Nr , and No are the numbers of units in the HVC, RA, and
motor layers, respectively; f is the activation function of RA neurons;
and �j is the threshold for the jth RA neuron. The plastic weights from

HVC to RA are given by the matrix W; because there is no direct
evidence of plasticity in the connections from RA to the motor
neurons, we take these weights to be fixed, and represent them by a
fixed weight matrix A.

Observational evidence suggests that vocal motor learning in the
zebra finch segments roughly into 2 phases: first, a temporal motor
sequence is established, and later the notes and syllables occurring in
that motor sequence become more distinct, diversified, and refined
(Tchernichovski et al. 2001). In that the goal of this work is to study
the effects of HVC sparseness on the learning of feedforward premo-
tor representations, we do not deal with the formation of sequences
within HVC; instead we focus on the formation and refinement of
HVC–motor representations as seen in the latter phase. The sequential
patterns of HVC activities and desired output activities are externally
imposed (see below for numerical details) in our simulations, and do
not change throughout learning; the goal of the network is to learn to
match the actual outputs ok(t) of the network, driven by HVC activity,
with the desired outputs dk(t), through adjustment of the plastic
weights W. In one pass through the song motif, called an epoch, the
network outputs are computed from Eqs. 1 and 2. The total network
error for that epoch is determined from the objective function

C ��
0

T

dt �
k�1

No

�dk�t� � ok�t��
2 (3)

For learning, network weights W are adjusted after each epoch to
minimize this cost function according to the backpropagation gradi-
ent-descent rule

�Wji � ��
�C

�Wji

� ��
0

T

dt �
k�1

No

2�dk�t� � ok�t��Akj f 	j hi (4)

where f 	j is the derivative of the activation function of RA neuron j,
and the parameter � scales the overall size of the weight update.

Numerical details of nonlinear network simulations

We simulate learning in the network described above, with Nh �
500 HVC neurons, Nr � 800 RA neurons, and No � 2 output units.
Assuming that each HVC neuron bursts B times per motif, activity for
the ith HVC neuron is fixed by choosing B onset times 
ti

1, ti
2,. . ., ti

B�
at random from the entire time interval T. A burst is then modeled as
a simple binary pulse of duration �b, so that hi(t) � 1 for {ti

1 � t �
ti
1 � �b, ti

2 � t � ti
2 � �b, . . . , ti

B � t � ti
B � �b}, and hi(t) � 0

otherwise (Fig. 2A). We use values of B � 1, 2, 4, 8, and based on
experimental observations of the HVC burst length (Hahnloser et al.
2002), use �b � 6 ms. We assume a nonlinear form for the RA
activation function, given by the sigmoid f(x) � rmax/(1 � e�2x/a), so
f 	(x) � f(x)[rmax � f(x)](2/srmax), with rmax � 600 Hz and s � 5 (s
is a parameter that stretches the analog part of the response; large
values of s produce analog neurons with a linear regime and satura-
tion, whereas the s3 0 limit produces binary neurons. In experimen-
tal current-injection studies, RA neurons show a range of linear
response up to at least 100 Hz (Spiro et al. 1999), and routinely fire
bursts of spikes at 500 Hz during song, motivating our choice of s � 5
and rmax � 600 Hz. In all simulations, the total duration of the
simulated song motif is T � 150 ms, and time is discretized with a
grain of dt � 0.1 ms. The initial HVC-to-RA weights Wij are picked
randomly from the interval [0, 1/B] (scaling with B to keep the
summed drive to RA fixed as the number of bursts per neuron per
motif is varied in HVC), with 40% of them (Pdil � 0.4) randomly
diluted to zero. The threshold for RA neurons is given by � � 1.2(1 �
Pdil)Nh�b / T, where Nh�b / T is the average input received by the
average RA neuron from HVC at each time in the song; the factor 1.2
is chosen to keep RA activity low initially. Each RA neuron projects
to one output neuron (i.e., the RA-to-output weight matrix A is

FIG. 1. High vocal center (HVC), robustus archistriatalis (RA), and the
output layer are arranged with feed-forward plastic weights W from HVC to
RA, and fixed weights A from RA to the output. HVC activities provide
sequential inputs to the network, and the output units are the read-outs. RA
neurons form a “hidden” layer.
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block-diagonal), and equal numbers of RA neurons project to each
output. The nonzero entries of A are chosen from a Gaussian distri-
bution with mean 1 and SD 1/4. Desired sequences dk(t) for the output
units are fixed by choosing a sequence of steps of 12-ms duration and
random heights chosen from the interval [0, Nr /(8No)], and are
smoothed with a 2-ms linear low-pass filter. The gradient-following
rule, Eq. 4, is used to update the weights W after each epoch.

To study the effects of sparse HVC activity on learning speed, we
performed 4 groups of simulations where B, the number of bursts per
HVC neuron per song motif, was fixed at B � 1, 2, 4, or 8,
respectively. For each B, we performed several sets of learning trials
with a separate, systematically varied value of the overall learning
step-size � for each set (more details below). Within each set of
simulations, consisting of 15 trials each with fixed �, the weights A
and W were drawn randomly and independently for every trial, as
described above. All other parameters, including the desired outputs
dk(t), were kept fixed for all B and all �. Initially 25 evenly spaced
values of � were chosen for each B, always in a range where some of
the values were too large and resulted in divergence of the learning
curve, whereas most values resulted in decreasing errors. The (15-
trial) averaged learning curves for each � were judged to be rapidly or
slowly converging based on the number of epochs taken to cross a
preselected, reasonably small error value (see below); only learning
curves with nonincreasing error over the length of the simulation were
considered. Typically, very small values of � result in very slow
learning, whereas very large values lead to divergence. Thus, the best
learning speeds could be obtained by a choice of � away from both
extremes. To make sure the learning curves chosen for comparison as
a function of B were reasonably close to the best possible curve for

each B, we picked 2 values of � for each B that resulted in the 2 fastest
averaged learning curves, and used these as endpoints in another set
of learning trials with 10 values of � spaced between the endpoints.
For each �, we again averaged 15 trials. By this process, a value of
� � �* (B) was found that resulted in the fastest learning for each B.

The threshold error value at which we consider the network to have
learned the task is when it reached an error of 0.02 or better
[corresponding to 
dt �k (dk � ok)

2 � 1% 
 dt �k dk
2, thin horizontal

line in Fig. 3; for an example of the output performance in what we
consider to be a well-learned task, see Fig. 2c where 
 dt �k (dk �
ok)

2 � 0.15% 
 dt �k dk
2]; learning speeds are judged by the number

of epochs taken for the learning curves to reach this value.

Parameter variations and ranges

The network converged to produce outputs close to the desired
outputs over a large range of parameters, so long as a sufficiently
small value of the learning rate parameter, �, was used. This is
expected, because with small �, the learning rule follows the gradient
of the error function, and will converge to a local minimum of the
error surface; more interestingly, the dependency of learning time on
B (see RESULTS) was also consistent across a large parameter range.

In simulation, we tried variations where W was drawn from a
Gaussian, instead of uniform, random distribution; the initial weight
dilution, Pdil, ranged from 0 to 0.6 (0–60% of the initial weights
initially diluted to 0); half of all nonzero weights from RA to each
output unit (in A) were made negative, mimicking push–pull rather
than just pull control over the outputs; the numbers of HVC, RA, and
output units were independently varied by factors of 0.5 and 2; the
simulated song length ranged from 80 to 400 ms; RA unit activation
functions were taken to be linear or sigmoidal. In all of these cases, it
was possible to find � so that the simulations converged to the desired
output, and the dependency of learning time on B was found to be
qualitatively the same as for the specific parameters described here.

The results shown here are with parameters chosen according to the
following priorities. 1) Simulate the largest network that would run in
a reasonable amount of time. We used Nh � 500, Nr � 800, and No �
2, in place of Nh � 20,000, Nr � 7,000, and No � 7 in the actual bird,
where No is taken to be the number of individual vocal muscles
controlled by RA. The simulated song length T had to be scaled down

FIG. 3. Four curves track error as a function of epoch while learning with
B � 1, 2, 4, and 8 bursts per HVC neuron per simulated song segment. For
each B, the overall weight update step size was optimized to give the fastest
possible monotonic convergence toward zero error. Number of epochs taken to
reach a prespecified learning criterion (thin horizontal line) grows sharply with
B, nearly doubling each time B doubles.

FIG. 2. A: activity of RA-projecting HVC neurons as a function of time,
shown for 20 of the 500 neurons in the simulation. Black bars indicate that the
neuron is bursting at that time, whereas otherwise the neuron is silent. b:
desired (thick line) and actual (thin line) output activity for one of the 2 output
units, before learning begins. C: desired (thick line) and actual (thin line)
activity of the same output unit after learning; the second output behaves
similarly. D–F: example of the activities of 3 RA units, after learning (see text
for further discussion).
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to compensate for the reduced HVC and RA model populations
driving song; thus T � 150 ms instead of the approximately 600- to
1,000-ms duration of a typical zebra finch song motif. 2) Initiate
(before learning) the HVC–RA weights and RA neural thresholds so
that the initial activity in RA is low and nonuniform. This was done
because we noticed that, interestingly, if initiated in this way, the
postlearning activity in the model RA neurons reliably resembles that
of RA neurons in the actual songbird (see RESULTS).

Numerical eigenvalue computation

For each of B � 1, 2, 4, or 8, we randomly generated a matrix of
HVC activity (as described above) with Nh � 3000, T � 300 ms, �b �
6 ms, and dt � 0.1 ms. For each B, the HVC equal-time cross-
correlation matrix Qij � �t�0

T hi(t)hj(t) was computed, and its eigen-
values computed numerically.

R E S U L T S

Simulations

We simulated learning by gradient following (as described
in Eqs. 1–4 and METHODS) in a feedforward network consisting
of an HVC, an RA, and a motor output layer (Fig. 1). Sample
input (HVC activity) and the initial and desired outputs (for
one of 2 output units) are shown in Fig. 2, A and B, respec-
tively. In the simulation of Fig. 2, each HVC neuron is active
exactly once in the song motif. After several epochs of learning
(gradient descent on the mismatch between actual and desired
outputs), activity in the output units closely matches the de-
sired outputs; Fig. 2C. Note that in our model, the RA neurons
act as hidden units and their patterns of activity are not
explicitly constrained. The activities of 3 randomly selected
RA neurons from the model network after learning is complete
are shown in Fig. 2, D–F. It is interesting to note that with
sigmoid RA activation functions, if initial connections between
HVC and RA are weak and random and if initial RA activity
is low, the emergent activity patterns of RA neurons in the
trained network qualitatively resemble the behavior of real RA
neurons recorded in vivo during singing (Yu and Margoliash
1986; A. Leonardo and M. S. Fee, unpublished observations):
for example, individual RA unit activity is not well correlated
with the outputs, the distribution of single-burst durations of
RA neurons resembles that of RA neurons in the singing zebra
finch, and similar patterns of output activity may be driven by
rather different patterns of activity in RA.

Our goal is to examine the effects of the sparseness of HVC
drive on the learning speed of the network. We repeated the
learning simulations, as pictured in Fig. 2, with fixed values for
the song length, single-burst duration of HVC neurons, and
network size, but varied B, the number of bursts fired per HVC
neuron per song motif (see METHODS). Figure 3 shows the
results of this study; the 4 learning curves correspond to
simulations where the number of bursts per HVC neuron is
varied to be B � 1, 2, 4, or 8, respectively. Each curve in Fig.
3 is an average over 15 trials that start with different random
initial weights W and A but with a single fixed B. The network
is considered to have learned the task when the error drops
below a prespecified error tolerance, signified by the thin
horizontal line. For each value of B, the task of learning was
realizable (i.e., the network could successfully learn the desired
outputs). Also for each B, the overall coefficient controlling the
weight-update step size was optimized to give the fastest

learning possible (see METHODS); thus the learning speed com-
parision is between the best-case multitrial average curves for
each B.

In going from B � 1 burst per HVC neuron per motif to 2
bursts, we see in Fig. 3 that the learning time (number of
iterations for the learning curve to intersect the learning crite-
rion line) nearly doubles; the same happens in going from 2
bursts to 4, or 4 to 8. This apparently strong dependence of
learning time on the number of HVC bursts is surprising,
considering that in all cases (all B) the learning task was
realizable, and that the premotor HVC drive in going from B �
1 to B � 4, for example, was still relatively sparse. The effect,
that increasing B leads to increased learning time, persisted
over a wide range of network parameters (see note on param-
eter choices in METHODS). To better understand the process by
which more densely distributed HVC bursts per motif lead to
slower learning, and why this effect is robust across a broad
range of parameters, we turn to an analysis of learning in a
linearized version of the network.

Linear analysis

We found the basic effect of the slowdown of learning with
temporally denser HVC codes to be present regardless of many
changes in network properties, such as network size, length of
simulated motif, and choice of RA activation function. To
isolate the critical factors involved in the learning slowdown,
we study the learning curves of a network with the same
architecture and learning rule as above, but with linear RA
activation functions, f(y) � y. Although this is a simplification,
a linear network permits us to analytically derive the depen-
dence of the learning curves on B, the number of times each
HVC neuron bursts during a song motif. Moreover, linear
analysis lends itself to a convenient geometric interpretation of
the learning process.

RELATION BETWEEN LEARNING SPEED AND HVC ACTIVITY. If RA
units are linear, the error function C of Eq. 3 becomes a
quadratic surface over the multidimensional space {W} of the
HVC-to-RA weights (see APPENDIX)

C � Tr 
AWQWTAT� (5)

In geometric terms, Q is a matrix that determines the shape of
the quadratic surface, because its eigenvalues specify the
overall shape (steepness or flatness) of the quadratic surface
along the various directions in weight space. Large eigenvalues
correspond to steep directions, and small eigenvalues to shal-
low ones. In terms of network activities, Q is the zero-time-lag
correlation matrix of HVC activity: element Qij reflects the
equal-time cross-correlations in the activity of neurons i and j,
summed over all times in the motif. For example, if the 2
neurons are always coactive, Qij is large, and if they are never
coactive, Qij � 0. The importance of Q in shaping the error
surface emerges from the fact that HVC activity determines
which synapses W are active in driving the output, how often
they are used, and thus whether and when they must be
modified to reduce error.

Learning corresponds to moving downward on the parabo-
loid quadratic surface by adjustment of the underlying network
weights W. Learning by gradient descent, Eq. 4, means that the
downward movement follows along the direction of the gradi-
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ent or path steepest descent toward the minimum of the error
surface. The total error may be broken down into components
of error along different directions in the weight space {W}, and
it is well known that in a linear system, these component errors
decrease as decaying exponentials with different decay rates;
these decay rates are determined by the shape of the error
surface in that direction. Specifically, with certain assumptions
on the distribution of fixed weights A, the optimal (leading to
fastest learning) decay rates are given by ratios of the eigen-
values of Q {�1, �2, . . . , �N}, with the largest eigenvalue, �1
(see APPENDIX). The learning speed along the direction parallel
to eigenvector 	 can be defined as the decay rate along that
direction


	 � �	/�1 (6)

For learning to converge, all 
	 values must be less than 1 and
greater than 0; this is necessarily true here because all eigen-
values of Q are guaranteed to be positive, and the factor of 1/�1
effectively sets the maximum learning speed to be less than 1.
Within these limits, the larger all the 
	, the larger the decay
rate, and so the total error will decrease more rapidly. It is
instructive to consider two cases: 1) all eigenvalues are essen-
tially equal, and 2) all eigenvalues are equal but one, which is
very much larger. In case 1, we see from Eq. 6 that the learning
speeds along all 	 are equal and equal to 1; the geometric
interpretation is that the error surface is isotropic, Fig. 4A, and
learning can proceed (equally) rapidly in all directions of the
error surface. In case 2, the error surface is strongly anisotropic
Fig. 4B. Learning will still be fast along the (steep) direction
corresponding to �1, given that 
1 � 1. However, learning
along all other directions will be much slower because all

remaining 
	 �� 1. Geometrically speaking, the maximum
weight-update step size is constrained by the steepest direction,
since small steps in weight space lead to large changes in error
and can quickly lead to divergent error. Because the remaining
directions are much shallower, the small weight-space step size
constraint leads to much smaller decreases in error per epoch
along all other directions, resulting in a sharp slowdown in the
overall learning.

Hence, a narrowly distributed range of eigenvalues leads to
faster learning, whereas singularly large eigenvalues that stand
out from the rest broaden the range and cause a slowdown.

MEAN-FIELD DERIVATION: LEARNING TIME GROWTH WITH SYNAPTIC

INTERFERENCE. With Eq. 6, the problem of deriving learning
curves is essentially reduced to the problem of computing the
eigenvalues of the correlation matrix Q. Certain important
features of the eigenvalue distribution can be derived from a
mean-field matrix �Q�, obtained by replacing each element of
the correlation matrix with its ensemble-averaged expectation
value (see APPENDIX); moreover, �Q� elucidates the relationship
between features of HVC activity and features of the eigen-
value spectrum. As B is increased, the HVC autocorrelations
(diagonal elements of �Q�) increase as B, whereas the cross-
correlations (off-diagonal) increase as a small factor times B2.
The cross-correlations contribute to only the largest eigenvalue
of �Q�, causing it to scale as B2, whereas all remaining
eigenvalues scale as B. Therefore the largest eigenvalue of �Q�
is a direct reflection of cross-correlations in HVC activity.
Because cross-correlations in HVC activity lead to interference
or cross-correlations in the use of different HVC–RA synapses
in driving the song motif, the size of the largest eigenvalue
equivalently reflects the degree of synaptic interference in the
HVC–RA synapses. Let 
	 (B) designate the learning speed
along the 	th eigenvector of Q as a function of B. The
mean-field eigenvalue calculation yields (see APPENDIX)


1�B� � 
1�1� in steepest direction �	 � 1� (7)


	�B� �

	�1�

B
all other directions �	 � 1� (8)

In other words, as B is increased, the optimal learning speeds
decreases as 1/B along all directions in weight space except
along the direction corresponding to �1, whose optimal learn-
ing speed remains unchanged. Because the cumulative initial
error will generically have significant error components in
several directions, the cumulative learning speeds will notica-
bly decrease as B is increased. According to the mean-field
results above, the learning time with B � 2 will be approxi-
mately twice as long as for B � 1 because of synaptic
interference. It is important to note, also, that the effects of
increasing B on learning speed should be noticeable soon after
learning has begun and the first transients (corresponding to
learning along the first eigenvector) have passed, and not just
toward the end of learning, where only the fine features remain
to be learned. That is, the effects of multiple bursts on learning
speed are manifest whether the output is learned relatively
crudely or to great final precision.

This is all in good agreement with the overall decrease in
learning speeds observed in the nonlinear network simulations
of the last section. In the linear analysis, we see moreover that
the scaling of learning time with B is an essential one (see
APPENDIX): given a fixed network size, motif length, and HVC

FIG. 4. Ellipses are contours of equal error, and a varying density of these
contours corresponds to varying steepness on the error surface (high density �
steeper). A: starting from a given error, the maximum allowable step size in
weight space is the same, regardless of the direction from which the minimum
is approached. B: on an anisotropic surface, the steepest direction (correspond-
ing to the eigenvector with largest eigenvalue, and designated here by �1)
dictates the maximum allowable step size in weight space, and constrains
learning in all other directions (�	) as well.
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single-burst duration, increasing the number of bursts per HVC
neuron per motif necessarily leads to a reduction in the optimal
learning speed for the network, with no adjustable parameters
to remove this dependency. In other words: learning with
multiple bursts per HVC neuron per motif will be slower than
learning with fewer bursts, independent of the HVC–RA net-
work size, the motif length, and the single-burst duration, so
long as these parameters are kept fixed while the number of
bursts is varied in the comparison of learning time.

The mean-field analysis also sheds light on the identity of
the eigenvector with the largest eigenvalue �1: it is the common
mode eigenvector, with all positive entries, that corresponds to
a simultaneous increase or decrease, for all parts of the motif,
in the summed drive from HVC to the motor outputs. It is
intuitive that this is the most “volatile” mode, leading to
explosive growth of network activity. The remaining modes
are differential, allowing rearrangements of the motor drive
from moment to moment in the song without a large net change
in the mean strength of the drive.

NUMERICAL VERIFICATION OF MEAN-FIELD CALCULATION. The
vastly simplified mean-field derivation of the scaling of learn-
ing speed with B (from the eigenvalues of �Q�) neglected
variance and other higher-order statistics of Q. To check the
results of the analysis, therefore, we numerically compute the
eigenvalues of Q from randomly generated HVC activity
matrices (see METHODS). The results are shown in Fig. 5, and
agree well with the mean-field analysis. In Fig. 5a, we plot the
top 300 B � 1 eigenvalues, together with the top 300 B � 8
eigenvalues scaled by 1/8. All the eigenvalues for B � 1 form
a continuum, and the scaled B � 8 eigenvalues sit on the same
continuum, except for the top eigenvalue, which is much larger
than the rest. The gap between the topmost eigenvalue and all
the rest for B � 1 is better seen in the inset of Fig. 5a, where
the largest eigenvalue scales as B2, whereas the second-largest
scales as B. This causes learning speeds to scale as 1/B (Fig. 6),
as derived in Eq. 8.

The numerical computation shows that there is a spread in
the eigenvalue continuum even when B � 1: because of the
small but nonnegligible HVC single-burst duration, and con-
tinuous spread of burst-onset times, the activities of different
HVC neurons have partial overlaps with each other. This
already leads to slower learning than if bursts were completely
nonoverlapping. However, as we have seen in the preceding
analysis, increasing the number of bursts per HVC neuron
leads to larger correlations in HVC activity and a considerably
greater spread of eigenvalues, and thus to slower descent on the
error surface.

D I S C U S S I O N

Summary

We have built a simplified framework to analyze the learn-
ing of premotor representations in the songbird premotor cir-
cuit, given a sparse premotor drive from HVC, a set of plastic
connections between HVC and RA, and a gradient learning
rule that minimizes the mismatch between the tutor and pupil
songs. Within this framework, we have demonstrated how
temporally sparse activity allows the fast learning of premotor
representations, and have quantified, in a network of linear
neurons, the dependency of learning rate on the number of
times an HVC neuron is active during a motif. Sparsely active
HVC neurons have small cross-correlations: increasing the
number of HVC bursts per motif increases cross-correlations in
HVC activity, which leads to correlated changes of synaptic
weights. To keep network activity from diverging because of
the correlated weight changes, the maximum allowable weight-
update size must be constrained; this normalization decreases
the step size for other, uncorrelated weight changes that are
required for learning. Thus the overall learning speed decreases
with increasing numbers of HVC bursts per motif. Although
our analytical description is based on linear units, the simula-
tions (Fig. 3) of learning in nonlinear units and the heuristic

FIG. 5. Top 300 eigenvalues of the correlation matrix Q, divided by B, for
B � 1 bursts per HVC neuron per song segment (black circles), and for B �
8 (gray circles). Inset: scaling of �1 (ƒ) and �2 (‚) with B, from numerical
calculations. We see that �1/B � B, whereas �2/B � const. Solid lines show the
same scaling, derived from �Q�.

FIG. 6. Scaling of learning speed as a function of B, normalized by the
learning speed for the case B � 1 [
	(B)/
	(1) vs. B], plotted for learning along
2 directions (eigenvectors) in the space of weights: modes 	 � 2 (‚) and 	 �
200 (�). These points are obtained from the numerical calculation of the
eigenvalues of Q. Solid line: predicted scaling of learning speed with B, for all
	 � 1, from the mean-field correlation matrix �Q�.
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explanation of increased synaptic interference with increased
numbers of bursts point to a broader relevance of this analysis
to networks with more realistic neurons.

Relation to past work

Several motor and sensory brain areas display sparse neural
codes. This work augments other theoretical studies that argue
in favor of the utility of sparse codes in various contexts, such
as information theory, coding fidelity, decoding ease, and
learning efficiency (Foldiak 1995). We have presented a quan-
titative analysis of the relationship between sparse representa-
tions in layers coding high-level activity (in this case, abstract
sequential activity in HVC) and learning speed in a multilayer
feedforward network.

Questions about training time in networks such as this one
have been studied in the machine learning community, result-
ing in prescriptions to speed up learning by rescaling the
learning rate parameter (overall weight update step size) dif-
ferently along the different eigenvectors, or by reparameteriz-
ing neuronal activities to make the error surface more isotropic.
In a work closely related to this one, LeCun et al. (1991) in
particular recommend that the eigenvector associated with the
largest eigenvalue be subtracted from the learning updates, or
that symmetrically active {�1, 1} neuronal units be used in the
input layer instead of asymmetric {0, 1} units, thus reducing
the anisotropy of the error surface by reducing the mean of the
off-diagonal entries of the input-unit correlation matrix and so
bringing the largest eigenvalue closer to the remaining ones.
Given that neural firing rates are zero or positive, the activity
of individual neurons in biological networks is necessarily
asymmetric. Furthermore, although the learning rate parameter
(overall step size) may easily be tuned at the individual
synaptic level, it is, not obvious how to apply separate learning
rates to separate eigenvectors in a biologically plausible way,
since individual synapses participate in multiple eigenvectors.
Therefore, we suggest that with the use of unary HVC activity
in birdsong learning, biology may have found its own solution
to these very problems.

Different learning rules

We have also performed simulations of learning by stochas-
tic weight perturbation, a reinforcement algorithm that drives
learning by making stochastic estimates of the gradient without
explicitly computing it; we obtain preliminary results from
simulation that are qualitatively similar to the ones stated for
direct gradient learning in this paper, finding that learning is
faster when the number of HVC bursts is small. In fact, if
biology does indeed make use of stochastic reinforcement
algorithms to perform goal-related learning, the impetus to
increase learning speed through sparse coding may be consid-
erably greater because such stochastic gradient algorithms are
typically much slower overall than algorithms that can directly
compute gradients and move along them.

Correlations in HVC activity

In this work, each HVC model neuron can equivalently be
viewed as a subpopulation of perfectly correlated (i.e., always
coactive) neurons. We studied the case where each strongly
self-correlated subpopulation bursts one or multiple times, but

where the individual subpopulations are independent of each
other. This picture is fully consistent both with the HVC data
on RA-projecting neurons (Hahnloser et al. 2002), and with
recurrent synfire chainlike models for the generation of sequen-
tial activity in populations of neurons.

Nevertheless, it is possible to imagine a case where the
subpopulations are correlated with each other: if for example,
the simultaneous bursting of 2 subpopulations in one part of the
motif makes it more likely that, when they each burst again in
other parts of the motif, they will burst together. Such corre-
lations between neural subpopulations would enhance the cor-
relations in the overall population activity at different times in
the song, increasing synaptic interference compared to the
independent subpopulation case, and increasing the overall
anisotropy of the error surface. In this case, our qualitative
results on the advantage of sparse coding for learning would be
the same; in detail, the slowdown resulting from nonsparse
coding would be more pronounced, from the additional con-
tribution of intergroup cross-correlations, than described for
the independent subpopulation case.

Juvenile HVC activity

Single-unit HVC recordings have been made only in adult
birds, where the coding is seen to be unary (single burst of
activity per neuron per motif). We wondered what the role of
such extreme sparseness in HVC might be if it were present
during the learning process, and found that it could confer a
great advantage in terms of learning speed. On this basis, we
predict that if songbirds acquire their songs under pressure to
learn quickly, then sparseness of HVC activity could be inte-
gral to the learning process and should thus already be present
in the HVC of juvenile birds in the early and mid sensorimotor
period, instead of arising as an emergent property late in song
learning.

Relevance to other sensory and motor systems

The aspect of motor learning we have explored here is the
mapping of a set of sparse, high-level neural (HVC) patterns
onto a denser set of low-level motor activations, in a multilayer
feedforward network model of song generation. Because bio-
logical sensory and motor processing areas tend to be multi-
layered with important feedforward components, these results
relating sparseness to learning speed in the formation of feed-
forward maps should be relevant in a broad range of systems.
Examples of sparse coding can be seen in rat auditory cortex
neurons responding to tone pips (Deweese et al. 2003); tem-
porally and spatially sparse responses to natural scenes in ferret
visual cortex (Weliky et al. 2003); sparse representations of
location in hippocampal place cells; highly selective corticos-
triatal activity in macaque motor cortex (Turner and Delong
2000); and sparse coding of odor identity in Kenyon cells of
the locust mushroom body (Perez-Orive et al. 2002; Theunis-
sen 2003). The results of our study suggest that such sparse
sensory and motor codes may facilitate the learning of feed-
forward representations.

On the other hand, one might wonder why, if sparse coding
confers a significant advantage in terms of learning speed, are
not most neural representations ultrasparse or unary? One
reason is that sparse coding carries a cost: the representational
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capacity of a very sparsely coded network is low. Thus, the
advantages of sparse coding must be balanced against capacity
constraints. Such capacity constraints may dominate, or at least
play a more important role, in systems other than the zebra
finch HVC. For example, songbirds that memorize much larger
song repertoires may be subject to HVC volume constraints,
and in these cases, we expect the coding to be sparse, for fast
learning, but not necessarily unary, as in the finch.

Other implications of sparse coding

We do not intend to imply that the only role of sparse coding
in the zebra finch HVC is the reduction of synaptic interference
in the learning of feedforward HVC-to-RA weights. Tempo-
rally sparse coding could play an important role in mitigating
the problem of temporal credit assignment in learning, which is
encountered when feedback about a performance arrives sig-
nificantly later than the neural activities that generated it.
Moreover, sparse codes in HVC may play an important role not
just in motor aspects of song learning and production but in
song recognition as well (Lewicki and Konishi 1995; Margo-
liash 1986; Margoliash and Fortune 1992; Volman 1993).

A P P E N D I X

Learning curve

With linear RA neurons, we define the network equations to be r �
W h, o � AW h � Xh, where h is the Nh � Ns matrix of HVC activity,
r is the Nr � Ns matrix of RA activity, o is a No � Ns matrix of output
activity, A is the matrix of fixed weights from RA to the outputs, and
W is the matrix of plastic weights from HVC to RA. Ns � T/dt is the
number of discrete time bins in the motif, where T is the motif length
and dt is the grain size. With a change of variables Q � hhT and x �
X � X*, where X* is defined by X*h � d (X* exists if a solution exists,
i.e., if the learning task is realizable), the cost function is C �
1

2
Tr{xQxT}. Applying a gradient descent update, Eq. 4, on C, we have

that x 3 (x � �AAT xQ), where � is a positive scalar that scales the
overall learning step size. If each RA neuron projects to one output
unit, and if the summed synaptic weights to each output are approx-
imately equal, AAT becomes a scalar matrix that can be absorbed into
�. Thus, the multilayer perceptron problem with 2 layers of weights
becomes effectively a single-layer perceptron, and we have that after
n iterations x(n) � x(0) (1 � �Q)n, so

C�n� �
1

2
Tr 
x�0��1 � �Q�nQ�1 � �QT�nx�0�T� (A1)

In the eigenvector basis of the Hessian matrix Q (eigenvalues
{�

	 � 1, . . . , Nh} arranged in nonincreasing order, �1 � . . . � �Nh
), with

projection of the kth row of x(0) along the 	th eigenvector given by

k	, the error after n learning iterations is given by

C�n� �
1

2 �
	,k

�1 � ��	�
2n�	�
k	�2 (A2)

Let c	 � �	 �k �
k	�2 represent the initial error along the 	th
eigenvector. The total error evolves iteratively by multiplication of the
initial errors c	 by a factor (1 � ��	)2 per iteration; � must be chosen
small enough so that �1 � ��	� � 1 for each 	, to allow error to
decrease and for the learning curve of Eq. A2 to converge. Hence, �
must be less than 2/�1, and it is easy to see that the optimal choice for
� is �* � 1/�1 (� � 1/�1 leads to overdamped convergence, whereas
1/�1 � � � 2/�1 displays underdamped oscillatory convergence).

Analysis of eigenvalues

The mean-field matrix �Q� is formed by replacing all elements of Q
by their ensemble-averaged expectation values (i.e., generate Q and
average, element by element, over several trials). Therefore, �Q� �
BNbI � (B2 Nb

2/Na)11T, where Nb � �b/dt. There are only 2 distinct
eigenvalues, �1 � BNb � B2 Nb

2 [(Nh � 1)/Na] � B2 Nh Nb (�b/T)
(provided Nh �b/T �� 1) corresponding to the common mode eigen-
vector, and �2 � BNb � B2Nb

2/Na � BNb (provided T �� B�b

corresponding to the Nh � 1 differential modes. [This effect, of an
eigenvalue spectrum with one ‘large’ eigenvalue, is generic for N �
N matrices with random entries of mean a on the diagonal and b on
the off-diagonal, if b �� a/N (Edwards and Jones 1976).] Hence the
learning rate for all modes 	 � 1 is given by 
	 � (1/B) (T/Nh�b) �
1/B, as in Eq. 8 (Fig. 6).
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