Discrete wavelets and perturbation theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 366807
(http://iopscience.iop.org/0305-4470/36/24/316)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.132.210.52
The article was downloaded on 07/06/2010 at 12:41

Please note that terms and conditions apply.

Discrete wavelets and perturbation theory

W-H Steeb ${ }^{1}$, Y Hardy ${ }^{1}$ and R Stoop ${ }^{2}$
${ }^{1}$ International School for Scientific Computing, Rand Afrikaans University, Auckland Park 2006, South Africa
${ }^{2}$ Institut for Neuroinformatics, ETHZ/UNIZH, Zürich, Switzerland
E-mail: WHS@NA.RAU.AC.ZA

Received 26 February 2003, in final form 6 May 2003
Published 5 June 2003
Online at stacks.iop.org/JPhysA/36/6807

Abstract

We show with the help of examples that discrete wavelets can be a useful tool in perturbation theory of finite-dimensional quantum Hamilton systems.

PACS numbers: $02.30 . \mathrm{Nw}, 02.70$.-c

In perturbation theory the Hamilton operator \hat{H} is given by $\hat{H}=\hat{H}_{0}+\hat{H}_{1}$ where \hat{H}_{0} and \hat{H}_{1} are self-adjoint operators in a Hilbert space [1]. It is assumed that the perturbation \hat{H}_{1} is relatively 'small' in comparison to the soluble part \hat{H}_{0}. Quite often \hat{H}_{0} is the diagonal term. We also quite often have the problem that (for example after a Fourier transform) \hat{H}_{1} is the soluble part and \hat{H}_{0} is the perturbation. A typical example is the Hubbard model. Thus it would be quite useful to have a transformation such that \hat{H}_{0} is always the dominant term independent of the parameters. We assume that the Hamilton operator acts in a finitedimensional Hilbert space. For Hamilton operators acting in a finite-dimensional vector space the discrete wavelet transform [2,3] can play such a role.

In our first example we consider the Hubbard model. For the sake of simplicity we consider the two-point Hubbard model. In Wannier representation we have

$$
\begin{equation*}
\hat{H}=t\left(c_{1 \uparrow}^{\dagger} c_{2 \uparrow}+c_{1 \downarrow}^{\dagger} c_{2 \downarrow}+c_{2 \uparrow}^{\dagger} c_{1 \uparrow}+c_{2 \downarrow}^{\dagger} c_{1 \downarrow}\right)+U \sum_{j=1}^{2} c_{j \uparrow}^{\dagger} c_{j \uparrow} c_{j \downarrow}^{\dagger} c_{j \downarrow} \tag{1}
\end{equation*}
$$

where the parameters $t>0$ and $U>0$. After a discrete Fourier transform we find the Bloch representation

$$
\begin{equation*}
\hat{H}_{B}=\sum_{k \sigma} \epsilon(k) c_{k \sigma}^{\dagger} c_{k \sigma}+U \sum_{k_{1}, k_{2}, k_{3}, k_{4}} \delta\left(k_{1}-k_{2}+k_{3}-k_{4}\right) c_{k_{1} \uparrow}^{\dagger} c_{k_{2} \uparrow} c_{k_{3} \downarrow}^{\dagger} c_{k_{4} \downarrow} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon(k)=t \cos (k) \quad k=0, \pi \bmod 2 \pi \tag{3}
\end{equation*}
$$

Thus we would like to consider the cases $U \gg t$ and $t \gg U$ under one approach. The Hubbard operator commutes with the total number operator \hat{N} and the total spin operator in
the z-direction \hat{S}_{z}. We consider the case with two particles and $S_{z}=0$. Then a basis in Wannier representation is given by

$$
\begin{equation*}
c_{1 \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger}|0\rangle \quad c_{1 \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger}|0\rangle \quad c_{2 \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger}|0\rangle \quad c_{2 \uparrow}^{\dagger} c_{2 \downarrow}^{\dagger}|0\rangle \tag{4}
\end{equation*}
$$

Thus we find the Hubbard Hamilton operator in Wannier representation has the matrix representation

$$
\hat{H}_{W}=\left(\begin{array}{llll}
U & t & t & 0 \tag{5}\\
t & 0 & 0 & t \\
t & 0 & 0 & t \\
0 & t & t & U
\end{array}\right)
$$

We see that if $t \gg U$ the non-diagonal elements are dominant. In Bloch representation we have the basis

$$
\begin{equation*}
c_{0 \uparrow}^{\dagger} c_{0 \downarrow}^{\dagger}|0\rangle \quad c_{\pi \uparrow}^{\dagger} c_{\pi \downarrow}^{\dagger}|0\rangle \quad c_{0 \uparrow}^{\dagger} c_{\pi \downarrow}^{\dagger}|0\rangle \quad c_{\pi \uparrow}^{\dagger} c_{0 \downarrow}^{\dagger}|0\rangle \tag{6}
\end{equation*}
$$

and the matrix representation

$$
\hat{H}_{B}=\left(\begin{array}{cccc}
U / 2+2 t & U / 2 & 0 & 0 \tag{7}\\
U / 2 & U / 2-2 t & 0 & 0 \\
0 & 0 & U / 2 & U / 2 \\
0 & 0 & U / 2 & U / 2
\end{array}\right)
$$

The matrices given by (5) and (7) are related by the unitary transformation $\hat{H}_{B}=V \hat{H}_{W} V^{*}$, where the unitary matrix V is given by

$$
V=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{8}\\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right)
$$

Now we apply the discrete wavelet transform. The Haar matrices [2] are given by

$$
\begin{equation*}
K(k+1)=\binom{K(k) \otimes(1}{1} \quad k>1 \tag{9}
\end{equation*}
$$

using the Kronecker product and recursion [2], where

$$
K(1)=\left(\begin{array}{cc}
1 & 1 \tag{10}\\
1 & -1
\end{array}\right)
$$

Thus the 4×4 Haar matrix K (after normalizing the columns) is given by

$$
K=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{11}\\
1 & 1 & -1 & -1 \\
\sqrt{2} & -\sqrt{2} & 0 & 0 \\
0 & 0 & \sqrt{2} & -\sqrt{2}
\end{array}\right)
$$

Then we find that

$$
\tilde{H}_{W}=K \hat{H}_{W} K^{T}=\frac{1}{4}\left(\begin{array}{cccc}
2 U+8 t & 0 & \sqrt{2} U & -\sqrt{2} U \tag{12}\\
0 & 2 U & \sqrt{2} U & \sqrt{2} U \\
\sqrt{2} U & \sqrt{2} U & 2 U-4 t & 4 t \\
-\sqrt{2} U & \sqrt{2} U & 4 t & 2 U-4 t
\end{array}\right)
$$

Thus we find that the largest term $(2 U+8 t) / 4$ is on the diagonal.

By a Walsh-Hadamard matrix of order n, W_{n}, is meant a matrix whose elements are either +1 or -1 and for which $W_{n} W_{n}^{T}=W_{n}^{T} W_{n}=n I_{n}$, where I_{n} is the $n \times n$ unit matrix. Thus $n^{-1 / 2} W_{n}$ is an orthogonal matrix. We call this Walsh-Hadamard matrix normalized. For example, the matrix given by equation (8) is a normalized Walsh-Hadamard matrix. Another 4×4 Walsh-Hadamard matrix is given by

$$
W=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{13}\\
-1 & -1 & 1 & 1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right)
$$

where we have normalized the matrix. Then the Hamilton matrix (5) takes the form

$$
\tilde{H}_{W}=W \hat{H}_{W} W^{T}=\frac{1}{4}\left(\begin{array}{cccc}
2 U+8 t & 0 & -2 U & 0 \tag{14}\\
0 & 2 U & 0 & -2 U \\
-2 U & 0 & 2 U-8 t & 0 \\
0 & -2 U & 0 & 2 U
\end{array}\right)
$$

Thus we find again that the dominant term is on the diagonal. A subset of the Walsh-Hadamard matrices can be extended to higher dimensions as follows using the Kronecker product

$$
W_{1}=(1) \quad W_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{15}\\
1 & -1
\end{array}\right)
$$

and

$$
\begin{equation*}
W_{2^{n+1}}=W_{2^{n}} \otimes W_{2} \tag{16}
\end{equation*}
$$

As a higher dimensional example we consider the spin Hamilton operator [4]

$$
\begin{equation*}
\hat{H}=a \sum_{j=1}^{3} \sigma_{3}(j) \sigma_{3}(j+1)+b \sum_{j=1}^{3} \sigma_{1}(j) \tag{17}
\end{equation*}
$$

with cyclic boundary conditions, i.e. $\sigma_{3}(4) \equiv \sigma_{3}(1)$. Here a, b are real constants and σ_{1}, σ_{2} and σ_{3} are the Pauli matrices. Since
$\sigma_{k}(1)=\sigma_{k} \otimes I \otimes I \quad \sigma_{k}(2)=I \otimes \sigma_{k} \otimes I \quad \sigma_{k}(3)=I \otimes I \otimes \sigma_{k}$
($k=1,2,3$) we obtain an 8×8 matrix. For the first term in the spin Hamilton operator (17) we find a diagonal matrix. The second term leads to non-diagonal terms. Using (18) we find the symmetric 8×8 matrix for \hat{H}

$$
\left(\begin{array}{cccccccc}
3 a & b & b & 0 & b & 0 & 0 & 0 \tag{19}\\
b & a & 0 & b & 0 & b & 0 & 0 \\
b & 0 & a & b & 0 & 0 & b & 0 \\
0 & b & b & -a & 0 & 0 & 0 & b \\
b & 0 & 0 & 0 & a & b & b & 0 \\
0 & b & 0 & 0 & b & -a & 0 & b \\
0 & 0 & b & 0 & b & 0 & -a & b \\
0 & 0 & 0 & b & 0 & b & b & -3 a
\end{array}\right) .
$$

Applying the 8×8 Haar matrix constructed from equation (9) we find that

$$
K \hat{H} K^{-1}=\left(\begin{array}{cccccccc}
3 b & a & a / \sqrt{2} & a / \sqrt{2} & a / 2 & a / 2 & a / 2 & a / 2 \tag{20}\\
a & b & a / \sqrt{2} & -a / \sqrt{2} & a / 2 & a / 2 & -a / 2 & -a / 2 \\
a / \sqrt{2} & a / \sqrt{2} & a & b & a / \sqrt{2} & -a / \sqrt{2} & 0 & 0 \\
a / \sqrt{2} & -a / \sqrt{2} & b & -a & 0 & 0 & a / \sqrt{2} & -a / \sqrt{2} \\
a / 2 & a / 2 & a / \sqrt{2} & 0 & 2 a-b & b & b & 0 \\
a / 2 & a / 2 & -a / \sqrt{2} & 0 & b & -b & 0 & b \\
a / 2 & -a / 2 & 0 & a / \sqrt{2} & b & 0 & -b & b \\
a / 2 & -a / 2 & 0 & -a / \sqrt{2} & 0 & b & b & -2 a-b
\end{array}\right) .
$$

We see again that the dominant terms are on the diagonal. If we apply the Hadamard matrix $W:=W_{2} \otimes W_{2} \otimes W_{2}$ we find that $W \hat{H} W^{T}$ takes the same form as equation (19) but with constants a and b interchanged. This is due to the fact that $\sigma_{1}=W_{2} \sigma_{3} W_{2}^{T}$ and $\sigma_{3}=W_{2} \sigma_{1} W_{2}^{T}$. Thus the subgroup of Hadamard matrices constructed from the Kronecker product of the 2×2 Hadamard matrix does not rotate a and b on the diagonal for the Hamilton operator (17). The operator $W_{2} \otimes W_{2} \otimes \cdots \otimes W_{2}$ plays a central role in quantum computing [5]. It generates a linear combination of the integers from 0 to $2^{n}-1$.

In the examples given above we have shown that the Haar and Walsh-Hadamard transforms yield a Hamilton operator with dominant terms on the diagonal of the matrix representation. The standard Rayleigh-Schrödinger perturbation expansion [6] for systems with a discrete spectrum $\hat{H}=\hat{H}_{0}+\lambda \hat{V}$ and bounded from below yields up to second-order approximation

$$
E_{n}(\lambda) \approx E_{n}(0)+\lambda\left\langle\psi_{n}(0)\right| \hat{V}\left|\psi_{n}(0)\right\rangle+\lambda^{2} \sum_{m \neq n} \frac{\left|V_{m n}(0)\right|^{2}}{E_{n}(0)-E_{m}(0)}
$$

This approximation follows as a special case of the solution of the initial value problem of the autonomous system of ordinary differential equations [1, 7]

$$
\begin{aligned}
& \frac{\mathrm{d} E_{n}}{\mathrm{~d} \lambda}=p_{n} \quad \frac{\mathrm{~d} p_{n}}{\mathrm{~d} \lambda}=2 \sum_{m \neq n} \frac{V_{m n} V_{n m}}{E_{n}-E_{m}} \\
& \frac{\mathrm{~d} V_{m n}}{\mathrm{~d} \lambda}=\sum_{k(\neq m, n)}\left(V_{m k} V_{k n}\left(\frac{1}{E_{m}-E_{k}}+\frac{1}{E_{n}-E_{k}}\right)\right)+\frac{V_{m n}\left(p_{n}-p_{m}\right)}{E_{m}-E_{n}}
\end{aligned}
$$

using a Lie series expansion of the vector field of the autonomous system up to second order [1]. Here $p_{n}(\lambda):=\left\langle\psi_{n}(\lambda)\right| \hat{V}\left|\psi_{n}(\lambda)\right\rangle$ and $V_{m n}(\lambda):=\left\langle\psi_{m}(\lambda)\right| \hat{V}\left|\psi_{n}(\lambda)\right\rangle(m \neq n)$. This system has to be solved with the initial values $E_{n}(0)=\left\langle\psi_{n}(0)\right| \hat{H}_{0}\left|\psi_{n}(0)\right\rangle$ etc. The approach described above provides a new \hat{H}_{0} and \hat{V} so that we can deal with two parameters using one expansion. This system of differential equations also allows the study of the Riemann sheet structure of the energy levels $E_{n}(\lambda)(\lambda$ complex) and of exceptional points [8, 9].

References

[1] Steeb W-H 1998 Hilbert Spaces, Wavelets, Generalized Functions, and Modern Quantum Mechanics (Dordrecht: Kluwer)
[2] Steeb W-H 1997 Matrix Calculus and Kronecker Product with Applications and C++ Programs (Singapore: World Scientific)
[3] Steeb W-H 2002 The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Wavelets, Fuzzy Logic with C++, Java and Symbolic C++ Programs 2nd edn (Singapore: World Scientific)
[4] Steeb W-H 2003 Problems and Solutions in Theoretical and Mathematical Physics volume II, Advanced Level 2nd edn (Singapore: World Scientific)
[5] Hardy Y and Steeb W-H 2001 Classical and Quantum Computing with C++ and Java Simulations (Basel: Birkhäuser Verlag)
[6] Bohm A 1994 Quantum Mechanics 3rd edn (New York: Springer)
[7] Yukawa T 1986 Phys. Lett. 54227
[8] Heiss W D and Steeb W-H 1991 J. Math. Phys. 323003
[9] Steeb W-H and Heiss W D 1993 Phys. Scr. 47321

