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Abstract
We show with the help of examples that discrete wavelets can be a useful tool
in perturbation theory of finite-dimensional quantum Hamilton systems.

PACS numbers: 02.30.Nw, 02.70.−c

In perturbation theory the Hamilton operator Ĥ is given by Ĥ = Ĥ 0 + Ĥ 1 where Ĥ 0 and
Ĥ 1 are self-adjoint operators in a Hilbert space [1]. It is assumed that the perturbation Ĥ 1

is relatively ‘small’ in comparison to the soluble part Ĥ 0. Quite often Ĥ 0 is the diagonal
term. We also quite often have the problem that (for example after a Fourier transform) Ĥ 1

is the soluble part and Ĥ 0 is the perturbation. A typical example is the Hubbard model.
Thus it would be quite useful to have a transformation such that Ĥ 0 is always the dominant
term independent of the parameters. We assume that the Hamilton operator acts in a finite-
dimensional Hilbert space. For Hamilton operators acting in a finite-dimensional vector space
the discrete wavelet transform [2, 3] can play such a role.

In our first example we consider the Hubbard model. For the sake of simplicity we
consider the two-point Hubbard model. In Wannier representation we have

Ĥ = t
(
c
†
1↑c2↑ + c

†
1↓c2↓ + c

†
2↑c1↑ + c

†
2↓c1↓

)
+ U

2∑
j=1

c
†
j↑cj↑c

†
j↓cj↓ (1)

where the parameters t > 0 and U > 0. After a discrete Fourier transform we find the Bloch
representation

ĤB =
∑
kσ

ε(k)c
†
kσ ckσ + U

∑
k1,k2,k3,k4

δ(k1 − k2 + k3 − k4)c
†
k1↑ck2↑c

†
k3↓ck4↓ (2)

where

ε(k) = t cos(k) k = 0, π mod 2π. (3)

Thus we would like to consider the cases U � t and t � U under one approach. The
Hubbard operator commutes with the total number operator N̂ and the total spin operator in
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the z-direction Ŝz. We consider the case with two particles and Sz = 0. Then a basis in
Wannier representation is given by

c
†
1↑c

†
1↓|0〉 c

†
1↑c

†
1↓|0〉 c

†
2↑c

†
1↓|0〉 c

†
2↑c

†
2↓|0〉. (4)

Thus we find the Hubbard Hamilton operator in Wannier representation has the matrix
representation

ĤW =




U t t 0
t 0 0 t

t 0 0 t

0 t t U


 . (5)

We see that if t � U the non-diagonal elements are dominant. In Bloch representation we
have the basis

c
†
0↑c

†
0↓|0〉 c

†
π↑c

†
π↓|0〉 c

†
0↑c

†
π↓|0〉 c

†
π↑c

†
0↓|0〉 (6)

and the matrix representation

ĤB =




U/2 + 2t U/2 0 0
U/2 U/2 − 2t 0 0

0 0 U/2 U/2
0 0 U/2 U/2


 . (7)

The matrices given by (5) and (7) are related by the unitary transformation ĤB = V ĤWV ∗,
where the unitary matrix V is given by

V = 1

2




1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1


 . (8)

Now we apply the discrete wavelet transform. The Haar matrices [2] are given by

K(k + 1) =
(

K(k) ⊗ (1 1)

2k/2I2k ⊗ (1 −1)

)
k > 1 (9)

using the Kronecker product and recursion [2], where

K(1) =
(

1 1
1 −1

)
. (10)

Thus the 4 × 4 Haar matrix K (after normalizing the columns) is given by

K = 1

2




1 1 1 1
1 1 −1 −1√
2 −√

2 0 0

0 0
√

2 −√
2


 . (11)

Then we find that

H̃W = KĤW KT = 1

4




2U + 8t 0
√

2U −√
2U

0 2U
√

2U
√

2U√
2U

√
2U 2U − 4t 4t

−√
2U

√
2U 4t 2U − 4t


 . (12)

Thus we find that the largest term (2U + 8t)/4 is on the diagonal.
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By a Walsh–Hadamard matrix of order n,Wn, is meant a matrix whose elements are
either +1 or −1 and for which WnW

T
n = WT

n Wn = nIn, where In is the n × n unit matrix.
Thus n−1/2Wn is an orthogonal matrix. We call this Walsh–Hadamard matrix normalized. For
example, the matrix given by equation (8) is a normalized Walsh–Hadamard matrix. Another
4 × 4 Walsh–Hadamard matrix is given by

W = 1

2




1 1 1 1
−1 −1 1 1
−1 1 1 −1
1 −1 1 −1


 (13)

where we have normalized the matrix. Then the Hamilton matrix (5) takes the form

H̃W = WĤW WT = 1

4




2U + 8t 0 −2U 0
0 2U 0 −2U

−2U 0 2U − 8t 0
0 −2U 0 2U


 . (14)

Thus we find again that the dominant term is on the diagonal. A subset of the Walsh–Hadamard
matrices can be extended to higher dimensions as follows using the Kronecker product

W1 = (1) W2 = 1√
2

(
1 1
1 −1

)
(15)

and

W2n+1 = W2n ⊗ W2. (16)

As a higher dimensional example we consider the spin Hamilton operator [4]

Ĥ = a

3∑
j=1

σ3(j)σ3(j + 1) + b

3∑
j=1

σ1(j) (17)

with cyclic boundary conditions, i.e. σ3(4) ≡ σ3(1). Here a, b are real constants and σ1, σ2

and σ3 are the Pauli matrices. Since

σk(1) = σk ⊗ I ⊗ I σk(2) = I ⊗ σk ⊗ I σk(3) = I ⊗ I ⊗ σk (18)

(k = 1, 2, 3) we obtain an 8 × 8 matrix. For the first term in the spin Hamilton operator (17)
we find a diagonal matrix. The second term leads to non-diagonal terms. Using (18) we find
the symmetric 8 × 8 matrix for Ĥ



3a b b 0 b 0 0 0
b a 0 b 0 b 0 0
b 0 a b 0 0 b 0
0 b b −a 0 0 0 b

b 0 0 0 a b b 0
0 b 0 0 b −a 0 b

0 0 b 0 b 0 −a b

0 0 0 b 0 b b −3a




. (19)
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Applying the 8 × 8 Haar matrix constructed from equation (9) we find that

KĤK−1 =




3b a a/
√

2 a/
√

2 a/2 a/2 a/2 a/2

a b a/
√

2 −a/
√

2 a/2 a/2 −a/2 −a/2
a/

√
2 a/

√
2 a b a/

√
2 −a/

√
2 0 0

a/
√

2 −a/
√

2 b −a 0 0 a/
√

2 −a/
√

2

a/2 a/2 a/
√

2 0 2a − b b b 0

a/2 a/2 −a/
√

2 0 b −b 0 b

a/2 −a/2 0 a/
√

2 b 0 −b b

a/2 −a/2 0 −a/
√

2 0 b b −2a − b




.

(20)

We see again that the dominant terms are on the diagonal. If we apply the Hadamard matrix
W := W2 ⊗ W2 ⊗ W2 we find that WĤWT takes the same form as equation (19) but with
constants a and b interchanged. This is due to the fact that σ1 = W2σ3W

T
2 and σ3 = W2σ1W

T
2 .

Thus the subgroup of Hadamard matrices constructed from the Kronecker product of the 2×2
Hadamard matrix does not rotate a and b on the diagonal for the Hamilton operator (17). The
operator W2 ⊗ W2 ⊗ · · · ⊗ W2 plays a central role in quantum computing [5]. It generates a
linear combination of the integers from 0 to 2n − 1.

In the examples given above we have shown that the Haar and Walsh–Hadamard
transforms yield a Hamilton operator with dominant terms on the diagonal of the matrix
representation. The standard Rayleigh–Schrödinger perturbation expansion [6] for systems
with a discrete spectrum Ĥ = Ĥ 0 + λV̂ and bounded from below yields up to second-order
approximation

En(λ) ≈ En(0) + λ〈ψn(0)|V̂ |ψn(0)〉 + λ2
∑
m�=n

|Vmn(0)|2
En(0) − Em(0)

.

This approximation follows as a special case of the solution of the initial value problem of the
autonomous system of ordinary differential equations [1, 7]

dEn

dλ
= pn

dpn

dλ
= 2

∑
m�=n

VmnVnm

En − Em

dVmn

dλ
=

∑
k( �=m,n)

(
VmkVkn

(
1

Em − Ek

+
1

En − Ek

))
+

Vmn(pn − pm)

Em − En

using a Lie series expansion of the vector field of the autonomous system up to second order
[1]. Here pn(λ) := 〈ψn(λ)|V̂ |ψn(λ)〉 and Vmn(λ) := 〈ψm(λ)|V̂ |ψn(λ)〉 (m �= n). This
system has to be solved with the initial values En(0) = 〈ψn(0)|Ĥ 0|ψn(0)〉 etc. The approach
described above provides a new Ĥ 0 and V̂ so that we can deal with two parameters using one
expansion. This system of differential equations also allows the study of the Riemann sheet
structure of the energy levels En(λ) (λ complex) and of exceptional points [8, 9].
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