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Abstract—Electronic neuromorphic devices with on-chip, I. INTRODUCTION
on-line learning should be able to modify quickly the synaptic i i
couplings to acquire information about new patterns to be O NE of the main obstacles that hindered the development

stored (synaptic plasticity) and, at the same time, preserve this of neuromorphic analog systems is the lack of a reliable,
information on very long time scales (synaptic stability). Here, robust, and simple implementation ofl@arning mechanism,

we illustrate the electronic implementation of a simple solution to iy, the associated need of a suitable synaptic device. Difficul-
this stability-plasticity problemrecently proposed and studied in

various contexts. It is based on the observation that reducing the ti€s range from the chpice of the synaptic (apd learning) model,
analog depth of the synapses to the extreme (bistable synapsespoth as to the biological and the computational appeal, to the
does not necessarily disrupt the performance of the device as andesign of the electronic device implementing the synapse and

associative memory, provided that 1) the number of neurons is ; ; ; ;
large enough; 2) the transitions between stable synaptic statesIts learning dynamics. In particular, the synapse has to cope

are stochastic; and 3) learning is slow. The drastic reduction of With the need ofong-termstorage, coupled to quick ability
the analog depth of the synaptic variable also makes this solution t0 modify its state depending on instantaneous changes in the
appealing from the point of view of electronic implementation environment, to effect the learning mechanism.

and offers a simple methodological alternative to the technological The combination of digital memories and digital-to-analog
solution based on floating gates. We describe the full custom

analog very large-scale integration (VLSI) realization of a small converters |s.not really an option fprthe integration pf large scale
network of integrate-and-fire neurons connected by bistable heuromorphic networks. Hence, in the past, and still now, one of
deterministic plastic synapses which can implement the idea the favorite solutions for the problem of long-term storage relies

of stochastic learning. In the absence of stimuli, the memory g, floating gates (see, e.g., [4], [5] and references therein).
is preserved indefinitely. During the stimulation the synapse

undergoes quick temporary changes through the activities of Recgntly proposed.models of §ynapt|c dynam.|cs [1] suggest
the pre- and postsynaptic neurons; those changes stochastically@ Possible and effective alternative to the solution offered by
result in a long-term modification of the synaptic efficacy. The floating gates. A network of neurons can perform well as an as-
intentionally disordered pattern of connectivity allows the system gqciative memory even if the analog depth of the synapses is

to generate a randomness suited to drive the stochastic selection .
mechanism. We check by a suitable stimulation protocol that reduced to the extreme (two stable states on long time scales).

the stochastic synaptic plasticity produces the expected pattern Scenarios with binary or multistable synapses explored in the
of potentiation and depression in the electronic network. The past (see, e.g., [6]) usually comprised a first stage in which
proposed implementation requires only 69x 83 um?* for the  the structure of the patterns is stored in analog synapses. Only

neuron and 68x 47 um? for the synapse (using a 0.Gum, three . _
metals, CMOS technology) and, hence, it is particularly suitable in the end, after all the patterns to be stored have been pre

for the integration of a large number of plastic synapses on a Sented to the network, the analog synapses, are clipped to one

single chip. of the discrete stable states. In case of online learning in real-
Index Terms—integrate-and-fire neurons, learning systems, istic conditions, this approach is not possible: With binary or
neuromorphic avLSI, synaptic plasticity. multistable synapses the new patterns overwrite the informa-

tion about the old ones and the forgetting process is too fast
to permit any classification [7], [8]. The solution is to change
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This approach moves the problem to the generation of the
appropriate stochastic process which would provide the needed
random selection. Generating rare events in a material device
like an electronic synapse is a difficult problem and usually re-
quires either bulky devices, like big capacitors, or fine-tuning of
the currents which control the dynamics. Moreover, the analog
noise generated by analog devices is rather sensitive to temper-
ature and humidity. The solution proposed in [1] exploits the
irregularity of the neuronal activity, which in turn emerges as
a collective property of the network interactions when the pat-
tern of connectivity is intentionally disordered [2], [3]. In partic-
ular, the synapse discussed in this paper is designed to encode
the mean firing rates of the pre- and postsynaptic neurons. In
this specific case, the interspike variability can be exploited to
have stochastic transition between stable states at parity of mean
firing rates.

The above scenario for the synaptic dynamics relies on
spike-drivenmodifications, which bring us to the adopted o o )
neuron model: the integ.rate—and—fire neuron. Thi§ leaves {%é&r;&gﬁtﬂxrﬁg& Ictﬁgssiﬁhsﬁéﬁ:gr;m chip mplemented using
easier, but poorer, solutions, based on an effective represen-

tation of the spiking neural activity (as in the case of neurons )
implemented through thetransfer functio). Thus, when on- linearly the total afferent current and when a threshold is crossed

line, dynamic learning is the goal, spiking neurons are not ontlg}ey emit a spike. The subthreshold dynamics can be described

an option for biological plausibility but are a computationa?? the equation governing the voltage across a capacitor (which
need. represents the membrane potential of the cell)

1 L[t
Il. HARDWARE |IMPLEMENTATION Vsoma(t) = Veoma(0) = 7 1s(t)t + /to [dr— @)

We present a very large-scale integration (VLSI) recurreere(¢) is the sum of the excitatory external current and all
network implemented on a 3.163.16 mnt standard 0.6:m  gxcitatory and inhibitory presynaptic currents, is the leak
three-metals CMOS technology chip (see Fig.1). It contains %&rrent, andC' is the soma capacitance. A(Som’a crosses the
integrate-and-fire neurons (14 excitatory and seven inhibitormreshmdg, a spike is emitted and the membrane potential is
randomly interconnected by 129 synapses (connectivity 30%)get {0V, eset. EQuation (1) must be complemented by the con-
The 56 synapses between excitatory neurons are plastic; all §ign thatV.oma cannot go below a minimal valué..; which
others are fixed. The plastic synapses are designed to implemegtesents also the resting potential of the neuron. This rigid
a covariance based learning rule: When the mean spike frequgkirier turned out to be essential to achieve a qualitatively sim-
cies of the pre- and postsynaptic neurons are high, the synapsepehavior to the one of the integrate-and-fire neuron with a
is potentiated with some probability. In case of a mlsmatch%jakage proportional to the membrane potential [10].

pair of activity (the presynaptic neuron fires at high rate, while p schematic diagram of the circuit implementing the neu-
the postsynaptic neuron is silent) the synapse is depressed Wihia| dynamics is shown in Fig. 2. Transistors M1-M4 and ca-

an(_)ther probability. No transitions occur for _Iow presynaptiﬁ(.icitors C1-C2 implement the dynamics described by (1). The
activity. Although the synapse has been designed to read i it can be divided in four functional blocks.

encode mean spike frequencies, the synaptic dynamics is alsq) Input Block. The total dendritic input current
sensitive to higher order statistics and to the correlations of the ) = 1 o T is injected into the soma capac-
pre- and postsynaptic spike trains. The synaptic state, whichcan .~ . ~ :C(Jl +‘“(32 through transistorsi1 andM2

be potentiated or depressed, determines the excitatory postsy- which act as digital switches. They are required to i'nter-
naptic current (EPSC), generated by the synaptic circuit when a rupt the current flow when thé neuron is emitting a spike

pr(_al_shingg::clzg.i::es'snzms't;i(iim v implements the post-svnantic and to guarantee that the spike duration is not dependent
plastic synap imply imp b ynaplic o the input current.

curr_ent |njgctlon (exutgtory and inhibitory). The_ QIsorder n- 2) Leak BlockThe leak curreni is set by the bias voltage
Fentlonally |ntro'duced n the pattern of co.nr.1ec't|V|ty plays an V3 (transistoM3) and it is turned off during the emission
important role in making the network activity irregular (see ofaspike (14 acts as a digital switch) such that the dura-

Section Il1). tion of the spike acts effectively as an absolute refractory
period.
A. Neuron 3) Action Potential Block.Transistors M5-M6, capaci-
The main building blocks of the network are simple inte- tors C1-C2 and inverterdN1-N2 implement the spike

grate-and-fire electronic neurons with constant leak, function-  emission mechanism. The input current is integrated
ally equivalent to those described in [9]. These neuronsintegrate by the parallel of the two capacitolS1 and C2. As
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Fig. 2. Schematic diagram of the integrate-and-fire neuron. The four functional blocks (input, state, leak, and action potential) implengnaterantdire
neuron which integrates linearly the input, has a constant leakage, and emits a spiké yhearosses a threshold. See the text for a detailed description.

3.5 T T T T T

o
(4]
T
t

51.8

soma
>

0 0.005 0.01 0.015 0.02 0.025
Time (s)

0.03

Fig. 3. Neuronal dynamics. The neuron integrates linearly a constant current. As soQp,agbottom trace) crosses the threshéltbr emitting a spike, the
action potential is initiated, and an impulse (top trace) is generated by the spike emission block. A positive feedback |ddp,drive® + V.. C>/(C1 + Cs2)
from whichV,.ma. decays linearly, down t8. As V... crosse® from above, the output voltagé .. goes back to the ground level (spike inactivation), and the
membrane potential decreases by a fixed amount.

Vsoma Crosses from below the switching voltagél
of the inverterN1, the output voltagd/,, rises from
ground to the positive power supply raify; (spike
activation). A positive feedback loop, implemented
by the capacitive dividelC1-C2, increaseVioma by

VaaC2/(C1 + O2)[9)]. As long asVe,i is equal toVaa,  The spike durationr) can be modified by changing the cur-
the digital switchM6 is closed, and the current set bty “and the interval between two consecutive spiks®)

the bias voltage/,,, can discharge the two capacitorgjenends on the input currents.(. and I;.;,) and on the leak
causing the membrane potential to decay linearly. Arent (). This characteristic times, and then the spike rate,
Vioma CTOsses again (this time from above), the switchingy, e easily calculated in the simple case of constant and pos-
voltageV'1 of the inverterN1, the output voltagd/spk tive 7, — I, — I5. AT is the time needed to the membrane
goes back to the ground level (spike inactivation), a%tential to reach the switching voltage of inveretr (Vy./2)

the membrane potential decreasedhiyC'2/(C1 + C2)  starting from the reset potentidl;/2 — VddC2/(C1 + C2))
because of the action of the positive feedback loop. The

integration of the input current can then start again.
4) State BlockUpon the presentation of a presynaptic spike
the plastic synapses tend to be potentiated/depressed if the

postsynaptic membrane potential is above/below a certain
threshold V;.f). A digital signal {/s;_,) is generated to
encode the state of the neuroW,{,. below or above
Viet)- This function is implemented with compara@iPl

and invertemN3.

C2

— Linn — I’

AT = Vyq T

)
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The spike duration is given by Hebbian Block State Generator Block ~ Refresh Block
Vdd Vh vdd
02 N1 thr V
To = Vddlp_w- 3) *[>°——G| M1 Ajl}‘” st | Vet poq M7ll,e,u,
Vbias M2 | lyias,
In this caseV;oma IS @ periodic signal with period ga lb *| Memory q[ M8
M3 Element v
1 1 Vspkot Vstn ’ syn
T = AT + 70 = VgaC2 <—+ —) @ |~ {j
Iexc - Iinh - Iﬂ Ipw M4
whereC1 = 377 fF, C2 = 375 fF, Vdd = 3.3 V. An acquisi- Vi {5 b | = s Vit r AT M8}
tion of the dynamic of the neurons in this simple case is shov [ ™s I
in Fig. 3. A small hysteresis (about 50 mV) in the switching 1 1 €L

voltage of the inverteN1 affects the spike activation and in-

aCtI\_/atIOIj thresho_lds. This hySt_ereSIS is due to two SOUI’CGSF(P . 4. Schematic diagram of the plastic synapse. The internal state of the

nonideality of the inverter: the differences between PMOS agghapse is determined by the voltage across capa€itoThe state generator

NMOS transistor parameters, and the presence of parasitic ldeck and the refresh block ensure the preservation of memory on long time
: : s. The Hebbian block contains all the information about the learning

pacnan_ces. T.he order of magmtqde of the measured hysteresgf.f;jg:ription_ See the text for more details.

compatible with Spectre simulation results for the neural circuit

including the parasitic capacitances extracted from the layout.

During the design of the layout, particular attention wa Plastic Synapse - EPSC Block Non-Plastic Synapse
given to prevent possible problems due to the coexistence, Yad EPSC Block IPSC Block
the chip, of fast varying signals (liké&x) and slow analog sig- vdd |
nals (like V,oma). Parasitic capacitances between those signe x'l
can cause cross-talk, inducing undesired changes in the ane Vspkf'—Do—d Vi, o]
signal when the fast varying signal changes. To minimize tf

%
se o Voo ]
e 1

parasitic capacitances, and then prevent to the cross-talk
layer of metal, connected to the positive power supply rail or t
ground, was inserted (wherever possible) between the cross
of two wires (on different layers) connected to different node
of the circuit.

The layout of the neuron circuit covers an area of abol
69 x 83 um? (see[8] for more details).

(b) (©

Fig. 5. (a) Schematic diagram of the EPSC block of the plastic syn&pse.
. is a digital voltage representing the synaptic state (potentiated or depressed). An
B. Plastic Synapse EPSC is generated only upon arrival of a presynaptic spike. The output current

The excitatory neurons are connected by plastic synaps@g:xc = L when the synapse is depressed statefand= I, + I ; when
. L . . : . it IS potentiated. Botl; and/A ; are set externally. (b) Nonplastic excitatory

Their dynamics is described in terms of a single internal Valdynapse circuit. When a presynaptic spike occurs, the cufrgntexternally
able (Vsyn), which represents the voltage across a capacitor. T) is injected in the postsynaptic capacitance. (c) Nonplastic excitatory synapse
synaptic efficacy depends on this internal state variable as &keuit. An IPSC of intensity..; (z € {E, I}, both currents are externally set)
plained below. AlthougltVyy, is inherently analog, the synapseIS generated upon arival of a presynaptic spike.
is designed in such a way that only the maximum and the min-
imum allowable values df,,, are stable on long time scales, irof the synaptic threshold is at least twofold: On one hand it sepa-
the absence of presynaptic neuronal activity. Indeed, Wwhgn rates two bands of synaptic values which are the basins of attrac-
is above some threshold,,,, a positive current driveg;,, to tion for two stable memory values; on the other hand, it provides
the upper boundl(;,); otherwise, the synaptic capacitor is disa simple and automatic mechanism to select only a fraction of
charged at a regular pace urity,,, hits the lower bound (0 V). synapses which would undergo a permanent change during the
These two values are then preserved indefinitely and survipeesentation of a stimulus. If the neuronal activity is irregular,
also in the presence of small fluctuations which do not brirtgen this selection mechanism is stochastic and implements the
Vsyn across the threshold;;,,. This bistability preserves the mechanism needed to recover the optimal performances of the
memory of one of the two states on long time scales and, henaetworks as an associative memory (see also Section V). The
we will refer to the two currents described above as torghe specific form of the temporary changes induced by the neuronal
freshcurrents. Upon the arrival of a presynaptic spike, the imctivity has been designed to encode the mean spike rates of
ternal state of the synapse is modified to acquire informatidhe pre- and postsynaptic neurons. The presynaptic activity acts
about the neuronal activity and, hence, about the stimulus. If thg a trigger (no transition can occur in case of low presynaptic
postsynaptic depolarization is above some thresh@ld (see spike frequency) and, then, the direction of the change is de-
description of theState Blockn Section II-A), the internal state termined by the depolarization of the postsynaptic neuron. The
Viyn is pushed upwards; otherwise, it is pushed downwards ldttter provides a simple and instantaneous way to read indirectly
these temporary changes accumulate and bripg across the the postsynaptic mean firing rate (see [1]).
thresholdV;y,, the synapse is then attracted toward a different The circuit implementing the described dynamics can be di-
stable state, and a transition occurs. As a consequence the valed into five functional blocks [see Figs. 4 and 5(a)].
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Fig.6. Synaptic dynamics s illustrated by showing the oscilloscope acquisition of the following signals (from top to bottom). Digital syteific stg analog

synaptic variablel(, . ), presynaptic input spiké{,.), postsynaptic membrane potential. The presynaptic and postsynaptic neurons are injected a constant current

which brings them at the spike threshold at a regular pace (high frequency for the presynaptic neuron and low frequency for the postsynaptigrapse Fhes
starts from the lowest bound (potentiated state) and is then pushed up by a succession of presynaptic spikes which find the membrane potestighafitie po
neuron below ,..¢. As soon ad’,, crosses the synaptic threshadld,., the synapse is attracted toward the depressed 3tate (= V.4). A series of upward
jumps induced by presynaptic spikes which occur in coincidence with high post-synaptic depolarizatiori‘hringbove the threshold again. Note that the
topmost trace, which represents the digital synaptic state, and hence, the real synaptic efficacy, is eith&f;zedepending on whethéf,,, is above or below
the synaptic thresholtt,,,.

1) Memory elemeni he analog variable of the synagsg,,

is stored using a capacitat'é = 327 fF).

2) State generator blockA digital signal V,_s), repre-

3)

4)

senting the state of the synapse (potentiated or depressed),
is generated by the comparatoPl. V,;_, is the input
signal for therefresh blockdiscussed in 3) and the ex-
citatory postsynaptic current (EPSC) block discussed in
5). If the voltage representing the internal variable of the
synapse is greater/less than the threshold voliggg

the digital signalV;_s is low/high, and the synapse is
potentiated/depressed. In fact, in the EPSC bld¢k,,
determines the intensity of the current injected in the
postsynaptic neuron upon presentation of a presynaptic
spike and, hence, it determines the synaptic efficacy.
Refresh block When the presynaptic neuron is inac-
tive the synapse has to maintain the state generated
by the previous stimulations. The transistdv’—M9
implement this function. When the synapse is depressed
(Vit_s V4q) its state is maintained by means of
the currentl,.¢._,. When the synapse is potentiated
(Vsti_s = 0 V), the current injected into the synaptic
capacitor is given by the differenc®csr p — Irefr_n.
which has to be positive to maintain the potentiated state.
We have to setl,.¢r , = 2I.5-_, to have an equal
amount of positive and negative refresh currents.
Hebbian block Transistoravi1-M6 and inverteN1 im-

5)

as digital switches and the current can flow only when a
presynaptic spike is active. The sign of the current is de-
termined by the postsynaptic digital sigrig}_,, through

the switchesM3 andM4. If V;_,, is low (the membrane
potential of the postsynaptic neuron is greater thap),

the currently,;,s, charges the synaptic capacitor and it
tends to potentiate the synapseVlf ,, is high (the mem-
brane potential of the postsynaptic neuron is less than
Viet), the currently,;,,, discharges the synaptic capacitor
and tends to depress the synapse.

EPSC block.The schematic diagram of the EPSC is
shown in Fig. 5(a). The synaptic current is injected into
the postsynaptic soma capacitor only upon the occur-
rence of a presynaptic spike (transidsitt acts as digital
switch). If V;_, is high, the digital switch implemented
by transistotM3 is open, and the EPSE:g is given by
Iy 15 (depressed synapse). The curréptis set

by the bias voltagéd’;. If V,;_, is low, transistoM3 is
closed, and the EPSG is equal tol ;. = I5 + Iag
(synapse potentiated). The currdnt; is set by the bias
voltageV ;. The total excitatory afferent current to the
neuron {...) is the sum of all thelgg contributions,
plus possible external currents.

The layout of the synaptic circuit covers an area of about
68 x 47 jum?.
Fig. 6 shows a time record example of the synaptic internal

plement the Hebbian block. Transistdvil andM6 act state variable (trace 2) and the synaptic state (trace 1) of an ex-
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Fig. 7. Neurons transfer function: The mean frequency as a function of the gmaehthe variance? of the input current. Each curve represents the predicted
firing rate as a function of: of the current for a specifie2. The corresponding measured spike frequencies are indicated by various symbols (diamonds, circles,
stars, and crosses).

citatory synapse, with the associated time course of the presyTo characterize the input—output properties of the single
naptic spike train (trace 3) and postsynaptic membrane potentielron receiving noisy afferent currents, we needed a con-

(trace 4). trolled source of external noise to inject into the neuron. For this
_ purpose, a suitable off-chip generator of pseudorandom current
C. Nonplastic Synapse signals was designed and built. The noise generator is based on

The nonplastic synapse is implemented with a circuit thatclassical scheme exploiting the properties of feedback shift
injects a fix amount of charge in the postsynaptic membrafegisters [12], [13]. The output digital waveforms are usually
capacitance upon presentation of a presynaptic spike. It idiltered (e.g., by an RC low-pass circuit) to produce an analog
simple EPSC or inhibitory PSC (IPSC) block with only ond>aussian noise signal, while in this case, the integrate-and-fire
possible value for the output current. The schematic diagram@uron itself provides the filter acting as an integrator.
of the excitatory and inhibitory nonplastic synapse are shown
in Fig. 5(b)—(c), wherd ;g is the EPSC set by the bias voltage
Vy,,, andl,r (z € {E,I}) are the IPSC set by the bias voltage

VJJ.‘I

I1l. SINGLE NEURON AND THE NETWORK

In order to characterize the dynamic response of the single
neuron receiving input current with various statistical proper-
D. Test Setup ties, some parameters must be estimated first.

Extensively testing the electronic neurons and synapses is an
important complement to exploring the dynamic collective bé\. Leakagels

havior of the implemented recurrent neural network (such re-1,¢ leakage terniig is estimated for each neureénfor a set
sults are reported in [2] and [11]). A programmable setup hgs, 4y es of the global paramet&s which controlsl?, in order

been detS|gnedt?nd bu'lt't;';h's S(T,tugl' bggld?;S allo;/vmg baf"c C%F:heck the linearity of ; versusl in the range of interest.
t)hare(ljme_ erj stet_lr][_g, Iena est_re 'a ti injection o Cl::enhs_ Wi ;, is simply derived by comparing the slopes of the neuron’s
€ desired statistical properties In the neurons on the chip olarization upon injecting a dc external current with and
real-time acquisition of the spikes emitted by the neurons. :
The analog VLSI network is hosted by a reconfigurable mWlthOUt the leakage term.
9 work 1 y 'gu " While I} is pretty linear for all neurons faf; € [0,0.2] pA,

crocontr_olled -0 board that provides thg control paramete[ﬁ slope of the fit has a significant spread among the neurons,
the static network parameters, and the input external curren

. . . ) . arently due to a high variability in the mirroréi currents.
via 12 bit multifunction DAC modules. Output spikes are pThe me};sured valucgsforthe sldwma‘thelinearfitaave mean
gathered by another micro-controlled device (the acquisiti%

board) endowed with 64 Kspikes total memory on board; fo?1ual t05.32 and variance equal to 0.86.

example, a 50-Hz rate implies about 60 s of available time span _. ) .

for recording the neuron’s activity. Each spike is encoded gs Time Width of the Spike

the label of the emitting neuron and the attached time label. AThe time duratior, of the spike has been directly measured
workstation handles the communication with the [-O boardn the oscilloscope, for an interval of valuedpf, € [0,2] pA.

A high-level user interface has been developed for paramet@&te linear fit gives(1/7p) = 1075 - I, — 10~* ms; r? =
setting, spikes recording, and data visualization and analysig).9996.
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C. Single Neuron Current-to-Rate Transfer Function No coupling (J.c=0)

. . . TTTTTTITTTTTITIT T ITITT IR IIdg1
To characterize the response properties of the implemented QUL ELL LR R L] ||| |
neuron for noisy input currents we adopted the following e '| ,', i |'| (0 } |', ,', b

procedure. ||||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

L

« The feedback shift-register random generator mentioned L || | ‘I e
in Section II-D generates sequences mimicking a binomial I
process to produce a random switching signal between I| | ||}||IH|I||||||l|n|n[|||l||:||I|||1|:u|||||1||||ln||
preset “high” and “low” values (“random period square e E B
wave”). ; -

» The mean and variance of the random simulated current _— Coupling (e 0'??1 °)
signal are computed as 1L

I
|
Ll L
_AVL - AVL L0 R L R g
ph=—"r LLD BLD L R g
) LB L L
, (AVi+AVL) L
o= _— 7 LD
AT T T B
R L
where AV, and AV_ are the voltage jumps in the e
neuron’s potential which are induced in a clock period 50 100 150 200 250
of the noise generator. Time (ms)

» The computed mean and variance are plugged into the tt&e

8. Raster plots of the spikes produced by the network for two different
oretical formula of the neuron’s transfer function [10] P pres P y

external currents (each tick mark corresponds to a spike and each row contains
a different excitatory neuron). The same current is injected to all the excitatory

v :‘I’(li- 0) neurons. Top: The neurons are decoupled (the synaptic efficacies are set to zero)
’ and fire very regularly, indicating that the electronic noise is negligible. Bottom:
0—Vier ] The excitatory i i turned dth | curtent is reduced

20 (2 Vinor [ — Vieset e excitatory interactions are turned on, and the external current is reduced in

|:T0+ 2% ( ~2u8/0%) _ ( " w/o )) + T] order to get the same mean spike frequency. The neurons now feel the disorder

intentionally introduced in connectivity pattern, and they fire more irregularly.
) ] ) ] This is the randomness which drives the stochastic selection mechanism.
wherev is the spike frequency of the neurahs the spike

emission threshold, and..... is the reset membrane po-

tential. All other relevant parameters Vzeset, 7o, 1) are four possible types of synaptic couplings between excitatory

independently measured as reported above. and inhibitory neurons.
« The experimental transfer function is checked against theAS & preliminary step, we séj # 0 and/a; = 0; the effec-
theoretical predictions. tive value of the excitatory-to—excitatory synaptic efficaky:

Fig. 7 shows that theoretical predictions are fairly T the global parametéy has been directly measured, by

matched by the measured neuron response. This current-to- Fﬁ@&:rmg the Jutr)npAllf( mduc?td ént;[h(tahpotentlal oftthe post-
transfer function contains all the single neurons properties tl’?‘é(tga‘g '; neuroln })/ISp' es er2n7| eV y the presynaplic neuron.
are relevant to the network collective dynamics in stationary /0= 0727, = 0.0027 mV; r? = 0.992

conditions [10]. for I, € [0.4] pA. _
2) Deterministic Excitatory NetworkFig. 8 shows two

raster representations of the network activity for uncou-
pled neurons (all the synaptic efficacies are set to 0, top)
We briefly sketch in the following few relevant features exand for neurons coupled by excitatory synapséss( # 0,
hibited by the interacting network (further details in[2], [3], and/gr = Jir = Ju = 0, bottom). The spikes emitted by each
[11]) neuron are represented by drawing a bar at the corresponding
Our intention is to show a glimpse of the rich phenomenologyosition along the time axis; each row in the raster represents
exhibited by such a small electronic network, in view of the sce-sequence of spikes emitted by a given neuron (rasters of this
nario outlined in the Introduction, which envisages the recurrekind are a common representation of the neural activity in
neural activity providing a dynamic source of randomness to baperimental neuroscience).
exploited by the synapses to implement stochastic, slow modi-The top panelin Fig. 8 illustrates a situation in which the same
fications of the efficacies. (constant and positive) input current is set for all the uncoupled
We remark that each synapse evolves on the basis of infoeurons. Because of the various inhomogeneities (in the current
mation which is local in time and space (the instantaneous awirors, in the neurons themselves) the neurons exhibit a wide
tivities of its pre- and postsynaptic neurons); the high feedbae#riability in the firing rate (though we remark that the firing of
in the network makes the activity of each neuron able to refleahy given neuron is quite stable and reproducible).
any sources of disorder, first of all in the pattern of connectivity, Excitatory synaptic couplings are switched on in the bottom
which is fixed but random in our case. panel (the synaptic dynamics is not active), while the input cur-
1) Excitatory-to-Excitatory SynapseMe call in the fol- rent is still constant and equal for all neurons; its value is ad-
lowing J,., (z,y € {E,I})the EPSC or IPSC induced by theusted in order to compensate for the mutual excitation and to

D. Neurons Coupled by Excitatory Connections
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have the same average firing rate. It is clearly seen that, desj

the fact that no additional source of randomness has beenini | * E A e 1
duced, the recurrent excitation through a disordered pattern [ % 7 S o e @ |
connectivity is enough to endow the neurons'’ firing pattern wit °| N N |
high variability. T bk B A "

This qualitative observation can be put on quantitative bas,, °r Sl R S © i
by making contact with thenean fieldpredictions appropriate g S S T A P OO
for the given network architecture; detailed checks have beg 7[ =@ 4 e O 0O

©
T
»
-
©
L

carried out, which provide, for the toy external stimulation exg;
amined, a surprisingly good match between mean field predg [~ @
tions and the behavior of such a small network [2], [11]. [ O

IV. SYNAPTIC PLASTICITY IN A NETWORK SETTING: P YUUUN AU S RN SHNN SN SRR SO TR SUNRE SO SO S
LEARNING A PATTERN o @D @ Db @ @
We moved next to investigate how the plasticity of the elec "2 s & 5 s 7 8
tronic synapses shows up in a network environment. Prosynapti neurons
In [1], it was proven that the synaptic device described in @
Section 1I-B implements a stochastic Hebbian mechanism k-
studying a single externally driven synapse. — T T T T T T T T T T T
Specifically, the probability of potentiationV{y, CroSSES — h- s o0 i @ @
Vine from below, the efficacy—postsynaptic current—goe _ S R S PTRTF FRRN c SENF PR C SREARES
from IJ_ tOI]+ — IJ_ +IA,]) is h|gh for h|gh|y active pre- _ e R b i
and postsynaptic neurons; in this condition one has aneg“gﬂ Lo V IR . V . O i O 4
probability of synaptic “depression.” The latter dominate sk .. @ e @i
when the synapse has a high presynaptic activity but a pooé Lo . . . SR SN 2 O O
activated postsynaptic neuron. Transition probabilities a?, TR @O e @
effectively suppressed in both directions when the presynapg s @G e g ]
neuron has low activation. /2 U U N N VOV NN SRS SNV GO WOURN SRR SONE NE SP S
In [3], it was shown how the noise globally generated by th™ |0 i & G i Gt i _
network allows control of a wide range of transition probabili [......&. . . & i 4.i¢ i A _
ties for the synaptic device. ok f . 4
In this paper, we further investigate the plasticity at th ,|. .. & A O A i 4
network level by showing that the network is able to “store | = o & © o 4 4 4 . ]
information about two patterns by means of the appropriate < R S S T S S S S R S S

guence of synaptic potentiations and depressions. By “patter ! S Presynapti neurons

we mean here a given distribution of mean firing rates induced ()
by an external stimulation. In order to observe nontrivial rear- _ N . ,
. Fig. 9. Analysis of the effects of two successive stimulations on the synaptic
rangements of subsets of potent|ated and depressed syna Reies. (a) effect of the first stimulation. (b) effect of second stimulation.
we choose to use the stochastic external signal for stimulatingeach figure, a symbol appears for each existing excitatory-to-excitatory
the network, since when too few synapses are simultaneou'ygapse-,'\‘“mbefs_ labeling theand y axes in the two figures denote the
. . . . neurons involved in the two stimulations; the latter are also indicated by
pOtem'ated’ the above noise generation mechanism Wﬁfgck dots along the diagonal. The various symbols code for the different
deterministic external currents is not sufficient. combinations of the observed prestimulation versus poststimulation synaptic
Only few synapses are directly observable. so we had to p&ates, with referenc_e to _the expected ones. Black symbols refer to the
- T . otentiated state, while white symbols refer to the depressed state. Triangles
sort to indirect ways to assess the effect of a stimulation of th@icate those allowed synaptic transitions (of either kind) that in fact
synaptic efficacies. Specifically, we adopted the following praccurred. Circles indicate situations in which the synapse should, and did, stay
tocol, suited for exposing synaptic changes through changed'fghanged. The + markers signal missed potentiations.

the neurons’ firing rates.

1) The first stage of the protocol is devoted to setting the 2) Next the neurons are coupled by settilg = 0 and
initial conditions for the synapses. The neurons are de-  I;, # 0; if all synapses are down, the emission rates of
coupled (;_ = Iy, = 0) and receive constant external all neurons should stay unchanged. This check ensures
current. The parameters of the analog dynamics of thein-  that all synaptic efficacies are in in the depressed state at
ternal variabld/,,,, are such that all synapses should have  the beginning.

Vsyn = 0 V. In other words, the “internal” synaptic dy- 3) With coupled neuronsi¢_ = 0 and/;y # 0), noisy
namics is on (and such that all internal variables should  external currents are injected for 40 s in a chosen subset of
be “down”), but it does not affect the neural dynamics, eight excitatory neurons, which define the “first pattern”
since the efficacy (postsynaptic current) is zero. to be “learned.”
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TABLE | TABLE 1l
N, = Number of potentiated synapses due to stimulation. N, = Number of potentiated synapses due to stimulation.
N4 = Number of depressed synapses due to stimulation N, = Number of depressed synapses due to stimulation
After the first stimulation | Allowed | Occurred Second stimulation | Allowed | Occurred
Np 16 11 Np 15 9
Ny 0 0 Ny 4 4
Errors - 0 Errors - 0

4) We adopt a stimulation protocol specifically devoted t0aled by an unchanged.. This procedure for measuring the
expose the effects of the preceding stimulation on t% o
I

i L ) . : ) l?/naptic states provides an indirect evidence that the second pat-
synaptic e_fﬂcaues, as expl_amed (in thefollowmg,_we Witern presented to the network is learned and gives strong indi-
refer to this stage asynaptic che(_:)( The expectation is cations that it would be retrievable in a larger network. Indeed,
that the synapses connecting s_tlmulated neurons Shoﬂfése postsynaptic neurons which were previously inactive for
make a transition tp the poten.tlated.state, while all ﬂlﬁe first pattern and active for the second pattern will receive
others should stay in the prestlmulat_|on erressed Sta::Eestronger input at the end of the second stimulation. Analo-
We remark that we do not attempt, in this study, to € Jously, synapses on the dendritic trees of those neurons which
plore scenarios of very SIOW. 'e"””'T‘g- I_-|owever, 40s is ere active for the first pattern and inactive for the second ones
long time compa.red to the.mtersp.lke mtervgls and to &e depressed. The analysis is illustrated in Fig. 9, and some key
reasonable dgratlon for a single stimulus (with 0.2—0.5f atures are summarized in Tables | and II.
per presentation, 40 s would correspond to 80-200 ePeNotice that this protocol is designed to expose in a clear

titions of the same stimulus). . . X
5) After checking the effect of the first stimulation, the net?nd simple way the synaptic changes induced by the repeated

Kis stimulated with d patt i diff $resentati0ns of the second pattern. If the presentations of
Wr?r. IS sfmuaeb V\f[' fatgeccl)nt ga em, |.e.,Sa '.]f’re” e second pattern were intermixed within the presentations
choice ot tne subset of simulaled heurons. Speciiicaliye o ot pattern, then both the two patterns would be
again eight excitatory neurons are stimulated, four

®arned. Indeed, following each presentation, the synapses to
which were stimulated also for the first pattern, and fo ! g P ! ynap

ious . ¢ duri Gmulati Th Ye changed are randomly selected, and those which remain
Were previously guiescent during stimulation. 1n€ €4, 4 ified retain information about previous experiences. A

pectation is now that the synapses c_:onnectmg snmulatgl ar indication that this is the case also in our simple protocol
neurons should stay/become potentiated, for neuron pays

i . . ; rovided by two facts: 1) not all the synapses which are
stimulated/not stimulated for the first pattern; previousl P y ) ynap

tentiated hich h imulat pposed to be potentiated are actually changed, even after
potentiated synapses which now have a nonstimulatgge, long stimulation and 2) when the very same protocol is

t)hostdsynaptlc geL:r(t)n are expected to make a transmonré%eated, the synapses which are actually changed differ from
€ depressed state. trial to trial (not shown in the figure), except for those which

_?r)] Thesy?_aptrzc ciiecisfperfo(rjme(: ?lgam. Aft leti are systematically selected, or not, because of inhomogeneities
esynaptic checis pertormed as 10Tlows. Alter completion;, -y, o synaptic devices, and/or large differences in neural

of the f|r§t st|mulat|on, consider a given neuron gnd the eﬁeﬁ&tivities in such a small network. These two facts indicate that
of the stimulation on the synapses on its dendritic tree. So

I : Stochastic selection is actually implemented in our network
of these synapses have undergone a potentiation, while sg

S that it would allow for a balanced distribution of memory
others have beep left una_ffegted and maintain the depres;g urces among different patterns in the case of a more natural
state. The synaptic dynamics is now froz_en by setfmg;.n — _stimulation protocol and in a larger network.

Ihiasp = 0 (zero upward and downward jumps of the mtern:ﬁ

synaptic variablé/s,,,) such that whatever synaptic efficacies
are chosen, thgynaptic checktage does not affect the synaptic
configuration induced by the stimulation. We also kgt = 0 We described a pilot implementation in the relatively unex-
andly; # 0. Letus name the spike emission rate of the chos@iored area of analog VLSecurrentnetworks of spiking neu-
neuron as,.s: andvy, the one of itskth neuron on its dendritic rons, withon-chipunsupervised synaptic dynamics.

tree. First, we inject a given current into the chosen neuron (noneMany successful developments in the field of neuromorphic
of the other neurons in the network receive external currents)gineering dealt with sensors (visual or auditory) and simple
and measure,.s¢; Next, we inject currentin one of teafferent networks designed to provide quick and simple decisions on
neurons at a time and measure each time the resulfing. the basis of sensory information, suited for robot guidance
The parameters are chosen such that it is highly unlikely for simple environments (see, for example, [14]). Though
other postsynaptic neurons of neudoand those opost which those efforts have been, and are, invaluable in sharpening
do not receive external current, to fire just because nekrn techniques and supporting the feasibility and soundness of the
postfired. So an increase in,.s: When neurork is also stim- neuromorphic approach to “natural computation,” there is little
ulated signals a potentiated state of the corresponding synapeibt that really interesting neuromorphic systems endowed
Since the depressed state is chosen to have efficacy 0, it is sifth complex computational abilities will integrate sensors and

V. CONCLUSION
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“decision modules” with intermediate layers of computation, [3]
taking care for example of “classification” of sensory stimuli,
which is a necessary function in view of operation in a realistic 4]
environment.

Classification tasks have been in the focus of theoretical re-
search in computational neuroscience for long, and there is g
wealth of knowledge to be used to derive design principles for
“neuromorphic classifiers” (just to mention relevant keywords, (6]
the wholeattractor picture emerging frontebbianlearning in
networks of spiking neurons with high feedback and providing [7]
models ofworking memonstates provides an example). .

The small network described in the present paper includeé ]
the essential elements needed to implement such Hebbiafe]
spike-driven plasticity through a stochastic mechanism Whidfm]
selects actual changes in the synaptic efficacies, out of the
eligible ones, following the approach briefly outlined in the
Introduction; stochasticity is autonomously generated by thétll
network activity, thus providing a key plausibility element.

Scaling up the described architecture poses a number of non-
trivial problems. The first is related to the recurrent conneci!?
tivity of the network: As the number of neuronsincreases the 13
number of synaptic connections can grow as muciasand
clever packing strategies have to be devised in order to optimize
the layout and the routing of the chip, due to both considerationg4)
of total silicon area and cross-talk effects.

Besides, the I-O channels needed to experiment with sudh®!
systems constitute quite a complex complement to the chip.
Again, the needed communication bandwidth badly scales witf6]
the size of the network (for a given average emission spike rate
of each neuron). [17]

We faced the first packing problem in developing a bigger net-
work (128 neurons about 3000 synapses) [15] to be describeiga]
elsewhere, in which an optimization algorithm has been de-
veloped to find the “best” placement and routing of synaptic
connections.

As for the communication issues, it has long been suggested
that a communication channel suited for connecting neuromor-
phic devices should exploit the asynchronous, instantaneous
and stereotyped nature of the spikes such as address event
resentation (AER) bus [16], [17]. Following the AER princi
ples, we developed a communication system based on a
grammable interface connecting the AER bus to the stands
PCl bus, and aflexible setup is under development, that is sui
to deal with several chips implementing large networks [18].
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