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Abstract. This study aims to recover transient, trial-
varying evoked potentials (EPs), in particular the move-
ment-related potentials (MRPs), embedded within the
background cerebral activity at very low signal-to-noise
ratios (SNRs). A new adaptive neuro-fuzzy technique will
attempt to estimate movement-related potentials within
multi-channel EEG recordings, enabling this method to
completely adapt to each input sweep without system
training procedures. We assume that one of the sensors is
corrupted by noise deriving from other sensors via an un-
known function that will be estimated. We will approach
this problem by: (1) spatially decorrelating the sensors
in the preprocessing phase, (2) choosing the most infor-
mative of the filtered channels that will permit the best
MRP estimation (input-selection phase) and (3) train-
ing the neuro-fuzzy model to fit the noise over the cho-
sen sensor and therefore estimating the buried MRP. We
tested this framework with simulations to validate the ana-
lytical results before applying them to the real biologi-
cal data. Whenever it is applied to biological data, this
method improves the SNR by more than 12 dB, even to
very low SNRs. The processing method proposed here
is likely to complement other estimation techniques and
can be useful to process, enhance and analyse single-trial
MRPs.

Keywords: Movement-related-potential – Single-trial
estimation – Nonlinear estimation methods – Evoked
potentials – Neuro-fuzzy models

1 Introduction

When approaching the problem of analysing evoked
potentials (EPs) or event-related potentials (ERPs), two
major issues arise. The first issue stems from the extremely
low signal-to-noise ratio (SNR) with overlapping spectra
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of the evoked response embedded within the background
EEG brain activity, ranging from 0 to −20 dB, depending
on the type of evoked signals. The second one concerns
possible vectorial signal summation, resulting in compo-
nent overlap, which may cause partial or total occlusion of
the desired features. Usually these field potentials are aver-
aged to increase the SNR and other phase-locked EEG
activity. The averaging methods do not take into account
that in single epochs response activity may vary widely in
both time course and scalp distribution (Popivanov and
Krekule 1983), depending on the external experimental
conditions as well as on the subject’s performance and
state of mind (Schwent and Hillyard 1975). Single-trial-
analysis methods can avoid problems due to time and/or
phase shifts and can potentially reveal richer information
about event-related brain dynamics. On the other hand,
these methods suffer from pervasive artefacts associated
with blinks, eye movements, muscle noise and SNR aris-
ing from the fact that non-phase-locked background EEG
activities often are larger than phase-locked response com-
ponents. The focus of this study deals with recovering
specifically movement-related potentials (MRPs); never-
theless the proposed methodology can be applied gener-
ally to ERP estimations. The movement potentials relate
to the planning and execution of voluntary movements
(Boschert and Deecke 1986) and have usually been studied
in the context of simple movements, commonly of single
limbs (Deecke et al. 1976). Many of the studies address the
focus on MRPs because of their importance in both clin-
ical and research purposes. Many algorithms have been
proposed to detect trial-to-trial variability (Bartnik et al.
1982; Birch et al. 1993; Thakor 1993). Most of these algo-
rithms work well for cognitive evoked potentials with a
non-negative SNR but fail whenever applied to MRPs
that have a highly negative SNR. The few algorithms
that succeed in these cases of highly negative SNR have
to rely heavily on the average MRP (Lange et al. 1997;
Cerutti et al. 1988). Other works investigate the use of
physiological signals, usually from multi-electrode EEG,
for communication and operation of devices for both
healthy subjects and patients with severe motor impair-
ments in many international groups (Birbaumer et al.
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1999; Babiloni et al. 2000; Pfurtscheller et al. 2000; Wol-
paw and McFarland 1994). This alternative communica-
tion channel is called in the literature brain–computer
interface (BCI). Other studies address the problem of
detecting asynchronous motor control (Mason and Birch
2000), or rather the problem of classifying different MRPs,
whether detected (Levine et al. 1999; Müller-Gerking et al.
1999).

In this paper, we propose a novel method that is likely
to complement other techniques for estimating EPs and
to enhance BCI (detection and classification) procedures.
For this kind of application, together with other clinical-
surgical ones, the number of electrodes must be limited to
enhance computational capabilities and to provide sim-
pler interfaces for easier implementation. The problem of
recovering the MRP embedded within the ongoing cere-
bral activity has been approached step by step developing
three serial processing phases: a spatial filtering stage, an
input selection unit and a noise canceller block. From a
set of eight EEG leads we obtain four spatially decor-
related channels by means of discrete Laplace filtering.
We assume that the MRP signal is mainly located over
one of the four channels that will be referred to as pri-
mary input in the sense of Widrow’s noise cancelling tech-
nique. By contrast, the other three remaining channels are
supposed to carry mostly background activity (noise in
our problem) and, accordingly, are the reference inputs
for noise cancellation from the primary input. An adaptive
neuro-fuzzy inference system (ANFIS) network is used
to adaptively estimate the relationship between the ref-
erence inputs and noise component of the primary input.
The input selection phase starts by testing four different
noise cancelling models, each one with a different channel
playing the role of primary input. Each model is adapted
over two iteration cycles of ANFIS, thereby obtaining a
first approximation (mainly linear) of the respective noise
cancelling rule. The selection procedure chooses as the
most representative channel the one that (at this early
stage of adaptation) has the largest component not
explained by the reference inputs. After the selection only
the chosen model is further trained in order to optimize
the noise cancellation. The final residual is considered a
single sweep estimate of the MRP, which is thus obtained
without any a priori information or template, preventing
distortions due to fitting procedures and enhancing sen-
sitivity to the MRP dynamics. Both the last two stages,
channel selection and noise cancelling, exploit the ANFIS
capabilities of tracking both non-linearity and linearity
in multi-dimensional input spaces (Jang 1993). ANFIS
enables the proposed method to serve as a fast conver-
gent estimating procedure that enables on-line processing.
Using the same architecture for the MRP estimation, this
study, unlike previous approaches, leads also to a classifier
of the sensor that possesses higher information content
regarding the burring noise among the others in multi-
electrode EEG recordings. This paper focuses on present-
ing the architecture of the proposed method, providing
simulations to ascertain its viability, and finally applying
it to a biological data set for testing the MRP estima-
tions.

2 Methods

2.1 Experimental setup

Two male subjects, right-handed and aged 29 and 26 years,
not suffering from neurological or muscular disorders,
participated in this study. Informed consent was obtained
from both subjects. The subjects sat on a chair with palms
lying on a table and feet on a footstool. Micro-switches
were placed under both right and left index fingers and
both right and left big toes. The task was to press the
four micro-switches randomly – self-pacing – as briefly as
possible, pausing for approximately 3 s between two con-
secutive presses, keeping the eyes opened and trying to
minimize blinking. Electro-oculographic (EOG) artefacts
were not rejected. Cortical potentials were recorded with
electrodes placed over Fp1, Fp2, F3, F4, C3, C4, T3 and
T4, all referenced to an electrode placed over Cz. A flexible
cap (Electro-CapTM), on which the electrodes are perma-
nently installed according to the 10–20 placement system,
was worn by the subjects and strapped to the chest to
eliminate movement-related artefacts. The electrodes were
Ag-AgCl surface electrodes, circular, with a 6-mm dia-
meter. Cross impedances were kept strictly below 5 K�.
The state of the four micro-switches was recorded in order
to synchronize events in the EEG with external events. The
EEG channels were amplified using a custom-made opti-
cally isolated amplifier with a gain of 104 and a {0,40} Hz
low-pass filter. The amplifier had input impedances con-
sisting of a resistive component on the order of 200 M�;
thus the maximum signal loss was 0.0025%. The ampli-
fied signals were digitized and sampled, together with the
micro-switches’ states, at 250 Hz. All the computation pro-
cessing were done on the data off-line using Matlab. Each
recording session lasted 10 min. The data were divided into
single trials from 1.5 s before the movement of the micro-
switch and until 1 s after it (for a total of 625 samples).
The movements of the same type were collected and rear-
ranged, obtaining for each subject four sets of movements:
(1) left hand movements, (2) right index finger movements,
(3) left big toe movements and (4) right big toe movements.

2.2 Laplacian spatial filtering

We apply the Laplacian filter (Müller-Gerking et al. 1999;
Babiloni et al. 2000; Millàn et al. 2002; Nunez et al.
1994; McFarland et al. 1997) to enhance the SNR, to
completely discard reference effects, and to obtain par-
tial spatial decorrelation of the available channels (Nunez
1981), although the number of electrodes used in this
study is small for the filter application. Before apply-
ing the filter, the position of the electrode sites was pro-
jected over a planar surface, and the resulting data points
were interpolated assuming the propagation of the elec-
tric field monotonically decreasing as the radius increased
from each electrode site (proportional to inverse radius–
inverse distance among the location of the eight sites). The
obtained surface approximated a surface described using
a higher number of electrodes (Fig. 1). The filter, applied
to the interpolated plane, took at any instant of time eight
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Fig. 1. Location of the eight electrodes used for
recording on the left. All electrodes were referenced to
Cz. The surface interpolation, on the right, provides
the Laplacian filtering with samples over the eight
directions of the square filtering mask. White circles
indicate the position of the four filtered channels that
will be used henceforth as the referring channels

Fig. 2. Model of interfering noise sources
(ch1, ch2, ch3) via g(•) (linear/highly nonlinear
function) that corrupt additively the EP to generate
channel chi . Channel chi is the selected channel that
best describes this relation: EP+ g(ch1, ch2, ch3)= chi

samples located over the diagonal and vertical–horizontal
edges of a square and subtracted their average from the
sample placed over the centre of the square. The filtering
square was chosen to minimize the distance between the
interpolated sample and the nearest data sample. The filter
was centred over sites F3, F4, C3 and C4 because they were
better wrapped by the other border electrodes; hereafter
they will be identified by the nos. 1, 2, 3, 4, respectively.

2.3 Model of channel relationship

In the present study we assume that all channels but one
are useful for tracking the noise found in the last channel.
Let Ch be the set containing n channels (raw vectors) used
for the recording: Ch ={ch1, ch2, . . . , chn}; let chi be the
ith element of that set which is considered the primary input
(i.e. signal plus noise); let Ch∗

i be the subset obtained from
the set Ch, removing element chi : Ch∗

i =Ch−{chi}, which
is considered the reference input set (i.e. set containing
mainly the noise signals). Ch∗

i contains local measure-
ments of the electric fields generated by the underlying
noise generators. These signals are subject to different
transformations while affecting chi . We investigate a way
to correlate Ch∗

i to the noise present over the sensor chi .
Let g(•) be the unknown function that relates the elements
of Ch∗

i to chi . The model of this relationship is shown in
Fig. 2 (in the particular case of four sensors of this study)
and is represented by:

chi =gi(Ch∗
i )+Signal , (1)

where gi(Ch∗
i ) identifies the noise over chi and Signal is

the embedded signal (i.e. the EP). Ch∗
i and chi are sup-

posed to obey the following hypotheses: (1) Ch∗
i is a set of

decorrelated noise signals and (2) chi is assumed to be the
signal that contains both the information regarding the
function gi(•) and the embedded signal to recover. Based
on these assumptions we processed the signals using the

“adaptive noise cancelling” of Widrow and Stearns (1985)
– see appendix for details. This adaptive method is modi-
fied by substituting the classical adaptive linear block with
an adaptive linear/nonlinear method, ANFIS, estimating
via successive iterations g(•). The first iteration steps are
used to select chi among all possible input combinations
(see Sect. 2.4 for details). Generally, the use of Widrow’s
filtering relies on adaptive linear techniques, and the use
of ANFIS (see appendix for details) can extend the class
that searches the g function even to nonlinear spaces.

2.4 Input selection procedure

Once the four-signal output is given, we need to obtain
heuristically an order of priority of these potential inputs,
and then we can use them accordingly. ANFIS employs
an efficient hybrid learning method that combines the
gradient descent and the least-squares (LS) methods. As
a result, ANFIS can usually generate satisfactory results
right after the first epochs of training, that is only after the
first applications of the LS method. Since the LS method is
computationally efficient, we can construct ANFIS mod-
els for various combinations of inputs, train them with few
applications of the hybrid method and then choose the one
with the best performance and proceed for further train-
ing. The proposed input selection method is based on the
assumption that the ANFIS model with the smallest root
mean squared error (RMSE) after a few epochs of train-
ing has a greater potential of achieving a lower RMSE
when more epochs of training are given. This assump-
tion is not absolutely true, but it is heuristically reasonable
(Jang 1996).

Using the adaptive noise cancelling technique, the
system output serves as the error signal for the adaptive
process. The system tries to reach the output trying to
minimize the error. In this proposed adaptive method the
input selection is done taking the channel that owns the
greatest RMSE in order to choose the most uncorrelated
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(a)

(b)

Fig. 3a, b. Simulations of the
estimation capabilities of
ANFIS. a ANFIS as noise
canceller: a nonlinear
corrupting function g(n1, n2)=
4n2

1n
2
2(sin(n1 +n2)+n2), where

n1, n2 are two Gaussian white
noises, is added to an EEG
sweep that lasts 6.25 s –
EEG+g(n1, n2) primary input –
(left). ANFIS is fed with n1, n2
and EEG+g(n1, n2) as inputs
and trained for ten epochs over
these very same inputs. The
estimated noise is then
subtracted from the primary
input (light line). b ANFIS
estimation of an AR filtered
noise (“faked” EEG) compared
to the estimation of an AR filter
of the same order of the filter
that generated the noise. ANFIS
was used as a typical filter with
the same inner membership
function (mf) construction as
in b

channel as the primary input. In this way we obtain the
maximum possible information on the background EEG
noise from the corresponding reference inputs. By con-
trast, by choosing the smallest RMSE we would choose
the primary input with the smallest prediction error, which
is the closest replica of one of the reference inputs because
it is the signal immediately explained by a linear combi-
nation of all or some of the other sensors. In such a case,
the chosen channel would be the most correlated channel
of all.

In order to apply this input selection procedure, we alter-
natively take one of the four channels as the primary input
and present it together with the other channels as refer-
ence input set to ANFIS. This way we obtain four different
models, each with its particular set of inputs. We have cho-
sen to train the ANFIS models for two epochs (i.e. apply-
ing twice the LS method and once the gradient descent
method) before choosing the model with the best perfor-
mance (i.e. different estimation errors are obtained). We
accordingly select the system model that with an appro-
priate combination of inputs has the greatest RMSE.

2.5 Noise cancellation procedure

The adaptive neuro-fuzzy inference system (ANFIS) struc-
ture is trained on three input sources, which form the ref-
erence input set; the output of the network is compared
with and adapted to the primary input chosen in the pre-
ceding input selection phase. Two membership functions
(mfs) are associated to each of the three input nodes. The
inputs correspond to four sweeps of 625 samples (250 Hz
sample rate, corresponding to a sample every 4 ms).

In this case of adaptive cancelling using ANFIS, there
is no need to improve the generalization capabilities as in

typical approaches based on neural networks. The training
is performed uniquely to estimate the burring noise over
one of the sensors, only for the very specific trial over which
the training is done. Therefore, we choose to train the AN-
FIS structure for 1000 epochs of trainings before obtain-
ing the resulting fuzzy inference system with the modified
(adjusted) parameters (i.e. premise parameters – the mf
parameters, the consequent parameters – the linear poly-
nomial parameters and the fuzzy-inference-system (FIS)
rules). This way the FIS structure output over-fits the noise
residual over the primary input. The over-fitting is crucial
in this case of adaptive noise estimation whenever very
low-amplitude signals are occluded by noise at approxi-
mately −20 dB SNRs. The estimated noise that corrupts
the MRP sweep can now be subtracted from the primary
input.

3 Simulations

To demonstrate and validate the efficiency of this method,
three different simulations were performed. The first
shows the ability of the algorithm to track nonlinear sig-
nals. The second one is a comparison with the well-known
auto-regressive (AR) linear filter. The third one demon-
strates the capabilities of ANFIS to reject reference inputs
not affecting the primary input. All the data are shown af-
ter having applied a low-pass digital filter in the band {0,
12 Hz} (the filter used is a zero-phase FIR filter of order
30 with cut-off frequency of 12.5 Hz) since the interesting
EEG signals are in this frequency range.

First simulation: Two reference inputs n1, n2 [Gaussian
white noises GWN(0,1)] are generated. An EEG signal
previously corrupted by a nonlinear noise g(n1, n2) =
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4n2
1n

2
2(sin(n1 + n2) + 4n2), is the primary input (EEG +

g(n1, n2)). g(•) is the nonlinear function we intend to
estimate. The SNR was set to −30 dB. The left side of
Fig. 3a shows the signal corrupted by the noise process; on
the right the estimated signal is compared to the original
signal already after ten training epochs of ANFIS. This
simulation was performed to emphasize the capabilities
of the method. This kind of chosen nonlinearity is not
intended to mimic any physiological characteristics but
represents an extreme case of the classical tests adopted
to prove the nonlinear capability of ANFIS

Second simulation: We compare the ability of ANFIS to
estimate linearly filtered noise generated simulating an AR
process of order nine (Cerutti et al. 1988) (widely accepted
to model EEG noise). The parameters of such an AR
process were estimated from a 4-s EEG signal recording
(recording site Fp1, sampling rate 512 Hz in rest condi-
tion we consider an EEG signal taken from a pre-existing
database of EEG recordings). A “faked” EEG signal was
obtained by filtering with the obtained filter a Gaussian
noise with unitary variance and zero mean. Of course, esti-
mating again the parameters of an AR model of the same
order we obtain the best possible estimation the signal can
obtain, since we are inverse filtering the filtered noise with
the same filter that generated it (slight discrepancies arise
between the estimated filter and the original AR filter for
different methods used for optimizing the AR parame-
ters). Nevertheless, in Fig. 3b we compare the estimation
that ANFIS obtained with respect to an AR filter of order
nine. Other simulations were run: ANFIS performs well
even if the parameter order of the filter is unknown.

Third simulation: A set of three Gaussian white noises
GWN(0,1) was considered as reference inputs. The pri-
mary input was an EEG sweep not corrupted in any way
by the three noises. Therefore, a null g(•) was implicitly as-
sumed. The algorithm was, accordingly, able to reject the
independent noises, leaving the primary input unaffected.

4 Results

Considering MRPs related to left hand movements:
Fig. 4b shows the estimations relevant to the third channel
(whenever it was chosen as primary input), while Fig. 4c
shows the same for the fourth channel. These curves can be
compared to the averages of the third and fourth channels
of the whole trial set (Fig. 4a).

Figure 5a shows a set of four plots, each representing
one of the four channels, again during the movement of
the left index finger. The plots are organized in topological
order, reflecting the location of the four channels over the
scalp. Above each plot the number of the referring channel
and the number of times the channel was chosen as primary
input are indicated. Each plot shows: (1) (heavy line) the
grand average computed over all the trials of the referring
channel, (2) (plain line) the average of the estimated tri-
als (i.e. each time the channel was chosen as primary), (3)
(light dashed line) the average of the non-denoised signals

Fig. 4a–c. Left index finger movement trial set of one subject. a
Grand averages of the third and fourth channels. b Single trials when-
ever the third channel was selected. c Single trials whenever the fourth
channel was selected. It is interesting to note that a major phase-lock
response occurs over the single-trial estimations whenever the fourth
channel was selected

over the very same trials. Figure 5b has the same layout of
Fig. 5a, but it corresponds to the movement of the right
index finger. In Fig. 6 the dashed lines represent the stan-
dard deviations (SDs) of the non-denoised trials, while the
plain ones represent the variability of the denoised trials,
both calculated over the very same trials considered in
Fig. 5a for the partial averages. It can be appreciated the
decreased baseline variability of the denoised trials that
permits to highlight variability peaks around the event.
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Fig. 5a, b. Averaged trends of the single-trial estimations for one
subject. Each figure (reporting the lef t/right index finger movement
trial set) is organized in a set of four plots. The plots are placed in
topological order, reflecting the placement of the recording Lapla-
cian filtered channels. Above each subplot are reported: the number
of the referring channel and the number of times this channel was se-

lected in its specific movement trial set. a Left index finger movement
trial set: the averages of the denoised and the non-denoised single-
trials over the very same trials (in which the channel was chosen for
estimation) are compared to the grand averages over all the trials for
each relevant channel. b Right index finger movement trial set: the
same line as in a
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Fig. 6. Standard deviations of
the denoised and the
non-denoised single trials
considered in Fig. 5a of the left
index finger movement trial set
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Fig. 7a, b. Method performance:
input SNR vs. output (denoised)
SNR (input SNR: ratio between
the variance of the grand
average and the variance of the
non-denoised signal, output
SNR: ratio between the variance
of the grand average and the
variance of the denoised signal).
a Left and right index finger
movement of two subjects. For
each movement type a
second-order polynomial fitting
was plotted below the data. b
Left and right big toe movement
of two subjects

The estimation capabilities of this method are shown in
Fig. 7a, where the trials relative to the movements of the
right and left hands for both subjects are reported, plot-
ting the input SNR vs. the output SNR. These two mea-
sures were computed taking for the input SNR the ratio
between the variance of the grand average response and the
variance of each non-denoised signal and for the output
SNR the ratio between the variance of the grand aver-
age response and the variance of the denoised signal. For
each movement type (left and right movements), a second-
order polynomial fitting was plotted below the reported
data. The data shown are in reference to all the MRP
estimations in the relevant movement set independently
of the chosen primary input in a specific single trial. The
same considerations are valid for Fig. 7b, where the data

relevant to the movement of the right and left foot are
reported for both subjects.

In Fig. 8a,b the occurrences (normalized) in which each
channel was chosen as primary input in each trial set (left
and right index finger movements, left and right toe move-
ments) are shown for both subjects.

The results of this method have been compared with
other multivariate methods. Since this method does not
take into account signal templates and performs the signal
recovery over multi-channel data, a particularly suitable
method for comparison could be independent component
analysis (ICA) (Bell and Sejnowski 1995) with the natu-
ral gradient feature proposed by Amari et al. (1996). This
last method is an on-line learning algorithm, which mini-
mizes a statistical dependency among outputs and serves
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Fig. 8a, b. Percentage of
occurrences in which each
channel was chosen for
estimation in each movement
type. a First subject. b Second
subject. Note the selections
prefer mostly the third
channel for all the movement
types
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Fig. 9. Comparison between
the ICA decomposition
method (left) and the present
study (right). The two plots
above are relative to the
movement of the left hand and
the two plots below are relative
to the movement of the right
hand for one of the subjects.
For both methods the grand
average is plotted to permit an
easier qualitative comparison
between the methods

to achieve blind separation of mixed signals. The depen-
dency is measured by the average mutual information (MI)
of the outputs. The source signals and the mixing matrix
are unknown except for the number of sources. The nat-
ural gradient approach is used to minimize the MI. ICA
outputs a set of linearly independent signals, given a set
of the original multi-channel input signals. The set of spa-
tially Laplacian filtered signals (i.e. the same input of the
present method) was served as input to ICA. Three of
the four components of the ICA output were not found
to be physiologically meaningful in comparison with any
of the channels (correlation coefficient < 0.2). Only the
first component was found, by means of averaging, to be
suitable to describe the underlying MRP over the third
channel (Fig. 9). The averages of the signals estimated by
the two methods are plotted in Fig. 9 (ICA on the left,
present study on the right); they are compared with the
grand average over the third channel of the correspond-
ing set of movements of one subject. The average of the
first ICA component is computed with the same num-
ber of signals used to compute the grand average. The
averages relevant to the proposed method were computed
taking signals from the subset of the whole trial set (about

50%), in which the third channel was selected. Though, the
averages are very similar for both methods, ICA was not
able to provide significant single-trial responses, in con-
trast with the higher filtering capability of the proposed
method (Fig. 4b,c). This result can be appreciated by com-
paring the SDs of the single trials in Fig. 10 for the left and
right hand movements, respectively: (1) the non-denoised
signals, (2) the first ICA component estimations and (3)
the estimations of the present method. The variability of
ICA, spread over the considered time window, does not
enable MRP detection or direct analysis. Indeed, ANFIS
filtering displays SDs of the single trials reduced by a frac-
tion less than 1/3, compared to a fraction of more than 2/3
of ICA (Fig. 10).

For the sake of completeness and plausibility of the re-
sults presented in this paper, another cross test was made.
Besides using ANFIS as the adaptive function in the Wid-
row’s scheme (see Fig. 2, considering as input noise sources
the channels not selected as primary), we inserted an ARX
multivariate filter (i.e. linear dynamic model). The ARX
filter is characterized by its parameters in the recursive
and exogenous parts, and the general formula is given
by:



71

-1.5 -1 -0.5 0 0.5 1
0

2

4

6

8
x 10

-5

time - sec

STD of ICA 1st component Vs. the present study

STDs of the non-

denoised signals (3rd Ch)

STDs of the ICA 1st

components

STDs of the denoised (3rd Ch)
signals in present study

V
ol

t

Fig. 10. Standard deviations of signals relative to the third channel
of the left (dashed lines) and right (thick lines) hand movement sets
of one subject. Three couples of SDs are shown: (1) the non-deno-
ised SDs of the third channel, (2) the first ICA component SDs and
(3) the SDs of the denoised signals of the present method each time
they were selected. Each pair of signals is relative to (dashed line) left
hand movements and (thick line) right hand movements

A(q)y(n)=B(q)u(n)+ e(n) ,

where A(q) is the vector of parameters of the recursive
part of the filter while q is the order. B is the Matrix q × m
of the parameters where q is the order and m is the num-
ber of exogenous inputs collected in the u(n) matrix. n is
the length of the time series, and e(n) is the white noise
input of the model. The order was chosen according to
the optimal Akaike order, which is equal to nine for both
the regressive and the exogenous parts, and clearly this
order is relative to the considered data. The test was per-
formed to show significant differences between the two
adaptive blocks (i.e. ANFIS and ARX); hence ARX was
trained over the same training epochs used for ANFIS (i.e.
1000), while the parameters were adapted by means of the
recursive-least-mean-squares rule. In Fig. 11 we show the
results achieved by the two methods, for one subject using
the same architecture scheme (Fig. 2). We have plotted,
in the same way as in Fig. 10, (1) the SD of the non-de-
noised third and fourth channels when they were chosen
as primary by the selecting procedure (see paragraph 2.5),
(2) the denoised signals using ANFIS as adaptive block
and (3) the denoised signals using ARX as adaptive block.
The time-averaged SDs measured using both methods give
the same result, but the SD spread over time shows that
the ANFIS block is able to evidence the variabilities that
are buried in certain time ranges [i.e. readiness potential
(RP), late preparation (LP), motor potential (MP), and
movement assessment]. These variabilities are of consid-
erable interest in estimating the dynamical properties of
the signal. By contrast, although the ARX model performs
very well, its dynamical properties mix and merge together
different components risen in different times. Moreover,
since ANFIS is designed on both linear and nonlinear
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Fig. 11. Standard deviations of signals relative to the third channel
of the left (dashed lines) and right (thick lines) hand movement sets of
one subject. Three pairs of SDs are shown: (1) the non-denoised SDs
of the third channel, (2) ARX estimation SDs and (3) the SDs of the
denoised signals of the present method each time they were selected.
Each pair of signals is relative to (dashed line) left hand movements
and (thick line) right hand movements

spaces, it is able to isolate and detect nonlinear compo-
nents within the linear ones. The comparison shown in
Fig. 11 confirms that the simple model used to explain the
noise sources (e.g. see Fig. 2) is appropriate for describing
and estimating the noise over the selected channel. It is
important, though, to consider, in the case of implement-
ing the proposed approach with other adaptive techniques,
both the linear and nonlinear dimension spaces in order
to evidence subtle variabilities in the dynamics of the sig-
nal.

5 Discussion

Linear filtering and parametric modelling methods have
been widely adopted and proven to be powerful tools in
recent decades (Deecke et al. 1976; Bartnik et al. 1982;
Boschert and Deecke 1986; Thakor 1993), while other
approaches have combined linear models and nonlinear
methods (Cerutti et al. 1988; Birch et al. 1993; Thakor
1993; Wolpaw and McFarland 1994; Mason and Birch
2000); nonetheless, in recent years several studies have ex-
plored the applicability of nonlinear models and methods
in exploring the information content of neurophysiolog-
ical data, with a particular interest in movement-related
responses, in which rapidly adapting mechanisms are elic-
ited (Lopes da Silva et al. 1997; Dushanova and Popi-
vanov 1996; Blanco et al. 1995; Stam et al. 1999; Sulimov
1998; Popivanov and Mineva 1999; Meyer-Lindenberg
et al. 1998). Also, approaches based on principal com-
ponents have been investigated (Mineva and Popivanov
1996), but their performances in separating signal features
from overlapping sources were not satisfactory. It has been
suggested that ICA might be more appropriate (Makeig
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et al. 2000). In this evolving scenario of theories and meth-
ods in the neural sciences, ANFIS can provide a flexible
tool which shares the features of both linear filters (in its
forward parameter estimate) and those of a fuzzy esti-
mate of nonlinear characteristics (in its backward iteration
stage). Another qualifying characteristic of ANFIS is the
achievement of better results and the use of less adjustable
parameters compared to other algorithms based on neural
networks or on adaptive AR prediction (Jang 1993).

Generally the components of the MRP are related to
the stage of the execution of the movement: early prepa-
ration [Bereitschaftspotential (BP) or readiness potential
(RP), late preparation (LP), initiation (motor potential,
MP), and execution of the movement or movement related
response (MRR)] (Tarkka and Hallett 1991; Hallett 1994).
Single trials contaminated by components of the MRPs
ranged from −1,500 to −500 ms (BP), from −500 ms to
zero time (LP), from zero time to +60 ms (MP), and from
+60 to +120 ms (MRR) (Babiloni et al. 1999). In this study,
the single-trial estimations were compared to the grand
average, resulting in a very low variability trend over RP,
the first part of LP and after the movement execution,
while we observed a high variability surrounding move-
ment onset (MP and execution) (Fig. 4b,c). This variability
was confirmed also calculating the variance of the estima-
tions for each set of trials (Fig. 6). We have also observed
high variability peaks occurring at +500 ms, which corre-
spond to the final subject assessment of the task (Cerutti
et al. 1988). As expected, the intrinsic variability of MRP
is evident in those components that are eligible to have
the maximal variability, i.e. the MP and the execution of
the movement itself that are typically non-phase-locked
components. These components reveal the adaptation
of the movement execution to the surrounding environ-
ment. The variability is observed mainly around zero time
(∼ ± 200 ms) and 500 ms (∼ ± 100 ms) and not elsewhere,
while high noise cancelling is reached even for very low
SNRs. However, the model beyond this study is conceived
taking information from the neighbouring channels that
are supposed to carry only noise. The movement of a
limb is reflected by the appearance of an MRP in all the
electrodes over the motor cortex and over the prefrontal
cortex. Therefore, generally (as with a more realistic ap-
proach) also the reference channels carry some informa-
tion regarding the MRP. Cancellation of components of
the estimated signal together with the cancellation of the
noise is possible, especially when the movement typically
activates both contra- and ipsilateral cortical hemispheres.
This happens whenever the movement is relevant to the
non-dominant side of the body. In Fig. 5a it is possible to
notice over the plot of the third channel that the estimated
average is lower than the expected one (grand average).

It remains clear that the advantages of the proposed
method are that it is able to discriminate the most infor-
mative channel in each single-trial movement type and to
search for nonlinear components which are not explained
by the ICA method nor by the ARX filter; in addition, the
method is able to minimize the variability of the signals
where the MRP is actually absent (Figs. 6, 10, and 11),
thus enabling detection and analysis.

Cortical excitation does not show strictly unilateral
activation for all its components. For example BP preced-
ing finger movements have been reported to have signifi-
cant ipsilateral generators (Bötzel et al. 1993). In designing
an automatic selection procedure of one channel among
the others, we followed the evidence that MRP compo-
nents are variably distributed in time and space from trial
to trial. We search for the channel that is explained (in the
linear/nonlinear sense) by the other channels in the worst
way, assuming that it may best describe an MRP indepen-
dent of the background noise. Therefore, the channel with
the highest SNR (i.e. MRP/background activity) is not
necessarily chosen. Interestingly, selection results relevant
to left and right limb movements were not symmetric and
the third (left posterior) channel was most often chosen in
both cases. Thus, we shall look for a possible description
of the underlying phenomenon. We should probably con-
sider how the paradigm was administered during the trials.
Subjects were told to press the bar alternating the move-
ment of their four limbs, self-pacing and with an interval
of approximately 3 s between each press. Apparently, the
repetitive simple movements were accompanied by a cog-
nitive process as the estimation of time, as in (Pelvermuller
et al. 1995), and eventually the random movements of the
four limbs. This cognitive process related by movements re-
calls the experience of Kupferman (1991) who ascertained
that cognitive processes related by movements are prom-
inent in the left hemisphere (96% in right-handed people
and 70% in left-handed people). These findings may bring
us to the conclusion that repertoire traces of movements
are present in the left hemisphere region (contralateral to
the right side body movements), but the system may or
may not rely on that repertoire whenever approaching a
movement task with a paradigm like the one used in this
study. The left hemisphere might become highly special-
ized and highly precise with experience and becomes a
valid and faithful repertoire to be used in determining the
output of the movement system. It may be argued that
this type of motor information processing is performed in
the cerebellum. But as found in (Siedler et al. 2002), the
motor skill itself is not learned in the cerebellum but else-
where (rather the cerebellum is engaged primarily in the
modification of performance).

6 Conclusions

The strength of the noise cancelling using ANFIS is the
ability to track both the nonlinear and the linear relations
among signals. Moreover, without any prior knowledge
of the waveform, the method presented here is capable of
recovering the EPs from the ongoing background cerebral
activity that corrupts them with very low levels of SNR.
The core of the method is based on taking the sources
of the noises and of the signal directly from the system
itself, avoiding use of synthetic filtered noise to estimate
noises present in the system. This approach is applicable in
principle to any complex noisy system of which some con-
temporaneous measures (of noises and signals) are avail-
able. The method was applied to recover synthetic signals
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previously corrupted via an unknown process by noises as
well as to recover biological signals – although this rep-
resents a limited data set – achieving good results, as is
illustrated in the previous sections.

This study opens a new and potentially useful window
into complex event-related brain data that can comple-
ment other analysis techniques. Further research will be
required to fully assess and to confirm the efficiency and
limitations of the method proposed here. Other cross val-
idations such as neurological tests might be performed.
The use of electrocorticographic data in simulations for
comparing the single trial MRP estimation presented in
this study is a plausible best approximation of the tempo-
ral dynamics of the unknown MRP brain generators. Only
such data might be the effective proof of the efficiency and
reliability of this work.

Appendix

Widrow’s adaptive noise cancelling

A signal is transmitted over a channel to a sensor that
receives the signal plus a noise n0; the combined signal and
noise s +n0 form the “primary input” to the noise canceller.
A second sensor receives a noise n1 which is uncorrelat-
ed with the signal but correlated in some unknown way
with noise n0. This sensor provides the “reference input”
to the canceller. Noise n1 is filtered to produce an output y
that is a close replica of n0. This output is subtracted from
the primary input s + n0 to produce the system output,
s + n0 − y. Since the characteristics of the transmission
paths are assumed to be unknown or known only approx-
imately and not of a fixed nature, the use of a fixed filter is
not feasible. Thus, the filter must operate under changing
conditions by adjusting itself continuously to minimize
the error signal. To best fit the signals, the system output
is fed back to the adaptive filter, which adjusts the output
through an adaptive algorithm to minimize the total sys-
tem output power. In an adaptive noise-cancelling system,
the system output serves as the error signal for the adaptive
process. No prior knowledge on the noise n0 or the rela-
tion between the two noises is required. The mathematical
proof as a more detailed treatment for this technique can
be found in (Widrow and Stearns 1985).

ANFIS

An ANFIS network is based on a Sugeno fuzzy model
(Takagi and Sugeno 1985). This model type will be first
illustrated and then placed into the framework of neu-
ral networks to enable adaptation. In the Sugeno fuzzy
model, whenever an input is presented at its input node,
the corresponding output is a fuzzified value, i.e. a multi-
valued vector. The fuzzy value is the result of the expres-
sion xi ∈ Ai , which is the grade of membership that the
input xi has within the fuzzy set Ai . Since set Ai contains
m mfs distributed over the dynamic range of each input xi ,
the corresponding fuzzy value is an m-length vector. The
combinations of each input variable membership grade

with the membership grades of the other input variables
generate N weights given by mn, where n is the number
of input variables. If Ai,j is the jth mf (i.e. the mfi,j ) con-
tained in the fuzzy set Ai , then each weight is expressed in
the following way:(

n−i⋂
h=1

xh ∈Ah,i

)
∩
(

i⋂
k=1

xn−k+1 ∈An−k+1,j

)
=wi,j ,

by varying i, j independently: i = {1, . . . , n} and j =
{1, . . . ,m}. Let wi,j = wp, where p = {1, . . . ,N}; the
weights wp are normalized obtaining:

w̄p = wp

N∑
k=1

wk

.

These N normalized weights are multiplied by N corre-
sponding first-order polynomial functions fp(x), where
x is the input vector of n elements (xn inputs). These
N operations correspond to the typical Sugeno fuzzy
rule “if x∈A then f (x)”, where x∈A contains all the
N possible combinations of inputs within their corre-
sponding fuzzy sets (Ai,j ∈Ai ⊂A). Adding the results
of the N multiplications we obtain the output of the
Sugeno model g(x):

g(x)=
N∑

p=1

w̄pfp(x) ,

fp(x)=a0 +
n∑

i=1

ai ·xi ,

where ai are the linear parameters of the polynomial
fp(x) functions. The elements of the fuzzy sets Ax and
Ay are mfs that can be described by any possible 2D
function. The Sugeno fuzzy model can easily adapt or
learn if it is placed into a framework of adaptive neu-
ral networks that can compute gradient vectors sys-
tematically. The resultant network architecture, called
ANFIS, is functionally equivalent to a fuzzy inference
system. ANFIS combines two learning rules, the back-
propagation (gradient descent method) and the linear
LS method, obtaining a hybrid learning algorithm for
an effective search for optimal parameters. The two
learning rules are applied to the two different parts
of the model. Specifically, the back-propagation adapts
(recursively from the output layer backward to the in-
put nodes) the nonlinear wi,j weights obtained from
each rule and hence from the parameters of the inter-
vening mfs in each fuzzy set; the LS adjust the linear
ai parameters of the polynomial functions fp(x) in each
forward step.
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