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Abstract: In this paper we show how a combination of low dimensional vision sensors can be used to aid 

the higher level visual processing task of colour blob tracking, carried out by a conventional vision system. 

The processing elements are neuromorphic analog VLSI (aVLSI) vision sensors capable of computing 

motion and estimating the spatial position of high-contrast moving targets. In these devices both sensing 

and processing is done on the chip’s focal plane. The neuromorphic sensors can calculate optical flow, 

position of sharpest edge, and motion of sharpest edge, in real-time. The processing capability of the 

system is investigated in a mobile robotics application. Firstly, for visualization and evaluation purposes, a 

correlation analysis is performed between the data collected from the neuromorphic vision sensors and the 

standard vision system of the autonomous robot, then, we process the multiple neuromorphic sensory 

signals with a standard auto-regression method in order to achieve a higher level vision processing task at a 

much higher update rate. At the end we argue why this result is of great relevance for the application 

domain of reactive and lightweight mobile robotics, at the hands of a soccer robot, where the fastest 

sensory-motor feedback loop is imperative for a successful participation in a RoboCup soccer competition. 
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1. Introduction 

In recent years the robotics community has formulated a challenge to fellow researchers in academia and 

industry, to design and build a fully autonomous humanoid robot that can out-compete the fittest human 

athletes in the year of 2050. The sport is soccer and the aim is that a team of fully autonomous soccer 

playing robots shall win against the human world champion. This is the RoboCup challenge formulated by 

the Japanese researcher Hiroaki Kitano and the official RoboCup federation [1]. International competitions 

are held annually, where scientists exchange knowledge and ideas at the RoboCup symposium that is open 

to all participants. The focus is interdisciplinary and research areas range from electronics, mechatronics, 

robotics and the physics of fuel cell batteries, to computer science and artificial intelligence. 

In our lab aVLSI technology is exploited in fast moving mobile robotics, especially RoboCup, where 

soccer-playing robots perform at high speed. Our robots are competing in the mid-sized league that allows 

wheeled robots of roughly 50 by 50 cm with the maximum weight of 80 kg. They are equipped with infra-

red distance sensors in order to have fast and reliable obstacle avoidance, odometry together with an 

augmenting gyroscope in order to reduce the error in the odometry measurements, and contact sensitive 

bumper sensors. The robots use a differential drive for movement, a pneumatic kicker for shooting and two 

small movable helper arms to prevent the ball from rolling away. The most important sensory inputs are 

streamed in via FireWire bus [2] from a digital colour camera. The conventional part of vision processing is 

software based and consumes most of the calculation resources on-board the robot [3].  

One of the most difficult tasks in the RoboCup environment is to pass the ball from one player to 

another. This requires first of all that the robot can control the ball, that is, be in possession of the ball so 

that it can be kicked in any direction and this while the robot is in motion. The ball needs to be close to the 

robot in order to be successfully mastered. This can be achieved by carefully controlling the velocity and 

position of the robot relative to the ball. The closer the ball the lower the relative velocity must be in order 

for it not to bounce off due to its lower momentum. In order to solve this very demanding problem the 
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robot has to know where the ball is located at each instant, which requires a fast read-out and processing of 

the sensory information. 

The update rate of the optical sensory system can be increased and the calculation load by the digital 

vision system reduced by the use of dedicated aVLSI vision sensors. Other factors such as the low weight, 

low power consumption and small size of the aVLSI sensors also contribute to a more streamlined design 

and increase robot performance. In this paper we combine four types of neuromorphic vision sensors with 

the aim to replace, or aid a higher level standard vision system that operates at a lower update rate. Due to 

their smaller field of view, the sensors can only replace the standard vision system in a confined area in the 

immediate vicinity of the robot, and the output signals from the neuromorphic vision sensors gives no 

information of what hypothetical objects are analyzed in the scene. Any moving object can trigger an 

output from multiple aVLSI sensors if their respective fields of view coincide with the moving object. In 

principle reading out analog signals from our dedicated sensors is equivalent to the calculation of certain 

motion properties, such as position and/or velocity for a particular object. This information is usually 

computationally expensive to calculate in traditional CPU based digital architectures. Selected fields of 

view can be mapped onto the active focal regions of the aVLSI sensors by proper alignment and the use of 

appropriate lenses. In this way, multiple data streams are collected from a larger scene and a robust 

calculation can be performed with sensor fusion.  

This paper is structured as follows: in sec. 2 a description of our robot platform is given. The vision 

sensors used in the experiments are presented in sec. 3. In sec. 4 we investigated how the vision system can 

be complemented with a set of neuromorphic vision sensors. Here, we present data collected during three 

experimental runs with one of our robots. We show that this data is suitable for further higher level 

processing. We close with an indication of a direction for future research, namely the design and evaluation 

of selective attention systems, and, the use of neural networks for improved dynamical prediction of higher 

level visual data. 
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2. Our robot platform 

Our soccer playing robot has actuators in the form of motors to drive the robot and to turn a panning 

camera. A valve is used to kick the ball pneumatically and small robot arms attached to the left and right 

side of the robot keeps the ball in front of the kicker plate. Besides the optical sensors; camera and 

neuromorphic vision sensors, it has four infrared distance sensors, a contact sensitive bumper strip with 

rubber shield, and odometry at the two actuated wheels of the robot. This is augmented by a gyroscope for 

fast turning movements. All of these peripheral devices are controlled by three 16 bit micro controllers [4]. 

They are interconnected with a bus interface (CAN), which is standard that is used in German automobile 

industry. Motor current control is performed with one of the aforementioned micro controller modules [5]. 

A second micro-controller reads out the encoder of the panning camera unit and controls its motor. The 

third and last controller takes care of all analog signals on the soccer robot, like distance readings of 

infrared sensors and also the A/D conversion of the neuromorphic sensor signals. Micro controller modules 

communicate with the small notebook PC via the CAN-bus interface. The notebook PC operates the main 

behaviour program and the operating system can be either Windows or LINUX. The cyclic update rate is 

30 Hz (~33 ms) which is governed by the frame rate of the digital camera. 

For this experiment we increased the observation rate for the neuromorphic sensors to the maximum 

effective sampling rate of the micro-controller module that is used which is ~2 kHz (0.5 ms). In the various 

experiments the signal is down-sampled to 153 Hz in the first experiments and up to 520 Hz in the more 

complex experiment done at the end. 

The robot vision system does colour blob tracking of multiple objects and delivers information from 

tracked objects such as position of geometrical centre, bounding box and pixel area. In our experiments 

only the position of the geometrical centre of the tracked object will be used to train the system. Other 

parameters like pixel area are only used indirectly, in order to prepare data for the training phase of the 

system by removing noisy information from distant objects and other artefacts. The vision software used 
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for the experiments is a free software developed at the Carnegie Mellon University and used be many robot 

teams in RoboCup tournaments [3]. 

3. Neuromorphic vision sensors 

Neuromorphic technology mimics processing principles in biology, which for our sensors means that 

processing power is highly distributed and that circuits are analog. Images are processed directly at the 

focal plane level where photoreceptors, memory elements and computational nodes share the same physical 

space on the silicon surface. Typically each pixel in a neuromorphic sensor contains local circuitry that 

performs, in real time, different types of spatio-temporal computations on the continuous analog brightness 

signal. These sensors perform data reduction, as they transmit only the result of the vision processing off-

chip, without having to transmit the raw visual data to further processing stages. In CCD cameras, or 

conventional CMOS imagers, the brightness at the pixel level is measured and merely the gain level is 

calculated according to the average brightness level of the whole scene.  

The specific computational function of a neuromorphic sensor is determined by the structure of its 

architecture and by the way its pixels are interconnected. Since each pixel processes information based on 

local sensed signals and on data arriving from its neighbours, the type of computation being performed is 

fully parallel and distributed. An apparent drawback of this design methodology is given by the fact that the 

resolutions that can be achieved are typically lower than the ones achieved by CCD cameras (i.e. these 

chips have a low fill-factor). The quality and resolution of the pixel output of some of these vision chips 

seem poor at first. However, we should keep in mind that these sensors have been designed to perform data 

compression. For instance, in a one-dimensional target-tracking task (e.g. along the horizontal plane), the 

output of a neuromorphic sensor would be only one single analog continuous value, encoding the 

coordinate of the target’s position. In tasks such as vehicle guidance or autonomous navigation, low 

resolution is not a limiting factor. Insects have fewer pixels than even the cheapest hand-held CCD camera, 

yet they can avoid obstacles much more efficiently than any existing machine-vision system. 
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The aVLSI sensors used in our experiments are made using standard 1.6 and 0.8 micron CMOS 

technologies. Specifically we use three 1D vision chips and a single 2D chip. The one-dimensional sensors 

are: a tracking chip [6], a correlation-based velocity sensor [7], and, a single chip comprising both tracking 

and correlation-based velocity measurements (cf. Fig. 1). The 2D sensor is a gradient based optical flow 

chip [8]. The optical flow chip is the most complex and computes the mean optical flow on its focal plane 

providing two analog output voltages. The correlation-based velocity sensor delivers the mean right or left 

velocity computed throughout it’s whole 1D array, and the 1D tracker sensor provides an analog output 

voltage that indicates the position of the highest contrast moving target present in its field of view. 

4. Experiment 

The purpose of the experiment is to investigate the plausibility of neuromorphic vision sensors to aid higher 

level vision processing tasks, in particular colour blob tracking, which is a standard real-time vision 

processing application that is commonly used on mobile robots. The test consists of two stages; firstly to 

investigate if the sensors can be made sensitive to a moving primary coloured object, and secondly, to 

validate this against a somewhat cluttered background. The first stage is performed to investigate the 

precision of the prediction made from the fused sensory readings. The second stage is performed to 

investigate if there is enough discrimination against background patterns, that is, to investigate the 

robustness of the object tracking task when the robot is moving. If both stages are successful, this would 

imply that a set of neuromorphic vision sensors, sensitive to different types of motion, could complement a 

standard camera based digital vision system in a local domain of the scene. 

4.1 The experimental set-up 

The experiment is performed at the RoboCup playfield at our institute [9]. The field measures 6 x 10 meters 

and there are the natural static obstacles present, e.g. two goals, corner markers, and a protective fence. A 

RoboCup soccer-playing robot is set up with four neuromorphic vision sensors, (cf. Fig. 2), with their 

respective fields of view partially overlapping (cf. Fig. 3). All sensors are calibrated for an indoor light 
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luminosity regime. The calibration is performed by adjusting on-chip bias currents to maximize the contrast 

sensitivity. The red ball gives a relatively low contrast to the green carpet used in RoboCup tournaments; so 

photographic colour filters are used to enhance the contrast. The filters used are gelatine-based and 

discriminate against complementary red colours, thus the contrast to the official red ball is enhanced. The 

same filter is used for all four sensors in the experiment. 

The normally panning camera head is fixated in order for the vision system to be a reliable reference 

signal. The sensors are mounted on the robot so that their fields of view do not overlap significantly. It is 

also made certain that their fields of view are within the field of view of the camera based (standard) vision 

system (cf. Figs. 2 and 3). The RoboCup soccer playing robot is fully autonomous and is operated by a 

behaviour based program that was used by our team at the last world championships in Padua Italy 

[10],[11]. The test field is prepared with white lines that are located in a dense non-uniform grid and with 

an average spacing of about one meter. On the field there is a red soccer football. The robot will constantly 

try to approach the red ball in different manoeuvres, and this will ensure a high event rate for a correlation 

analysis in the second stage of experiments. For the first stage the robot is stationary and the ball is moved 

according to certain patterns that ensure an even distribution of events when projected onto the focal plane 

of the digital vision system. 

4.2 Stationary experiments 

The experiment consists of data collection from the neuromorphic vision sensors and the digital vision 

system of a stationary robot. Each sensor will provide two output signals (except the 1D tracker chip, where 

only a single output is used). All in all this gives 7 neuromorphic sensor signals. For visualization purposes 

each neuromorphic sensor signal is discretized by shifting a moving window average in time and applying 

a simple threshold in order to get trig-points. This makes it possible to correlate the activity of 

neuromorphic vision sensors with the standard vision reference signal which will be used for the purpose of 

visualization. The active regions can be spotted from the respective standard vision system reference 

correlated with the trig-points obtained from the sensor signals. In our case the vision reference is the 
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standard digital vision system, that delivers colour blob data consisting of centroid positions of the biggest 

red object in the field of view of the digital camera. All signals are time-coded on the CAN-bus interface, 

also the visual cues from the standard vision system, which gives very accurate timing in the measurements 

(cf. Fig. 4). 

4.3 Moving robot experiment 

The experiment consists of data collection from the neuromorphic vision sensors and the digital vision 

system of a fully performing robot. The sensors are mounted as in the stationary robot experiment and data 

is here continuously collected for 7 minutes and 10 seconds at a sampling rate of 2 kHz (down-sampled to 

520, 260 and 130 Hz). During this time the robot tries to continuously approach the ball and will during its 

manoeuvres frequently pass lines on the floor, which will influence the tracking task of the red ball. 

Optimally the system should recognize what sensory input belongs to white lines and what input belongs to 

the red ball. The experiment is validated by tracking red and white objects with the standard vision system 

of our robot. The red object corresponds to the red ball and white objects correspond to the white lines 

present in the playfield. The reference information of the red object is used for the model fitting and the 

white in order to investigate how robust the system is against disturbances from non-moving, ground fix 

objects. A model is calculated that has two extra inputs from the robot velocity measurements, that is a total 

of 9 inputs is used for this experiments. The idea is that the two extra inputs from the robot velocity 

measurements will help the system to recognize the moving background better. The number of outputs and 

the vision reference is in accordance with the previous two experiments (cf. Fig. 4) 

4.4 Experimental results 

Three experiments were performed in order to investigate, firstly, the precision in the prediction from the 

fused sensory information, and secondly, the robustness of the object tracking task itself. The first step here 

consists of two stationary robot experiments treated in sections 4.4.1 and 4.4.2, and the second step is a 

moving robot experiment that is treated in sec. 4.4.3. The data is evaluated by comparing the results from a 
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standard dynamical prediction model that is fitted on training data and evaluated on test data. A root mean 

square error is calculated relative to the reference signal from the standard vision system.  

The prediction model used for the two stationary robot experiments is a multivariable ARX model of 

4’th order. The model, which is part of the Matlab™ system identification toolbox is performing parametric 

auto-regression that is based on a polynomial least squares fit [12]. For the dynamic experiments the best 

overall model was chosen in the range of up to a 15 ARX coefficients (15’th order ARX model). A lower 

update frequency requires polynomials that are less smooth and thus will be of higher order. For a higher 

update rate the change in the signal for each sample is lower, thus a lower order model is then usually 

enough. Other effects, such as the signal to noise ratio of the sensors and the fact that the two prediction 

channels are coupled adds some complexity to problem and the above reasoning is only to be seen as a rule 

of thumb and does not strictly apply for all cases. This can also be seen in Table 2, where an update rate of 

260 Hz will have a most optimal ARX model of lower order (3’rd order ARX) than with an update rate of 

520 Hz (6’th order ARX). 

4.4.1 Stationary robot experiment I 

In the first experiment the robot is not moving and the camera and neuromorphic vision sensors detect a 

single moving red RoboCup soccer football. The ball was moved so that it passed the robot along 

horizontal paths. The fields of view of the neuromorphic vision sensors were divided into four zones that 

were partially overlapping, and, within the field of view of the standard vision system. During the 

experiment the ball was thrown 25 times back and forth in each zone, but in random order, so that the data 

set would be easily split into a training and testing set of equal size. By this procedure the distribution 

would be close to uniform in the spatial domain and normal in the temporal domain. The distribution in the 

spatial domain can be seen in the resulting scatter-plots, where the vision reference signal in this 

experiment is correlated against trig-points from active sensors (cf. Fig. 5). The prediction efficiency is 

given in Table 1, where the horizontal (x-channel) over-all RMS error is about 13 %, which for the 
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horizontal camera resolution of 320 pixels would mean an error of about 40 pixels. This corresponds well 

to the fact that the resolution of the neuromorphic sensors is between 10 and 24 pixels. 

4.4.2 Stationary robot experiment II 

In the second experiment, that is performed with a non moving robot and the same boundary conditions as 

the first experiment, the ball was moved so that it passed straight towards the robot hitting it and bouncing 

off in an elastic collision, where the ball with its significantly lower momentum got deflected. During the 

experiment the ball was thrown 25 times back and forth in different zones, but in random order and at the 

same point of impact, so that the data set would be easily split into a training and testing set of equal size. 

The point of impact was in the middle of the kicker-plate located in front of the robot. The results here 

indicate similar efficiency as for the first stationary robot experiment for estimating the horizontal 

trajectories of the red ball, but with a better efficiency in the estimation of the vertical component (cf. Table 

1). This is most probably due to the trajectories of the ball that were more frequently in the active region of 

the 1D tracker (TR) sensor that was vertically aligned so that it gave an optimal measurement of the 

vertical component (cf. Figs. 2, 3). An example from the stationary robot data set used in this experiment is 

given in Figs. 6 and 7, where the predicted result for the horizontal and vertical blob position is plotted with 

a solid line and the “ground truth” reference signal is plotted with a dotted line. The activity of all the 

sensors is indicated as trig-points on top of the reference signal. In Fig. 6 it can be seen that for a rich 

activation of the various sensors the correspondence to the vision reference is good, but, when there is not 

enough of sensory information there will be some discrepancies. This is clearly seen in Fig. 7, where the 

plot describes the vertical component of the ball approaching the robot and being bounced off 3 times in a 

row. In particular, between 302 to 303 seconds in Fig. 7, one can see that the lack of sensory information 

will reduce the downward prediction of the change in blob position, but this is not as crucial when the 

system lacks information in the upward prediction (between 308 and 309 seconds in Fig. 7). In this case the 

system learns by hart that the ball will bounce off the robot, which is actually desirable in our case. 
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4.4.3 Moving robot experiment 

The experiment is validated by tracking red and white objects with the standard vision system of our robot. 

The red object corresponds to the red ball and white objects correspond to lines present in the playfield. 

The number of outputs is in accordance with the previous two experiments. The reference information of 

the red object is used for the model fitting and the reference of the white objects (corresponding to white 

lines) is only used to indicate trig-points. This information is in turn used for visual inspection and the 

calculation of the efficiency of discrimination against white lines. The system was trained with 75% of the 

full data set and tested with the remaining 25%. The results are presented in Table 2, where the over-all 

RMS error is calculated for the test data for sampling frequencies of 130, 260 and 520 Hz. There are also 

RMS errors calculated in trig-points for the case when only the ball was visible (red object only) and when 

the red ball was visible with occluded background (red object and white line). It can be seen from Table 2 

that the efficiency seems to be slightly improved at higher update rates and that the ball can be recognized 

in occluded scenes with an efficiency better than the over-all efficiency for the horizontal x-channel, and, 

for an efficiency close to the over-all efficiency for the vertical y-channel. This might be the result of the 

better coverage of the sensors for the horizontal motion, where the 1D velocity tracker (V), the integrating 

tracker (I-TR) and the horizontal optical flow (OF-X) contribute to the measurement for horizontal motion, 

as contrary to the vertical channel, where only the tracker sensor (TR) and the optical flow vertical channel 

(OF-Y) contribute to the measurement. Further, the sensors that contribute to the vertical channel are all 

directed toward the ground and with their fields of view overlapping (cf. Fig. 2), which makes their 

combined active region smaller than for sensors with their optical axis parallel to the ground and their fields 

of view in different directions (as is the case for the sensors that contribute to the horizontal channel). 

4.4.4 Discussion 

To track moving objects in the spatial and chromatic domains, as well as discriminate against a somewhat 

cluttered background during robot motion, is of fundamental importance in mobile robotics. The spatial 

discrimination is here achieved by the placement of the sensors, so that they map the scene in a way that 
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make optimal use of their functionality. For example, two of the sensors used on our robot are placed as 

found on flying insects in nature, with their optical axis almost parallel to the ground and looking towards 

both the right and the left side of the robot with no overlap in their respective fields of view. Another 

strategic placement is the tracker (TR) sensor that is looking towards the ground and thus will give an 

output signal that is proportional to the distance to the highest contrast edge that is in its field of view (on 

the focal plane). The shadow from objects on the ground might here of course produce a false estimate in 

this “by eye” interpretation of the sensory signal, but the underlying principle is clear. The chromatic 

discrimination is achieved by reducing the intensities of non-wanted colours by applying a colour filter, and 

this raises the question of how to discriminate between different moving objects with similar colour 

intensity profiles. This question remains open. An idea could be to analyze the temporal dynamics, e.g. the 

characteristics of the motion pattern, in order to extract additional information about each hypothetical 

object, and in this way improve the efficiency of the system. 

5. Future directions 

Fast intelligent sensor devises like the neuromorphic vision sensors are advantageous for reactive behaviour 

based robotics [20], where sensors are influencing actuators in a direct way. The high update rate and the 

higher level of abstraction given from neuromorphic sensory data, makes it possible to react almost 

instantly to a given sensory reading, thus faster decisions can be taken. This fact creates possibilities to 

distribute a decision closer to the sensor which implies that it could be suitable to de-centralize decision 

making mechanisms in the over-all robot control architecture. This is the way biology does it and there is 

interesting work done with the implementation of central pattern generators (CPGs) [13], where lower level 

locomotion of biped robots are modulated with the local and self sustained CPG modules. In biology, the 

level of de-centralized decision making is high, and a question that here arises is: how much information is 

it possible to process directly form early visual sensory cues? Some related work done here shows that 
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recurrent neural networks can be trained to achieve higher cognitive tasks such as self localization [14]. 

This type of approaches give very reactive systems. 

As a first step in the visual process it is common to isolate regions of interest, or objects, that then are 

tracked, within the field of view of the visual system in question. For a multi sensor system this could 

impose some difficulties, but there are different approaches to solve this. One approach is to integrate each 

sensor individually, with a corresponding control loop, that directly actuates the driving motors of the 

robot. Several such sensor-actuator modules can then be integrated in a hybrid control architecture. In an 

experiment performed with our goalie robot, it is shown that it is possible to integrate a single 

neuromorphic vision sensor in such a way. The physical limit of the robot is also reached regarding its 

reaction time. From an initial visual stimuli to a measured current in the actuating robot motor, it takes 

roughly about 40 ms. It will take the robot about 300 ms until it moves a distance of less the 30 cm [15], 

[16]. The time needed to perform the action is in this case an order of a magnitude greater than the delay in 

the sensory to motor signal path. This is a clear demonstration of the importance to move calculation power 

closer to the sensory elements (cf. Fig. 8). 

An alternative approach would be to use selective attention mechanisms, where the total activity in the 

scene is represented as a saliency map. In a saliency map the characteristic features of the scene, such as 

contrast, colour opponency, and/or optical flow are extracted and transformed into a heuristic topographical 

representation. The saliency map could be used to more easily select the regions in the visual scene that 

should be analyzed, thus reducing the amount of data that needs to be transmitted to the vision processing 

modules and giving high processing priority only to regions of interest. Neuromorphic systems that 

combine vision sensors and processing chips to implement selective attention mechanisms have already 

been proposed [17]. 

In this paper we circumvent the design of a signal processing hierarchy, and instead use a conceptually 

more simple method. A sensor-fusion approach where all the sensory data are fed into a dynamic prediction 

model together with signals form the vision system as training reference. This gives a local prediction 
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system, whose trained output corresponds to higher level visual information, in our case the tracked blob 

data in that particular sub-domain of the visual scene. Experiments in this direction were made in an office 

environment [18] where local sensory data was used to successfully train a dynamical prediction network 

[19]. Our neuromorphic devices are similar when considering the locality of their range and the low 

dimensionality of their output data, thus implying that this method might be well suited for performing the 

sensor fusion task as well. 

6. Conclusions 

In our work we investigate if the output signals from a small number of neuromorphic vision sensors can 

perform the elementary vision processing task of colour blob tracking. We also try to connect this approach 

to other ideas of how to integrate neuromorphic vision sensors in architectures suitable for small mobile 

robot platforms. For our experiments we use a soccer playing robot as a test-platform, but are looking for a 

general application domain that can be used for all types of mobile robots, especially smaller robots with 

limited on-board resources. Those robots can benefit from a fully neuromorphic vision system, which 

provides high speed performance together with low power consumption and small size. The robot 

experiments that were performed indicate that optical analog VLSI sensors with low-dimensional outputs 

give a robust enough signal, and, that the visual processing tasks of object tracking and motion prediction 

could be solved with only a few neuromorphic vision sensors in a local region of the visual scene. In 

general it can be concluded that neuromorphic vision sensors could be attractive for solving control 

problems in mobile robotics, especially for reactive behaviour based robotics, where the information path 

from sensor to actuator is short.  
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Table 1. First and second stationary robot experiment – test data: The overall RMS error for the x-value and 

y-value of the centroid of the pixel blob delivered by the standard vision system (SVS). RMS errors of 

sensors are calculated only in their trig-points, thus the lower and irregular sample size. The RMS error is 

calculated as the difference between the object position given by the vision reference and the one predicted 

with the 4’th order ARX model. 

Stationary robot Data Set I: 

(153 Hz, 4’th order ARX) 

X Channel 

RMS Error 

Y Channel 

RMS Error

Sample 

size 

Over all SVS test data: 0.1295 0.1920 38044 

SR Opt. Flow: 0.1101 0.2069 569 

SR Tracker: 0.06250 0.1449 4647 

SR Velocity: 0.2405 0.2505 126 

SR Int. Tracker: 0.1089 0.2304 112 

Stationary robot Data Set II: 

(153 Hz, 4’th order ARX) 

Over all SVS test data: 0.1386 0.1245 37974 

SR Opt. Flow: 0.1586 0.1236 236 

SR Tracker: 0.1416 0.1172 1004 

SR Velocity: 0.1803 0.1210 387 

SR Int. Tracker: 0.1316 0.1396 161 
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Table 2. Moving robot experiment – test data: The overall RMS error for the x-value and y-value of the 

centroid of the pixel blob delivered by the standard vision system (SVS). RMS errors of the standard vision 

system are calculated for: (i) all test data, (ii) when a red object is present within the range of the sensors 

and (iii) when a red object and white line/s are present. The RMS error is calculated as the difference 

between the object position given by the vision reference and the one predicted with the corresponding 

ARX model. 

 

Moving robot Data Set: 

(130 Hz, 12’th order ARX) 

X Channel 

RMS Error 

Y Channel 

RMS Error

Sample 

size 

Over all SVS test data: 0.2574 0.2808 13967 

SVS Red object only: 0.2293 0.2331 758 

SVS Red obj. & White line: 0.2195 0.2714 320 

(260 Hz, 3’rd order ARX) 

Over all SVS test data: 0.2471 0.2679 27936 

SVS Red object only: 0.2241 0.2328 829 

SVS Red obj. & White line: 0.2113 0.2983 363 

(520 Hz, 6’th order ARX) 

Over all SVS test data: 0.2485 0.2568 55872 

SVS Red object only: 0.2247 0.2163 829 

SVS Red obj. & White line: 0.2116 0.2571 361 
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Figures: 

 

Figure 1: The four aVLSI sensors used in the experiments. From the left: 2D Optical Flow sensor (OF), 1D 

sharpest edge tracker chip (TR), 1D sharpest edge velocity chip (V), and the 1D integrating edge tracker 

chip (I-TR). 

 

Figure 2: The four aVLSI sensors mounted on our robot (left) with their respective fields of view (right). 

The 2D optical flow sensor (OF) is pointing straight towards the ground (cf. I). The absolute edge tracker 

(TR) is also pointing towards the ground (cf. II). It is mounted at a somewhat lower angle and with its pixel 

array vertically aligned. The 1D velocity tracker (V) and the 1D integrating tracker (I-TR) are directed as a 

divergent stereo pair and with their resp. pixel arrays horizontally aligned (cf. III and IV).  



 20

 

Figure 3: Photo of the experimental set-up for the stationary robot experiments as seen in a birds eye 

perspective. The imagined active regions of the various neuromorphic vision sensors are indicated with thin 

white lines. The regions correspond to the: 2D optical flow sensor (OF), the 1D absolute edge tracker (TR), 

the 1D velocity tracker (V) and the 1D integrating edge tracker (I-TR). The field of view of the standard 

vision system is marked with thick white markers on the ground. 

 

 

Figure 4: The data acquisition architecture used in the robot experiments. The neuromorphic vision sensors 

(SR1-4) are sampled at 130, 153, 260 and 520 Hz. In the moving robot experiment extra velocity 

information is used from both actuated robot wheels at 40 Hz. The standard vision system (SVS) is used as 

reference and is sending blob data at 30 Hz. All signals are time coded on the CAN-bus and stored on the 

robot computer. 
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Figure 5:  Experimental data from the first stationary robot experiment where the red vision reference, 

from the standard vision system, is correlated against the activities of the sensors. The dark grey regions 

indicate the fields of view of the various sensors used in the experiments and the light grey regions indicate 

the distribution of the blob centroid positions for the triggered vision blob data (cf. Fig. 3). 
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Figure 6:  An example from the stationary robot experiment for the red channel of the standard vision 

system. The predicted result for the horizontal blob position is plotted with a solid line and the “ground 

truth” reference signal is plotted with a dotted line. The activities of all the sensors are indicated as trig-

points on top of the reference signal. 
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Figure 7:  An example from the stationary robot experiment for the red channel of the standard vision 

system. The predicted result for the vertical blob position is plotted with a solid line and the “ground truth” 

reference signal is plotted with a dotted line. The activities of all the sensors are indicated as trig-points on 

top of the reference signal. 
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Figure 8: This picture sequence ('I' to 'VIII', 15 frames/sec.) depicts a penalty situation. The depth of 

the goal area is 1 m, the width of the goal is 2 m. The ball of diameter 22 cm is placed 1 m in front of the 

goalie, already in a sensitive area of a neuromorphic vision sensor. In picture 'I' the ball is accelerated to 

about 3.5 m/s. In 'IV' the robot has started to move (starting position pinpointed) thus the observed delay till 

movement is less then 200 ms. This can be attributed to at least 15 ms motor “run-up” time, 20 ms CAN 

bus delay and at least 100 ms acceleration time against the moment of inertia before the snap shot. The 

robot accelerates with 2.5 m/s2. Although it can go the required 10 cm in 280 ms, in principle, it still misses 

the deadline of 300 ms which the ball needs to pass by, in picture 'VII', because of the aforementioned 

delays. 
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