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Stochastic resonance in pattern recognition by a holographic neuron model
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The recognition rate of holographic neural synapses, performing a pattern recognition task, is significantly
higher when applied to natural, rather than artificial, images. This shortcoming of artificial images can be
largely compensated for, if noise is added to the input pattern. The effect is the result of a trade-off between
optimal representation of the stimul@f®r which noise is favorabjeand keeping as much as possible of the
stimulus-specific informatioffor which noise is detrimentalThe observed mechanism may play a prominent
role for simple biological sensors.

DOI: 10.1103/PhysRevE.67.061918 PACS nunier87.16.Ac, 02.50.Ey, 42.30.Sy, 07.05.Mh

[. INTRODUCTION In our paper, we report on the observation of a stochastic
resonance effect that occurs in holographic neural synapses
The traditional view on noise in information processing is (for short: holographsduring pattern recognition, providing
that the more noise occurs in a process, the worse the proce@8 example of stochastic resonance without underlying peri-
performance is. Based on the observation that noise is ubiddicity. Holographs are part of the family of analog,
uitous in natural systems, whose processing capabilities a@orrelation-based, associative, stimulus-response memories,
still unchallenged by artificial systems, this view has recentlywhere information is mapped onto the phase orientation of
changed. Gradually, the idea has emerged that noise actua@mplex numbergoperating, however, differently from stan-
could be used timprovethe efficiency of computations. As dard connectionist models The holographic method
the paradigm of such a phenomenon, the principle of StoLll—l‘H is of interest in itself as it exhibits some remarkable
chastic resonance has been identified. In its early days, tHfficiency characteristics. Unfortunately, and in spite of the
phenomenon of stochastic resonance was strongly tied to tHeng tradition of work on closely related approaches in opti-
existence of a periodic weak subthreshold oscillation. Whengal holography{15-17, the method seems to have lacked
to this signal, relatively large-scale noise was added, the sygvidespread scientific interest. Holographs have been shown
tem was able to cross the threshold, and an improvement &@ be effective for associative memory tasks, generalization,
the signal was obtained. This concept was first discussed iand pattern recognition with changeable attenfibh—14.
the context of climate dynamidd], and then found in elec- More specifically, investigations have shopis] that effi-
tronic circuits[2]. Later, the phenomenon was propo$ai cient learning of arbitrary relationships between input and
and verified in laser$4,5], and finally found in magnetic output with no constraints on topology or separability, high
systems[6], in neurons[7], and in chemical reaction]. encoding densities, robustness with respect to low numerical
More recently, numerous examples were found in the analytesolution, good saturation, generalization and classification
sis of bio|ogica| sensors. As an impressive examp|e, the Cra)properties, fast Iearning rates and low Steady-state error rates
fish has been shown to use stochastic resonance to catch @& characteristics of the method. From extended studies, it
prey (e.g., Refs[9,10]). In its most general form, stochastic has been observed that the performance of the holograph
resonance can be defined as a nonlinear cooperative effe€lepends in a surprising way on the statistical properties of
whereby the addition of a random process, or noise, to &e input datd12,13, which can be condensed in an asym-
weak SignaL results in an enhanced response of the Systelﬁ}ﬁtry index. The lower this index, the better the performance
(thus dropping the condition of periodicjtylnvestigations Of the holograph. In particular, it has been foydd,13 that
on the use of noise in the context of Signa| processing are dhere is an important distinction between artificial and natu-
great technological importance. Miniaturization of computerr@l images, since the latter tend to have lower asymmetry
chips naturally generates conditions, where fttteerma) indices, implying that learning of artificial images is more
noise is of the order of the Signa|_ For Signa] processing, thdlfflCUlt We will show that for this class, a dramatic perfor-
cortex in many respects still is the most efficient device, andnance improvement can be obtained if noise is added to the
it operates at conditions where the noise level is comparablé&put signal. This observation of stochastic resonance is the
to the level of the signal. This motivates the expectation thamain result of the paper. Understanding this observation
the scientific focus will shift from noiseless computation atsheds some light on how biological signal processing could
high signal power to computation at high levels of noise andsuccessfully operate in noisy environments.
low signal power.

II. HOLOGRAPH SETUP

*Email address: ruedi@ini.phys.ethz.ch Given a family of input patterns, for each patterrs an
"Present address: Rand Afrikaans University, RSA-2000 Johaninput vectorS is derived, and related to a desired response
nesburg, Republic of South Africa. vectorR, forming in this way an association pair. The input
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vector and the response vector entries are composed of con @ A C
plex numbers, i.e.S=(Sy,....S)), with S§=x;e'%, j
e{1, ... n}, wheren, e.g., denotes the number of pixels in
the input picture, antldenotes the imaginary unit. Similarly,
the output vector has the forlR=(Ry, ... ,Ry), with R;
= yje'¢i, je{l,... m} Inamore general formulatior;
and R; can be generalized as multidimensional complex
numberg12,13. The exact form of the coding may depend
on the typical input pattern. For any coding, the essential
information is captured in the phase, whereas the associate
modulus may be used as an attention parameter in the inpt
and to express the confidence level of the output. In our
investigation, this feature will remain unexplored: the moduli
will be set to unity.

The heart of the holograph is anxXn matrix X, with
arbitrarily chosen complex initial entries. During learning,
presented patterrs= S update the matrix iteratively as

1
Ra(i) = 5 Saqi) Xi

Xi+1=Xi+§ar(i)- , (1) FIG. 1. (a) Artificial gray-scale image(b) Artificial image with
noise(meanu=0 ando|2=0.1). (c) Natural gray-scale image.

wherec=3[_,\; is an input pattern specific normalization

constant, and where index(i) {1, ... s=|S|} indicates
the pattern presented at stedf this iterative scheme con-
verges, the “relation” betweers and R is stored inX.,..
From Eq.(1), with the help of the fixed point, the correspon-
dence between input and response patterns is given by

To measure the performance, we determine the ratio be-
tween the number of correct to the number of total associa-
tions, called thestatistical, nontemporatecognition rate.

The errorsd(r; ,?j) between generated and desired responses
yield another measure of performance. However, it is well-
known that the correlation between the recognition raiad

1 SP_,d(r;.r)) is generally not too strong.
{Ri}= ESI'XOO o le{los) 2 For our experiments, we used gray-level pictuieese Fig.
1), represented as matric&=(g;;), whereg;; denotes the
The algorithmic complexity of the process @(nm). To  gray-scale intensity value in the rang@,ss, ... .22}, at
implements associations{s,r -, . s between stimulus |ocation i, j. From the matrices, via concatenation of the

and classification(in their complex vector representations, rows, the input vectors are obtained. When mapping their
this relationship is expressed &5 ,Ri}i-1,...s), thus  entries to complex numbers, it is desirable to keep the latter
Q(nm&) operations are n_eede.d, and the storage requiremea(,\,ay from the target phase-space bounddie2z}. Other-

is of the order ofmn. It is of |mportance to note that the jise, by small recall errors or noise, points may be pushed
storage space does not grow, if more patterns are to bgyer the boundary12], which may have devastating effects
learned, and the time needed for the learning process onl g. changing very small brightness differences into maxi-
grows linearly withs. With growing s, the holograph may ma| brightness differenciesTo prevent this, all values were
enter a saturation region, leading to a decreased performant:,sq1ifted by s5. To the shifted valueg, | ef{1,...258,

To a_voic_j this, Khar{14] prgp_o(?%%szs/nﬁor.]%. In O'“g iln- optionally noisez from a clipped Gaussian random variable
vestigations, we operate &t=0. » WRIC 1S way DEIOW a5 added, before they were mapped onto the complex do-

the proposed saturation threshold. main according tang(g;): 0j=2w(§;j+zj). The desired out-

put vectorsr were composed of uniformly distributed ran-

dom numbers from the unit interval. Similarly to the input
When an object, e.g., a pictuse S, is to be processed by Vectors, the output vectors are mapped into the complex do-

the holograph, it first is encoded into complex numbers bymain by the mapm,(¢;):w;=¢;/2m. Of course, other,

the coding functiormg:s—S. At the end of the process, a more intrinsically application-related output vectors could be

decoding functionm, will convert the complex-valued re- chosen. They should, however, be well separated from one

SponseR to a real-valued respons@r featuré vector, another. The hlgher the dimensiamof r, the easier it is to

m, :R—T e R™. The particular respongewill then be com- meet this condition. The linear dependence _of the computa-

pared to a set of desired respon®s {r,, . .. r,}. During tion time onm, however, makes a good selectiomofvorth-

the pattern recognition process, association pairs are deté’r"-h”e'

mined as{s,r;}, wherer; is the element ofR with the

minimal distance t@. To evaluate the distances in the space

of output vectors, we use the Euclidean distahde normal- We performed four sets of experiments, in which the rec-
ized by the dimension of the output-vector spave, ognition ratesr were computed after the presentationsof

IIl. HOLOGRAPHIC PATTERN RECOGNITION

IV. NATURAL VERSUS ARTIFICIAL IMAGES
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TABLE I. Asymmetry indexA=|=]'S;/=M"\;|, from natural,
noise-free, and noisy artificial images.

)

d)

°)

A a)
Pattern Natural Artificial b)
No. o?=0 of=0.1
1 0.94 0.92 0.56 0 training epochs 50
2 0.81 0.91 0.57
3 0.39 0.91 0.60 FIG. 2. Transient behavior of the recognition ratghen images
4 0.60 0.91 0.55 are associated with random output vectors of lemgth40. Curves
5 0.28 091 0.56 a—d: artificial images, gliding averages far=0.2. Noise combi-
' : ' nations @7 ,0?) as follows:a, (0, 0); b, (0, 0.05; ¢, (0.1, 0.05; d,
6 0.58 0.91 0.56 (0.1, 0. Curven: natural images, where noise is added only during
7 0.54 0.91 0.56 recall (of=0.05). Dashed curve: gliding average for-0.2.
8 0.59 0.91 0.57
9 0.19 0.91 0.57 eral stages of the process. When noise is admdre pro-
10 0.73 0.91 0.56

cessing the input patterngFig. 1(b)], this drastically
improves the holograph performance, see Figs. 2 and 3
(curvesc andd). In these cases, the medianroincreased
from initially 0.5 to 0.75, where in some samples even a
erfect recognition rate of 1 was observed. When also noise
S added during recall, this has little effect. The immunity
towards small additive noise in the recall step is found to
increase with the lengtim of the response vector. When
noise is added exclusively during recall, the average recog-
nition rate increases only slightly. To understand these effects
' ) in detail, the recognition rates were explored for noise added
noise had meap =0 and the elements of the matitwere during the learningnoise variancesrf) and during recall

initially set . . . . .
ally set to 0 . L . (noise variancesr?). From the numerical evaluations we
In the first experiment, associations between windows

from natural photographic picturdsee Fig. 1c)] and a set generattzad azplot of the recognitior_1 rate over th_e parameter
of random vectors of dimensiom=40 were learned g S_Pg%esm xd;TL;[O,O.ﬂ_X[O:O-ﬂ; uingh a resolltj)tmn dOfi h
=10 association paiysFrom each input picture, an arbitrary . ™ ands=3 assoclation pairs. At the upper bound of the
30% 60 pixel-sized window was selected. This leads to a nterval, letters are hardly recognizable by the eye. To keep

input-vector length oh= 1800, which is equal to the size of he computation time on an affordable level, th? Ol.Jtpm'
the artificial images used. In Ref14] it was proposed to vector length was held fixed ai=5. For every combination

choose an asymmeti<A,=0.6. The asymmetries of our of of and of, 32 experiments comprising=30 training
pictures massively violate this condition, see Table I. Never&Pochs were performed, and the avzeraged recognitiorr rate
theless, the results shown in Figs. 2 an@@rves labeled by Was calculated as a function off o7 and training epoch _
n) confirm the earlier reported excellent holograph perfor-€1%. - - - n}. The results indicate that the best asymptotic
mance. Even for sets where more than half of the imageBerformance is obtained from a combinatiorGt=0.1 with
failed to satisfy the condition massively, we found fast con-o>=0.05 [Fig. 4@]. This is the amount of noise used for
vergence to the optimal recognition rate of 1 within 4 train-
ing epochs of random input pattern selectigvhere an ep- 350
och denotes one pass through the whole set of input vectors ,\a) n)
In the second experiment, the photographic windows were
replaced by pictures of letters of the same size, see Hgks. 1
and Xb). Quite astonishingly, on this set of pictures, the
holograph failed to achieve a comparable performasee

input vectors. It will be indicated whether each input vector
was presented exactly once, or, when the pattern was s
lected by random, whether repeated occurrence was tole
ated. In the latter case, we chose the association iaiex

from a uniformly distributed discrete random variable in
{1, ... s}. In this way, over a long learning history, every
association pair appeared with equal probability. During all
experiments, the boundary distance was kept=a0.05, the

; o # samples
Figs. 2 and 3, curves labeled lay. The recognition rate
was found to fluctuate heavily, with a median now lying at
0.6.
V. NOISE ENHANCES ARTIFICIAL IMAGES 0 P
PERFORMANCE 0 ]

A natural assumption is that if the asymmetry index of
artificial pictures can be reduced, this will improve the holo-  FIG. 3. Recognition rate histograms corresponding to Fig. 2,
graph performance. To achieve this, we added noise at sewased on 1000 training epochs.
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(a) (b)

training epochs

FIG. 4. (Color) Gray-level letter association to random output vectors of lemgth5, based on 30 training epoch&@) Average
recognition rate as a function (z:;\ﬂ2 and arz. Optimal combination: L(rf,crrz):(o.l,O.OS).(b) Average recognition rate evolution, as a
function of o (keepingo?=0.05 fixed.

Figs. 2 and 3. Figure (#) shows how this performance en-
hancement is acquired during learning. In Fi¢c)4sections
through Fig. 4a) along the axes?=0.1 ando?=0.05, re-
spectively, are reported. The peaks at a nonzero level of
noise are clearly visible. By performing analogous exhaus-
tive experiments, the dependence @in mwas investigated. (@)
In Fig. 5, the sections using valuesrof=1, 10, 20 evidence
that the higher the choice af, the better the performance. In a)
our experiments, random-generated desired response patterns
were used. Further investigations have shown that a bad re- r b)
sponse vector choice can introduce effects that are of the
order of the influence of the noise.

09

VI. DISCUSSION 0.2

(=)

03
How are these findings related with the known principles Ol 2

of stochastic resonance? As was mentioned above, the clas-
sical examples of stochastic resonance are connected with 09
(mostly periodi¢ subthreshold oscillations. Our investiga- (b)
tions will show that the reported effect does neither belong to
this class nor to the class of noise-enhanced pattern recogni-
tion methods that are based on quantization improvement
[19]. f a)
To investigate its nature, the origins of the problem with
artificial pictures need to be analyzed. Holographic process- b)
ing is based on a summation of column vectors in the com-
plex domain. It can be observed that during the iterative c)
formation of the holograph, single elements can disgBy 02
convergent(2) limit cycle (only possible for repeated non-
random sequential learnihgor (3) chaotic behavioffor the
verification of this property, time series methods were used FIG. 5. Dependence of the recognition raten m, for (curvea)
[18]). An efficient holograph is characterized by a conver-m=20, (curveb) m=10, (curvec) m=1, (a) as a function otr?,
gent correlation matrixwhich will provide the stability of  keepingo?=0.05 fixed,(b) as a function ofs?, keepings?=0.1
the procedureand a decent representation of the informationfixed. With growingm, the performance increases.

(=3

0.3
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the mechanism of stochastic resonance that we deal with. > > (7)
For the following, we will maintain for generality the
moduli in the complex representations. For simplicity, we

will assume that the response vectors be one dimensional . : . .
[12]. After the encoding using different stimuli at timeshe adds to the correlation matrix elemea®], which drives the

correlation matrix has the form two responses mutuglly away from thglr response average.
For stimuli that are identical over a stimulus subfield, the
contributions cancel, so that the generated response con-
X={ > Il,tytel(¢t_01't): Ceey verges to the average of the responses. Although the indi-
=1 T . . .
vidual magnitudes of the elements over these fields are at-
=6 tenuated in this way, a large number of such elements,
12 . Ineyre o e, ) nevertheless, may mask the salient stimulus features and
confound the recognition process. If noise is added, formerly
wheren is the number of elements of the stimulus field en-identical pieces become different. This, however, only works
coded agl; €', ., and{ye'?} is the response vec- If the information content of the different stimuli is not com-
tor. From a new stimulu§*, the response pletely destroyed. _
The degree of equidistribution of a field can be expressed
by the asymmetry index, defined as the average complex

to be processed. The latter is the key issue in understanding r<¢1_ ¢2> r( 6y 1— Oy 2)
2 si 2sin ———

*
RZl/CtzlE . 7€' ¢tk=12 ) Il !k ) vector length over the field. As in our numerical calculations,
""""" the moduli are set equal to 1, the maximal asymmetry index
—:1/c(L,e' 4+ L%+ .) (4 is 1, whereas a fully symmetric, i.e., optimal, stimulus field
yields zero asymmetry. Starting from large asymmetries,
is generated, wherg,;,i=1,...,T, are confidence levels upon addition of noise, we were able to arrive below the
proportional to the degree to which the new stimulus fallscritical asymmetryA, (see Table )l This enhanced holo-
close to a stimulus previously encoded at titne graphic pattern recognition substantially, however, without

attaining the performance of natural images. The explanation
of this fact is that artificial images contain less information
than natural images, especially, if the spatial distribution also
is taken into account. As a consequence, in the
2 sourcéimage-channelencoding-receivetholograph pic-
( > I 1 cod O — 0“)) ture of the holograph, the entropy of the source is smallest
=L n for artificial images. Adding noise to the source makes the
12 received information unreliable, decreasing the mutual infor-
, (6)  mation on which the holographs’ learning is based. In order
to achieve optimal performance, an encoding of high sym-
. ) o metry (which can be achieved by the addition of ngised
wherely , 6 are the input data characteristitg,, 0 are  rejatively intact image structures are required. These require-

Le'% = € ¢tk 12 151, ek o) (5)
n

:%éﬁ

+

the previously recorded input data, and ments, however, are contradictory. This, ultimately, is the
origin of the reported stochastic resonance effect.
* _ arcta %1, .Sin 0% — Bu .+ &b0)/ _As a consequence, the nature of the effect that_ we deal
g k=12.:..,n SNl = bt &) with is distinct from the previously found stochastic reso-
nance principles in the fiele.g., noise-induced learning en-
2 1¥1,,COS 0F — O+ ) |. hancement, as encounpered in S|mulqted ann_eé_ﬂﬁ]; or
k=1"..n recently found stochastic resonance in associative memory

approache$22]). Rather, its appearance is strongly tied to

The above expression shows that the largest contributiothe representation of the neuron by means of complex num-
comes from the closest stimulus in the past. The more equbers, involving intrinsically notions of modulus and phases
distributed each of the input vector sets are, the higher thg24]. This, notably, is the case in the field of hearing and
discrimination[12]. speech recognition, where it was observed that Gaussian

Artificial pictures tend to generate stimulus vectors thatnoise added on the peripheral level enhances discrimination
lack equidistribution, as they contain large areas of identicain hearing[21,23, forming a class of stochastic resonance
elements. Moreover, these regions may coincide throughouffects of their own.
the set of stimuli(for example, all letter backgrounds are  As symmetric encoding can be established by the inclu-
white). Let us take two stimulsl, s2 and call a learning sion of higher orders of correlatio42], we speculate that
trial whensl is first encoded ansP is decoded, and later the in biology, stochastic resonance will be beneficial in condi-
same procedure with interchanged rolesdf s2 is applied. tions where the sensors are too simple to provide higher-
If the two stimuli are different, by the learning trial a net order correlations. Presently, we are investigating related
contribution questions.
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