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ABSTRACT

A functional focal-plane implementation of a 2D optical
flow systemis presentedthat detectsan preservesmotion
discontinuities. The systemis composedof two different
network layersof analogcomputational units arranged in
a retinotopical order. The units in the first layer (the op-
tical flow network) estimatethe local optical flow field in
two visualdimensions,wherethestrengthof their nearest-
neighbor connectionsdeterminestheamount of motionin-
tegration. Whereasin anearlierimplementation[1] thecon-
nection strengthwas set constantin the complete image
space,it is now dynamically and locally controlled by the
secondnetwork layer (the motion discontinuities network)
that is recurrently connectedto the optical flow network.
The connection strengths in the optical flow network are
modulatedsuchthatvisualmotion integrationis ideallyonly
facilitatedwithin imageareasthat are likely to represent
common motionsources.Resultsof anexperimentalaVLSI
chip illustratethepotentialof theapproachandits function-
ality underreal-world conditions.

1. MOTIVATION

The knowledge of visual motion is valuable for a cogni-
tive descriptionof theenvironmentwhich is a requisite for
any intelligent behavior. Optical flow is a denserepresen-
tation of visual motion. Such a representationnaturally
favors an equivalent computationalarchitecture wherean
array of identical, retinotopically arranged computational
units processesin parallel the optical flow at eachimage
location. SuccessfulaVLSI implementationsof sucharchi-
tectureshave beenreported (seee.g.[2]) thatdemonstrated
real-timeprocessingperformancein extracting opticalflow.
Although local visual motion information is sufficient for
many applications, its inherent ambiguity (which is e.g. ex-
pressedas the aperture problem) makes the purely local
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(normal) optical flow estimateof theseprocessors unreli-
ableandoftenincorrect.

B

AC

Fig. 1. Different motion sources and their appropriate
regions-of-support. Threedifferent motion sourcesarein-
ducedby two moving objectsandthebackground. Thecol-
lective computation is ideally restrictedto the isolatedsets
of processingunitsA, B (objects) andC (background).

Theestimationquality canbe increasedsignificantlyif
visual motion informationis spatially integrated. In [3], a
motionchipthatglobally integratesandthusperformsacol-
lective estimationof visualmotionamongstall theunits in
the complete imagespace,is presented. If multiple mo-
tion sources1 arepresent,however, sucha global estimate
becomesmeaningless. Earlier, we presentedan improved
focal-plane processorthat restrictscollective computation
to smoothisotropickernelsof variablesize, resultingin a
smoothopticalflow estimate[1]. Ideally, integration should
be limited to the extents of the individual motion sources.
Sucha scheme,asillustratedin Figure1, providesanopti-
mal opticalflow estimatebut requirestheprocessingarray
to be ableto connect andseparategroups of units dynam-
ically. Resistive network architectures applying suchdy-
namicallinking havebeenproposedbefore[4]. However, to
our knowledge thereexists only oneattemptto implement
suchan approach[5]. In this one-dimensional processing

1e.g. a singlemoving object on a stationarybut structuredbackground
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Fig. 2. Systemarchitecture.

array, nearest-neighbor connectionsin betweenunits were
dynamically set according to the local optical flow gradi-
ents.

In thefollowing, wepresentanovel 2D focal-planepro-
cessorthat providesenhancedoptical flow estimatesusing
dynamically controlledconnections betweenits computa-
tionalunits.

2. COMPUTATIONAL ARCHITECTURE

Thecomputationalarchitectureof theprocessoris schemat-
ically illustratedin Figure2. It consistsof theoptical flow
networkandthe discontinuity networkthat arerecurrently
connected.

The optical flow network is the physicalembodiment
of a dynamicalsystemthat, in steadystate,solvesthecon-
straintoptimization problem of minimizing the cost func-
tion ���������
	���
�� 	�������	�����	����

biasterm��� (1)

Thiscostfunction representsthemodelof visualmotionthe
systemsappliesand is described by threeconstraintsim-
posedon the expectedandallowed optical flow fields: It
requirestheoptical flow at eachlocation


�� �"! � to obey the
brightnessconstraint2 
#� 	�� � , to besmooth


 � 	�� � andbiased.
Applying gradientdescentonthecostfunction directlypro-
posesthenecessarynetwork dynamics in orderto solve the
problem. Thereby, thecomponentsof theopticalflow vec-
tors $ 	�� , % 	�� arerepresentedby theanalogstatesof theunits
in the network. The network closelyfollows previous ap-
proachesof solvingoptimizationproblemsin networks [6],

2thusapplying a gradient-based optical flow approach

although its unitshavea linearactivation functionandcon-
nectivity is restrictedto nearest neighbors. Furtherdetails
onthenetwork architectureandanextendedanalysiscanbe
foundin [1, 7].

In the context of this paper, there are two important
points to consider: i) the weight of the smoothnesscon-
straint in the overall optical flow model is determined by
the conductancepattern

�&	��
that effectively determinesthe

connectivity strengthof the local nearest-neighbor connec-
tions;ii) thenetwork is provento beglobally asymptotically
stablefor any given, positive distribution

�'	��
. As a conse-

quence,we canpreserve discontinuities in theopticalflow
estimateif we find a possibility to control the smoothness
conductances

�(	��
locally atmotion boundaries;andstill, the

network remainsasymptotically stable.
Theadditional discontinuity network providesthis pos-

sibility wherethe statesof its units ) 	��
and * 	��

(seeFig-
ure 2) recurrently control the lateral conductance

�,+	��
and�.-	��

of theoptical flow network in thex- andy-directionre-
spectively. For simplicity we refer in thefollowing only to
onetypeof units( ) ). We assumethediscontinuity unitsto
have a verynarrow sigmoidalactivationfunction /1032 	��54
) 	���687 9 �;:;<

, meaning that a motion discontinuity at node��!
is, basically, eitherdetected


 ) 	�� �=: � or not

 ) 	�� � 9 � .

Thuswerewrite thelocalconductancesin thex-directionas� +	�� � ��> 
?:A@ ) 	�� �B� (2)

Thetask,andthusthebehavior of thediscontinuity net-
work is defined againasoptimizationproblem with thefol-
lowing constraints: i) the total network activity shouldbe
low in order not to split thevisualsceneinto too many in-
dependent motion sources and ii) activity shouldbe high
preferably at locationswheretheopticalflow gradient


#CED �
is large and the brightnessconstraint is severely violated
#CF� � . As we will seelater, theviolation of thebrightness
constraintservesasan inevitableerrormeasureto achieve
a piece-wisesmoothoptical flow estimateandthusperform
motionsegmentation. Theconstraintsarecombinedto form
thecostfunction��GH� I 	��&J 
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where

O
,

K
and

N
areweightingparametersand

Lcb L
is some

symmetricmeasure. The integral term representsthe total
activationenergy neededto keeptheunit’s activationstate
high or low. Gradient descenton (3) thenleadsto the fol-
lowing dynamicsd2 	�� �e@ :fhg 2

	��
i �jO @ 7 K�L 
#CED � 	��kLM��NML 
"CE� � 	���L <ml � (4)

Werecognizethattheunitsin thenetwork performathresh-
old operation,which approximatesin steadystatea binary
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Fig. 3. Schematicsof a discontinuity unit.

output behavior (dueto theboundednessof / ) if theoutput
conductanceR is large: ) 	�� �r:

, if theweightedmeasure
of theflow gradient andthebrightnessconstraint deviation
is largerthana threshold

O
, and ) 	�� � 9

otherwise.
Closingthefeedbackloop,thetwo relativelysimplenet-

work stagesof the systemsolve a typical combinatorial
problem, which is computationally hard. Unlike in other
network solutionsof such problems [6], the network ar-
chitecture is non-homogeneous. Thediscontinuity network
thereby performs a typical line process[8], although it re-
mainsfully deterministic. Hence,thefoundsolutionsmight
beonlysub-optimalwhichcanbereflectedby hystereticbe-
havior in theactivity of thediscontinuity network.

3. HARDWARE AVLSI IMPLEMENTATION

An 11x11 array of the describedoptical flow systemhas
beenimplementedin a double-poly double-metal0.8 s m
BiCMOS process. Eachpixel consistsof an optical flow
unit plustwo discontinuity units.Theschematicsof theop-
tical flow unit is basicallyas reported in [1] although im-
proved [7]. The estimatedoptical flow field is encoded as
thecontinuousvoltagedistributions t 	��

and u 	�� in two re-
sistivelayerswith respecttosomereferencepotential, where
theoutput signalrangeis roughly v 9 ��w V. Theopticalflow
unitscanreliably report thespeedof visualmotionover al-
most3 ordersof magnitude.

Theschematicsof a singlediscontinuity unit areshown
in Figure3. Thecircuit approximatesthedynamics(4) with
the output ) 	��

beinginverted. The error measures(

L CED L
and

L CF� L
) areimplementedby bumpcircuits[9] thatpro-

vide the local segmentation current accordingly. The out-
putof thediscontinuity unitscontrols a pairof passtransis-
torssitting in betweentwo neighboring unitsof theoptical
flow network in order to breakthe lateralconductancesor
to leave themat somepresetvalue

� >
.

In total,a singlepixel consistsof roughly 200activeel-
ements,occupying a chip areaof



:�x 9 s m��y . A substantial
fraction of this area,however, is usedfor all the nearest-
neighborconnectionsof thedifferentsignals.Thefill-f actor
isatlow 4%andpowerconsumption is z 9 s W/pixel in steady-
state.

Fig. 4. Detectingmotiondiscontinuities. The scannedse-
quenceof the chip’s outputwhile seeinga dark dot on a
light background, moving from the left upper to the right
lowercornerof its visualfield.

4. RESULTS

Wewaiveadetailedcharacterizationof theopticalflow units
(which canbefound in [7]) andreportinsteadtheresponse
of thecompletesystemin twovisualexperiments,performed
underreal-world conditions.

In thefirst example, thechipwaspresentedwith astim-
ulusconsistingof adarkmoving dotona light background.
Figure4 shows thesampledresponsesof thechipwhile the
dot wasmoving from theupper left to the lower right cor-
ner of its visual field. The estimatedoptical flow field is
shown superimposedonto the imagesof the photorecep-
tor output, while the associatedactivity of the discontinu-
ity units (P and Q) is displayedas binary imagesbelow
eachframe. Note that the activity patternof the disconti-
nuity units approximately reflectsthe contour of the dark
dot. However, the chip hasdifficulties to achieve a closed
contour that completely separatesfigure and background.
Nevertheless,theopticalflow estimateis improved insofar
as it predominantly preserves a sharpflow gradient at the
dot’s outline.
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Fig. 5. Piece-wisesmoothoptical flow estimation– motion
segmentation. (a)Theplaidpatternstimulusprovidingalin-
earmotionboundary. (b) Opticalflow estimatewith discon-
tinuity unitsbeingdisabled.Scannedoutput sequenceof (c)
theopticalflow and(d) thediscontinuity network.

In thesecondexample, a stimuluswith a lesscomplex
motion boundary was applied(Figure 5a). The stimulus
consistedof two tightly joined,identical sinewaveplaidpat-
terns.Onepatternwasstationarywhile theotheronemoved
horizontally to the right, thusforming a linear motion dis-
continuity. In afirst instance,themotion discontinuity units
weredisabled.As shown in Figure5b,thesmoothnesscon-
straint forces the flow field to be smooth,thus assigning
uniform motion to the moving plaid (as desired)but also
to the stationary pattern. Enabling the discontinuity units
(Figure 5c,d), however, leadsto a clear separationof the
two motionsourcesandthusto thesegmentation of thevi-
sualscenein two areasof distinct, piece-wisesmooth op-
tical flow. Note, that this is hardly possiblewithout using
theerror signalgeneratedby thebrightnessconstraint vio-
lations.

5. DISCUSSION

Thepresentedfocal-planeimplementationis anexample of
the successfulphysical translationof collective computa-
tionalprinciplesin recurrent network architectures.Theim-
plementationprovidesnear-optimalsolutions to thecompu-
tationallyhardproblemof motionsegmentation. Thechip’s

dynamical reassessmentof its connectivity patterndidprove
to enhance optical flow estimationas compared to previ-
ous implementationswith no [2], or constantinteraction
strengths[3, 1].

An increasedarraysizeof the processorwill certainly
improvetheapparent qualityof its motion estimatesaswell
asits ability to detectmotion boundaries.Furthermore, lo-
cal interactions of themotiondiscontinuity units in a soft-
WTA (winner-takes-all)mannercanadapttheeffectivethresh-
old locally to reducethe present susceptibilityto a fixed
thresholdvalue. Nevertheless,the current implementation
is alreadycloseto the feasiblelimits of focal-planeimple-
mentation. Any increasein connectivity might requireto
split up thesysteminto multiple chips.
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