
Learning a temporal codePh. H�a
igerInstitute of Neuroinformatics UNIZ/ETHZWinterthurerstrasse 190CH-8057 Z�urichTel: ++41 1 634 27 99e-mail: ha
iger@ini.phys.ethz.chAbstract. The paper proposes a concrete information encoding fornetworks of spiking neurons. A temporal code is presented in whichneurons respond to simultaneous spike releases of a particular group ofneurons. The paper puts a spike-based learning rule in the context ofthat coding and shows how a network adapts to events experienced whileobserving an environment. Furthermore, correlations between events dis-tant in time can be learnt. To demonstrate this, a net is simulated, theneurons of which become selective to moving bar stimuli after repeatedpresentations of samples.1. IntroductionTemporal codes are an often examined phenomena in the neuroscience commu-nity [1, 2, 4, 9] and spike based learning is becoming more popular in neuralmodeling [6, 8, 7] and physiological evidence for it has been found [10]. How-ever combinations of the two in a perceptive system are still relatively rare.The challenge met by this paper is to propose a concrete temporal coding thatcan be learnt by a spike based learning rule when receiving sensory input.2. Coding by simultaneous spikesWe propose a particular temporal code: a network of neurons codes events, bethey sensory or purely internal, as simultaneous spiking of a group of neurons.For example the simultaneous stimulation of adjacent optical receptors can en-code the occurance of a bar. A neuron one step removed from the sensory levelcould be sensitive to such a bar event (�gure 1 A). Simultaneous activity ofa group of such orientation selective cells can signal the outline of an object.Other neurons could, via multi-synaptic connections, code for sequential occu-rances of events. For example a direction selective cell would need input froman orientation selective cell as well as from a group of cells that code for a barposition at some distance (�gure 1 B). Activity in such a network looks likesyn�re chain [1] activity.



It is essential, that the weight vectors of these neurons are normalized, suchthat all the high weight inputs must be simultaneously active to trigger anaction potential (AP), and the neuron must have a relatively short membranetime constant, so that it reacts as a coincidence detector.To simplify the observations in the following simulations, the network isorganized into levels is used in the network. Feed-forward connections betweenlevels are then responsible for the binding of simultaneous activity in the pre-vious level, whereas intra-level connections bind sequential occurances.3. AlgorithmWe implemented a particular network structure together with a spike basedlearning rule, the so called modi�ed Riccati rule (MRR) [7]. Although wedo not (yet) have a strong claim to biological plausibility, we tried to usephysiologically realistic parameters when possible.3.1. The neuronal modelWe use leaky integrate-and-�re neurons with a �ring threshold at 1. We chosea short membrane leakage time constant of 1.6ms. Therefore our neurons actlike coincidence detectors. This is can be justi�ed for average cortical neuronsif one assumes a constant background activity that acts to increase the neu-rons' membrane voltage baseline above their reversal potentials. Then the timeconstant to bring a neuron back to that level is much reduced. Modeling of invivo conditions in general show shorter e�ective time constants than in vitroexperiments would suggest [3, 9].3.2. The learning ruleThe MRR has already been discussed in previous papers [8, 7]. It is a learningrule local to every synapse. The important property for its use in the contextof our proposed coding scheme is its ability to make a neuron selective to inputfrom synapses that tend to be active simultaneously, even if they cannot bedistinguished from other synapses when only considering average frequencies[8]. It also implicitly normalizes a neurons weight vector to a constant length.Its de�nition is given in the Appendix. The parameters � and � are both 0.01,which will cause the weight vector length to be normalized to 1 (kwk � q�� )[7]. The time constant for the correlation signal's decay � is set to 1.6ms,since only by having it the same as the membrane leakage time constant is thenormalization accurate [7].3.3. The networkA two layer network architecture with 9 neurons per layer is used. Four di�erentbar stimuli are moved in a random sequence past the input layer. Neurons in
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Figure 1: Two types of cells that can emerge in the experiments. The grey levelsof the cells indicate recent activity. The darkest cells are spiking now. Thelighter a cell is, the longer it has not spiked. The activations in the �rst (left)layer are caused by a passing bar-stimulus. (A) depicts an orientation selectivecell in the second layer, marked with an `O'. The strongest connections arefeed-forward connections from aligned input cells. In (B) a direction selectivecell is shown, marked with a `D'. It receives inputs from aligned cells from theinput layer too, but additionally from an orientation (or direction) selectivecell that was active approximately one transmission delay earlier. This is asimple example of binding events that appear in sequence. Note that sincethe MRR normalizes the length of a neuron's weight vector to one, input fromall major connections is necessary to trigger an action potential, regardless oftheir number. So in our particular example for the orientation selective cell in(A) only two inputs are needed, whereas three simultaneous inputs trigger thedirection selective cell in (B).that layer react to the passing of the bar by a single spike release. The Bars areparallel to the diagonals of the square formed by the nine input neurons andare moved orthogonally to their orientation. The bars are presented during 50seconds of simulation time in 0.2 second intervals. The speed of the bars wassuch that the transit time from one line of neurons to the next matched theaverage axonal transmission delay. This maximizes the probability of obtainingdirection selective neurons. If the speed is reduced, the numbers of directionselective cells will gradually decrease (�gure 2 C). The input layer is fullyconnected to the next layer via learning feed-forward connections. In thisnext layer all neurons are connected to each other. Connection delays wererandomized in an interval of 10ms�3ms in the �rst experiment and 3ms�3msin a second simulation. The second setting is closer to biology (The delay of theearliest polarization in cortex after thalamic stimulation has been estimated tobe between 1 and 5ms [5].).Initial weights were 0.45. An additional inhibitoryneuron received inputs from all neurons in the second layer (weight = 0.45),and reduced all the neurons' membrane voltages by a �xed amount of -10 whenactive. This prevented the network from self sustained �ring at the beginningof the experiment, when the learning had not yet normalized the weight vector.
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bar travel time [s]Figure 2: A&B: The numbers of members of selectivity-classes over 60 simula-tions. The �rst column shows the number of cells that were non-selective (N)because they responded to more than two stimuli, the second bar represents thecells that did not respond to any of the bars (S for silent). The third columnshows the number of cells that were sensitive to orientation only (O; respond-ing to two parallel stimuli) and the third is the number of direction selectiveneurons (D; responding to only one or (being direction sensitive without beingorientation selective) to two orthogonal stimuli). A is the outcome of the sim-ulation with 10ms base axonal delay. For B that base was 3ms. C depicts thein
uence of the bar transit time between rows of input neurons (x-axis) on thenumber of cells belonging to the above described classes (y-axis). The dottedline represents the non-selective cells, the dash-dotted line the silent ones, thedashed line the neurons sensitive to orientation and the solid one shows thenumbers of direction selective cells. The sums over 10 experiments are shown.The axonal delay was 10ms4. Simulation resultsA neuron in the second layer becomes tuned to a stimulation pattern thatresults in simultaneous arrival of presynaptic spikes at several of its synapses.Note that in contrast to time discrete Hebbian learning the term simultaneousis fuzzy and not biased by borders between time-slots. A neuron's choice ofa stimulus depends on the set of stimuli and on the random o�sets in thetransmission delays from both layers. The preferences of a cell may thereforechange when the preferences of others change, and neurons tend to choosesimilar stimuli, e.g. the example of a direction selective cell in �gure 1 B isdependent on the existence of a cell that is selective to the same orientation.Still the coupling was not so strong as to always prevent the emergence ofdi�erent orientation preferences in one run. In a bigger network with morelocal instead of full intra-layer connections several preference regions mightdevelop, such as are observed in visual cortex for example.With the shorter axonal base delay (3ms) signals from subsequent bar posi-tions could arrive simultaneously in the second layer. Therefore, as opposed tothe example in �gure 1 B, cells can become direction selective without anothercell being orientation selective. Also the spike density is increased, which a�ectsthe coincidence detection property of the neurons and self sustained activity



was more probable. More cells remain non-selective (compare �gure 2 A/B).Mismatch between bar travel time and axonal base delay do not immediatelydestroy the network's ability to produce direction selective cells (�gure 2 C,solid line). Even when the bar speed is reduced such that a direct input tothe second layer must be faster than a two synaptic one from the previous barposition, one can still not rule out the possibility of a coincidence of a triplesynaptic input from that formar bar position with a direct one, though theprobability is very low. The number of orientation selective cells is independentof the bar speed (�gure 2 C, dashed line). The number of silent cells (�gure 2C, dash-dotted line) increases with decreasing bar speed up to a point whereonly they and the orientation selective cells remain, whereas the number ofnon-selective cells declines to zero.5. ConclusionA coding scheme has been put forward that is based on events of synchronousgroup activity. Spike based learning rules that reward causal relationships be-tween pre- and postsynaptic spikes will tune a neuron to groups of synapses thatreceive coincident spikes and can therefore adapt a neuron to read this coding.Combining the learning and the coding scheme in a network can for exampletune cells to the orientation and direction of moving bars. In more generalterms such a network can bind features together that have appeared togetherin the systems experience. It can establish temporal relationships between fea-tures that tend to appear in sequence. This binding can appear recursively andso lead to representations of objects of increasing level of abstraction.Appendix: The MRRThe following rule de�nes what happens at one synapse.c(tm;0) = (e� tm;0�tm�1;s� c(tm�1;s) if s > 00 if s = 0c(tm;1) = 1c(tm;n) = e� tm;n�tm;n�1� c(tm;n�1) + 1ifn > 1tm;n � tm+1;0s = maxfv : tm�1;v � tm;0g (1)
w(tm;0) = w(tm�1;0) + �c(tm;0)� �w(tm�1;0) (2)



where c is the `correlation signal', `remembering' recent presynaptic activity fora time determined by � . w is the weight at this synapse, tm;0 is the time of them'th postsynaptic spike and tm;n (n > 0) is the time of the n'th presynapticspike after the m'th postsynaptic spike. s is the number of presynaptic spikesbetween the (m � 1)'th and the m'th postsynaptic spike, so tm�1;s is the lastevent (presynaptic or postsynaptic spike) before the m'th postsynaptic spike;� and � are parameters in
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