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ABSTRACT

A functioral focal-dane implemenation of a 2D optical
flow systemis presentedhat detectsan preseres motion
discontiniities. The systemis compasedof two different
network layersof analogcompuational units arramged in

a retindopical order The units in the first layer (the op-
tical flow network) estimatethe local optical flow field in

two visual dimersions,wherethe strengthof their nearet-
neighbor connetions determiresthe amoun of motionin-

tegration. Whereasn anearlierimplermentation[1] thecon-
nection strengthwas set constantin the comgete image
space,t is now dynamic#ly andlocally contolled by the
secondnetwork layer (the motion discontiruities network)

that is recurratly connectedo the optical flow network.

The conrection strengtls in the optical flow network are
moduatedsuchthatvisualmotion integrationis ideallyonly
facilitated within image areasthat are likely to represen
comma motionsourcesResultf anexpeimentalaVLSI

chipillustratethe potentialof theapprachandits function-

ality underreal-world condtions.

1. MOTIVATION

The knowledge of visual motion is valualle for a cogni-
tive descriptionof the ervironmentwhich is a requsite for
ary intelligentbehaior. Optical flow is a denserepesen-
tation of visual motion Sucha representationnaturally
favors an equivalent computational architectue wherean
array of identical, retindopically arrangd compuational
units proessesn parallel the optical flow at eachimage
location SuccessfulVLSI implemerttationsof sucharchi-
tectureshave beenrepated (seee.g.[2]) thatdemorstrated
real-timeprocessingperfomancen extractirg opticalflow.
Although local visual motion information is sufficient for
mary applicatiors, its inherert ambigtity (whichis e.g. ex-
pressedas the apertuie problem) makes the purely local

This work was supportel by the SwissNational Sciene Foundaton
andthe KérberFoundaton.

(normal) optical flow estimateof theseprocess® unreli-
ableandoftenincorred.

Fig. 1. Different motion sources and their appropriate
regions-d-suppat. Threedifferent motion sourcesarein-

ducedby two moving objectsandthebackgound Thecol-

lective compuationis ideally restrictedto the isolatedsets
of processinginitsA, B (objeds) andC (baclgrourd).

The estimationquality canbeincreasedsignificantlyif
visual motioninformationis spatiallyintegrated. In [3], a
motionchipthatglobally integratesandthusperfomsacol-
lective estimationof visualmotionamorgstall the unitsin
the complee image space,is preseted. If multiple mo-
tion sour@s' are presenthowever, sucha global estimate
becomesneanimless. Earlier, we presentedan improved
focal-plane processorthat restrictscollective computation
to smoothisotropickernelsof variablesize, resultingin a
smoothopticalflow estimatg1]. Ideally, integration should
be limited to the exterts of the individual motion sources.
Sucha schemeasillustratedin Figurel, providesan opti-
mal optical flow estimatebut requiresthe processingrray
to be ableto conrect and separatgyroyps of units dynam-
ically. Resistve network architectues applying suchdy-
namicallinking have beenpraposedbefae[4]. However, to
our knowledge thereexists only oneattemptto implement
suchan appoach[5]. In this onedimensioml processing

le.g. asinglemoving object on a staionary but strucuredbackground
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array nearest-nighbor conrectionsin betweenunits were
dynanically setaccordng to the local optical flow gradi-
ents.

In thefollowing, we presentinovel 2D focal-ganepro-
cessotthat provides entancedoptical flow estimatesising
dynanically controlledconnetions betweenits computa-
tionalunits.

2. COMPUTATIONAL ARCHITECTURE

Thecompuationalarchitectue of the processois schemat-
ically illustratedin Figure2. It consistsof the opticd flow
networkandthe discontinity networkthat arerecurently
conrected.

The optical flow network is the physicalembodment
of adynamicalsystemthat, in steadystate,solvesthe con-
straintoptimization prodem of minimizing the costfunc-
tion

Hop = Z(Fij + pi;Sij + biasterm). Q)

1]

This costfundion representthemodelof visualmotionthe
systemsappliesandis describd by three constraintsm-
posedon the expectedand allowed optical flow fields: It
requiresthe optical flow at eachlocation (z, j) to obey the
brightnessconstaint? (F;;), to besmooth(S;;) andbiased
Applying gradentdescenbnthecostfunction directly pro-
poseghe necessarmetwork dynanics in orderto solve the
prodem. Thewreby, the compmentsof the optical flow vec-
torsu;;, vs; arerepresetedby theanalogstatesof the units
in the network. The network closelyfollows previous ap-
proahesof solvingoptimization problemsin networks [6],

thusapplying a gradient-basd opticd flow approah

althoudh its unitshave a linearactiation functionandcon-
nectvity is restrictedto nearst neightors. Furtherdetails
onthenetwork architectue andanexterdedanalysiscanbe
foundin [1, 7].

In the context of this pape, there are two important
pointsto corsider: i) the weight of the smootmesscon-
straintin the overall optical flow modelis determired by
the condictancepatternp;; thateffectively deterninesthe
connectity strengthof the local nearest-aighba conrec-
tions;ii) thenetwork s provento beglobally asymptdically
stablefor ary given positve distribution p;;. As a conse-
gquencewe canpresere discontinuties in the optical flow
estimateif we find a possibility to contiol the smoothmess
condwctancey;; locally atmotion bourdaries;andstill, the
network remainsasymptdically stable.

Theadditiond discontiruity network providesthis pos-
sibility wherethe statesof its units P;; andQ;; (seeFig-
ure 2) recurently cortrol the lateral condictancep?; and
p?j of the opticd flow network in the x- andy-directionre-
spectvely. For simplicity we referin the following only to
onetype of units (P). We assumehe discontiruity unitsto
have avery narrav sigmoidalactivationfunction g : p;; —
P;; € [0,1], meaniry that a motion discontiruity at node
ij is, basically eitherdetected P;; = 1) or not(P;; = 0).
Thuswe rewrite thelocal conductanceén thex-directionas

pij = po(l — Pyy). )

Thetask,andthusthebehaior of thediscontinity net-
work is definal againasoptimizationprodem with thefol-
lowing constraims: i) the total network activity shouldbe
low in order not to split the visual sceneinto too mary in-
depenént motion sour@s andii) actiity shouldbe high
preferdly atlocationswheretheopticalflow gradier (Av)
is large and the brightnessconstrain is severely violated
(AF). As we will seelater, theviolation of the brightness
constraintsenesasan inevitable errormeasureo achieve
apiecewise smoothopticd flow estimateandthusperfom
motionsegmentatio. Theconstraint@recomhbnedto form
the costfunction

Hp = 5, ((1= Py)lBlIAv)i |+ 1I(AF);]
+aPy + & Jod 97 (§)d¢) 3)

wherea, 8 andy areweightingparanetersand|| - || is some
symmetricmeasure The integral term repesentghe total
activation enegy neededo keepthe unit’s activation state
high or low. Gradient descenbn (3) thenleadsto the fol-

lowing dynamics

by =~ 5 (2 +a = [BllA0)s | +AIAF)I)- @

We recogtize thattheunitsin thenetwork performathresh-
old opeation, which appioximatesin steadystatea binaly
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outpu behaior (dueto the bourdednes®f g) if the outpu
condictanceR is large: P;; = 1, if theweightedmeasure
of theflow gradien andthe brightnessconstrant deviation
is largerthanathresholdx, and P;; = 0 otherwise.

Closingthefeedtackloop,thetwo relatively simplenet-
work stagesof the systemsolve a typicd combiratorial
problem which is compuationally hard. Unlike in other
network solutionsof such problems|[6], the network ar
chitectue is nonhomaeneass. Thediscontinity network
therely perfoms a typical line procesq8], althowghiit re-
mainsfully deterninistic. Hence thefoundsolutionsmight
beonly sub-gtimalwhich canbereflectedoy hysteretiche-
havior in the activity of thediscortinuity network.

3. HARDWARE AVLSI IMPLEMENTATION

An 11x41 array of the describedopticd flow systemhas
beenimplementedin a doule-poly doube-metal 0.8m
BiCMOS process. Eachpixel consistsof an optical flow
unit plustwo discontinity units. The schematicef the op-
tical flow unit is basicallyasrepotedin [1] althoudn im-
proved[7]. The estimatedoptical flow field is encoaed as
the contiruousvoltagedistributions U;; andV;; in two re-
sistivelayerswith respecto somereferercepoternial, where
the output signalrangeis rougHy +0.5 V. Theopticalflow
unitscanreliably repat the speedf visualmotionover al-
most3 ordersof magritude.

The schematic®f a singlediscontinity unit areshavn
in Figure3. Thecircuit approxmatesthedynamics(4) with
the output P;; beinginverted. The error measureg||Av||
and||AF||) areimplemertied by bumpcircuits[9] thatpro-
vide the local segmentatio currert accordngly. The out-
put of thediscontinuity unitscontrds a pair of passtransis-
torssitting in betweertwo neighloring units of the optical
flow network in orde to breakthe lateralcondictancesor
to leave themat somepresetvaluep,.

In total, asinglepixe corsistsof roughly 200active el-
ementspccuyying a chip areaof (170 um)2. A substantial
fraction of this area,however, is usedfor all the nearst-
neighbor connetionsof thedifferentsignals.Thefill-f actor

is atlow 4% andpowerconsumgonis 80uW/pixe in steady-

State.

Fig. 4. Detectingmotiondiscontinities. The scannedse-
quenceof the chip’s outputwhile seeinga dark dot on a
light backgound moving from the left upper to the right
lower cornerof its visualfield.

4. RESULTS

Wewaive adetailedcharactezationof theopticalflow units
(whichcanbefoundin [7]) andreportinsteactheresponse
of thecompetesystermin two visualexpeiments perfamed
underreal-world condtions.

In thefirst examge, the chip waspresentedvith a stim-
ulusconsistingof adarkmoving dotonalight backgound
Figure4 shows the sampledesponsesf thechip while the
dot wasmoving from the upper left to the lower right cor-
ner of its visual field. The estimatedoptical flow field is
shavn superimpsedonto the imagesof the photaecep-
tor outpu, while the associatedctivity of the discontinu
ity units (P and Q) is displayedas binary imagesbelow
eachframe. Note thatthe activity patternof the disconti-
nuity units apgoximately reflectsthe contou of the dark
dot. However, the chip hasdifficulties to achiese a closed
contou that conpletely separatedigure and backgound
Neverthdess,the optical flow estimateis improvedinsofar
asit precminarly preseres a sharpflow gradent at the
dot’s outline.
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Fig. 5. Piece-wisesmoothoptical flow estimation- motion
segmentaion. (a) Theplaid patternstimulusproviding alin-

earmotionboundry. (b) Opticalflow estimatewith discon-
tinuity unitsbeingdisabled Scanne@utpu sequeneof (c)

theopticalflow and(d) thediscorinuity network.

In the secondexamge, a stimuluswith a lesscompex
motion bourdary was applied (Figure 5a). The stimulus
consistef two tightly joined,identicd sinevave plaid pat-
terns.Onepatternwasstationarywhile theotheronemoved
horizantally to theright, thusforming a linear motion dis-
contindty. In afirstinstancethemotion discontinuty units
weredisabled As shavn in Figure 5b,the smodhnesscon-
straint forcesthe flow field to be smooth,thus assigning
uniform motion to the moving plaid (as desired)but also
to the stationay pattern Enalling the discorinuity units
(Figure 5c¢,d, however, leadsto a clear separatiorof the
two motionsourcesandthusto the segmentatio of the vi-
sualscenein two areasof distinct, piece-wisesmodh op-
tical flow. Note, thatthis is hardy possiblewithout using
the erra signalgeneatedby the brightnessconstrait vio-
lations.

5. DISCUSSION

Thepresentedocal-planeimplemenationis anexamge of
the successfuphysical translationof collective compta-
tional prindplesin recurrent network archite¢ures.Theim-
plemenationprovidesnearoptimalsolutiors to thecompu-
tationallyhardproblemof motionsegmentatio. Thechip’s

dynanical reassessmenf its connectvity patterndid prove
to enhance optical flow estimationas compaed to previ-
ous implementationswith no [2], or constantinteractio
strengthg3, 1].

An increasedarray size of the processomwill certainly
improve theapparehquality of its motion estimatesaswell
asits ability to detectmotion boundaries.Furthernore, lo-
cal interactiors of the motiondiscontinuty unitsin a soft-
WTA (winner-takes-all)manrercanadaptheeffectivethresh-
old locally to reducethe preseh susceptibilityto a fixed
thresholdvalue. Nevertteless,the currentimplementation
is alreadycloseto the feasiblelimits of focal-daneimple-
mentation. Any increasein conrectivity might requireto
split up the systeminto multiple chips.
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