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Abstract. We describe an aVLSI network consisting of a group of excitatory neurons and a global inhibitory neuron.
The output of the inhibitory neuron is normalized with respect to the input strengths in a manner that is useful in any
system where we wish the output signal to code only the strength of the inputs, and not be dependent on the number
of active inputs. The circuitry in each neuron is equivalent to that in Lazzaro’s winner-take-all (WTA) circuit [1]
with one additional transistor and a voltage reference. As in Lazzaro’s circuit, the outputs of the excitatory neurons
code for the neuron with the largest input. The novel feature is that multiple winners can be chosen (soft-max). By
varying one parameter, the network can operate in a soft-max regime or a WTA regime. We show results from two
different fabricated networks.

Key Words: winner-take-all circuit, normalizing circuit, analog VLSI, neuronal networks

1. Introduction

The winner-take-all (WTA) function is a useful compu-
tation in self-organizing neural networks [2] and signal
processing applications. It selects a single winner out
of multiple outputs. It has been used in various aVLSI
systems for computing stereo [3], object tracking
[4–7] and image compression [2]. Lazzaro and col-
leagues [1] were the first to implement a hardware
model of a WTA network comprising multiple exci-
tatory neurons that are inhibited by a global inhibitory
neuron. The network computes a single winner, the
identity of which is indicated by the outputs of the ex-
citatory neurons. Localized winners can be obtained by
coupling adjacent neurons through resistive lateral con-
nections. Variants of this network that include lateral
connections, self-amplication through positive feed-
back mechanisms, and a cascade configuration have
been implemented [4,5,8,9]. Similar networks of cou-
pled excitatory and inhibitory neurons that exhibit soft-
max and WTA properties have been used to model
different types of cortical processing [10–12]. Such a
network has also been used to model the gain-control
properties of direction-selective cells in the fly visual
system [13].

In this work, we describe a network of multiple exci-
tatory neurons and one inhibitory neuron that performs

either a soft-max computation (there is no single
winner) or a WTA computation (there is only one win-
ner). In the soft-max regime, the outputs of the excita-
tory neurons code the relative input strengths: They
depend on the number of inputs, the relative input
strengths and two parameter settings. They are also
normalized with respect to a constant bias current. The
global inhibitory signal can also be used as an output.
This output saturates with an increasing number of ac-
tive inputs: The saturation level is independent of the
number of inputs and depends only on the input values.
The circuity implemented for each neuron is equivalent
to that in Lazzaro’s WTA network with an additional
transistor and a global parameter bias. This bias deter-
mines the regime of operation of the network.

The outputs of the excitatory neurons can also code
the absolute strength of the inputs by using a variant of
this network. Results from two fabricated networks of
20 neurons show the different regimes of operation.

2. Circuit Description of Network

The generic architecture of a recurrent network with
excitatory neurons and a single inhibitory neuron is
shown in Fig. 1. The excitatory neurons each receive
an external input, ei , and the inhibitory neuron receives
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Fig. 1. Architecture of a recurrent network which consists of N lin-
ear threshold excitatory neurons (shaded circles) and one global in-
hibitory neuron (open ellipse). The inputs to the excitatory neurons
are described by e. The global inhibitory signal, yT , to the excita-
tory neurons, depends on the weights, w , and output states, y, of the
neurons.

inputs yi (weighted by wi ) from the excitatory neurons.
The output of the inhibitory neuron, yT , in turn, inhibits
the excitatory neurons.

The circuitry for two excitatory neurons and one in-
hibitory neuron is shown in Fig. 2. Excitatory neuron 1
which consists of transistors M1 to M3, receives an in-
put current, I1. The state of the neuron is represented
by the current, Ir1 (or the voltage, Vr1). Each excitatory
neuron is a linear threshold unit because Ir1 cannot be
negative. The inhibitory current, IT , to each neuron is
determined by the output currents, Io1 and Io2. These
currents sum to the bias current, Ib, supplied by tran-
sistor M4. Note that the current IT cannot exceed the
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Fig. 2. Circuitry for two excitatory neurons and the global inhibition neuron, M4. The circuit in each excitatory neuron consists of an input
current source, I1, and transistors, M1 to M3. The inhibitory transistor is a source of a fixed current, Ib . The output currents Io1 and Io2 are
normalized with respect to Ib . The width and length of all transistors in the excitatory neuron circuit are 7.2 µm.

largest input current. The global parameter Va deter-
mines the regime of operation of the network. In the
WTA regime, only one of the Ioi currents is equal to
Ib and the remaining output currents are zero. In the
soft-max regime, more than one of the output currents
will be non-zero and the relative magnitudes of these
currents depend on Va . In the next two subsections, we
derive the dependence of the output currents and the
inhibitory current on Va and the input currents, Ii .

2.1. Dependence on Va

The inhibitory current IT in each neuron is determined
by the voltage VT . Using Kirchhoff’s current law at
VT and assuming that the transistors operate in weak
inversion, we can solve for VT in terms of Ib and Vri .
The voltage Vri is determined by the input current, Ii ,
and IT . We can indirectly compute the dependence of
IT on Ib:

Ib =
(

N∑
i

Ii − N IT

)(
Iα
IT

) 1
κ

The parameter κ is the coupling efficiency from the
gate to the channel of a transistor in subthreshold, N
is the number of “active” excitatory neurons (that is,
neurons whose Ii > IT ), and Iα = I0eκVa/UT . Assuming
that κ = 1, we can solve for IT directly:

IT = Iα
∑N

i Ii

Ib + Iα N
=

∑N
i Ii

Ib/Iα + N
(1)

This equation shows that IT is normalized to the num-
ber of “active” inputs.
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We solve for the output currents Ioi by using the
translinear principle on transistors M2 to M6:

Ioi = Iri∑N
j Ir j

Ib = Ii − IT∑N
j (I j − IT )

Ib (2)

Both equations (1) and (2) are valid only when the
currents, Iri, are finite and the network is operating in
the soft-max regime. In this regime, Va is less than Vri. If
we increase Va , eventually all the Iri currents go to zero
and we can disregard the diode-connected transistors.
The network reduces to that of Lazzaro’s network and
displays the normal WTA response where only one Ioi

is nonzero. In the soft-max regime, the node Vri in each
neuron is a low-impedance (or low-gain) node. In the
WTA regime, this node becomes a high-impedance (or
high-gain) node: Input current differences are greatly
amplified. The gain at node Vri depends on the drain
conductances of the transistors and is determined by
the Early voltage. For high gain, we can increase the
Early voltage of the transistors by making transistor
M1 and the input transistor that supplies Iin long.

In this circuit, the output currents Ioi are normal-
ized with respect to Ib. If we replace the current source
transistor M4 by a diode-connected transistor, the out-
put currents reflect the relative magnitudes of the input
currents. This situation was analyzed in [14].

2.2. Dependence on Ii

In the soft-max regime, the number of “active” neurons
that contribute to IT depends on the relative strengths
of the input currents, the parameter Va , and the bias
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Fig. 3. Network of 20 excitatory neurons that are coupled together by diffusors or pseudoconductances (M6 and M7). The inhibitory transistor,
M1, is local to each neuron. The sizes of the transistors are in units of micrometers. This circuit was fabricated in a 2 µm CMOS technology.

current Ib. To derive the conditions under which a neu-
ron i is “active,” we use equations (1) and (2), and solve
for Ioi as a function of Ii :

Ioi = Ii∑N
j I j

(Ib + Iα N ) − Iα (3)

Noting that Ioi must not negative for “active” inputs,
we obtain

Ii ≥ Iα
∑N

j I j

Ib + N Iα
(4)

We look at a specific case of N excitatory neurons,
where an α fraction of the neurons receive an input
current of magnitude β Ii (β ≥ 1) and the remaining
neurons receive an input current of magnitude Ii . Us-
ing equation (4), we know that the latter neurons are
“active” when the following condition is met:

αN (β − 1) ≤ Ib/Iα (5)

The relative magnitudes of the input strengths and the
relative number of neurons with input β Ii determine
whether the other neurons are “active.”

3. Chip Results

A network consisting of 20 excitatory neurons and an
inhibitory neuron as shown in Fig. 2 was fabricated in
a 1.2 µm CMOS process. The results from this circuit
are described in Sections 3.1 and 3.3. A modified net-
work (Fig. 3) consisting of 20 excitatory neurons that
are coupled together at the nodes Vri and VT by hori-
zontal diffusors [15] or pseudoconductances [16] (M5

and M6) was fabricated in a 2 µm CMOS process.
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Each neuron has its own current source transistor, M4.
The diffusors act as lateral resistors and are biased by
Vg and Vh , respectively. This network allows for local-
ized regions of competition. The results from this chip
are described in Section 3.2.

3.1. Results from 2-Input Interaction

We looked at the interaction between two input neu-
rons in the different regimes of the network in Fig. 2.
The input current to each neuron is supplied by a pFET
whose gate voltage is Vin. This voltage was set to the
same value in two neurons; the remaining neurons
receive zero input. We varied Va (thus changing the
regime of operation of the network) and measured the
output currents of the neurons. The measured currents,
Io1 and Io2 as a function of Va are shown in Fig. 4(a).
The four curves correspond to four different values of
Vin. Currents Io1 and Io2 were equal at a low value of Va

as expected in the soft-max regime. As Va increased, the
ratio of the output currents started to deviate from 1.
One of two outputs starts to account for more of the
bias current Ib because of a small mismatch between
the two input currents. Eventually this output current
goes to Ib as Va was increased further. The value of
Va when the output currents start to deviate from each
other depends on the magnitude of the input current
(Vin). As Va approaches Vri of the winning neuron, we
use Kirchhoff’s current law at node VT and obtain

κVa = VT + κVb (6)
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Fig. 4. Response of two neurons in the network shown in Fig. 2. The parameter Va determines whether the network operates in the soft-max
regime or the WTA regime. (a) Output currents Io1 and Io2 as functions of Va for a subthreshold bias current and Vin = 4.0 V to 4.3 V.
(b) Output currents as functions of the differential input voltage, Vin2 − Vin1, with Vin1 = 4.3 V.

Because VT depends on the input current, Va increases
for decreasing Vin (increasing input current).

The different regimes of network operation corre-
sponding to the different values of Va can also be seen
by measuring Io1 and Io2 while varying the differential
voltage between the two inputs as shown in Fig. 4(b).
Here, Vin2 was swept differentially around a fixed in-
put voltage of Vin1 = 4.3 V for four parameter settings
of Va . As Va was increased from 0.4 V to 0.7 V, the
differential linear input range decreases from around
400 mV (soft-max regime) to 20 mV (WTA regime).

3.2. Results from Multi-Input Interaction

We show here the interaction between multiple inputs
in a network where the pixels are coupled together with
diffusors as shown in Fig. 3. Instead of measuring the
output currents Ioi, we converted these currents into a
voltage through an on-chip scanner [17], an off-chip
current sense amplifier and a 22 M� resistor.

In this experiment, we demonstrate the normalizing
behavior of the network in the soft-max regime. The in-
put current of one neuron (which we call the foreground
neuron) was set to a higher value (Vin = 3.6 V) than that
of the remaining background neurons (Vin = 3.7 V).
Even though the network allows for local regions of
competition, we set the biases for the lateral diffusors,
Vh and Vg to 0.153 V and 1.27 V respectively so that
the neurons compete for a constant bias current.

The output voltages of the neurons as a function of
the number of neurons in the foreground are shown in
Fig. 5(a). The four curves correspond to the measured
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Fig. 5. Response of the network shown in Fig. 3 for an increasing number of neurons (the foreground) that received a larger input current than
the remaining neurons. Va was set so that the network operated in the soft-max regime (Va = 0.6 V). The output currents of the neurons were
converted to voltages through an off-chip sense amplifier and a 22 M� resistor. (a) Traces corresponding to different numbers of neurons in the
foreground have been shifted relative to one another for ease of comparison. The lowermost curve is the network response for a single neuron
that received a larger input current (Vin = 3.6 V) than the remaining neurons (Vin = 3.7 V). The remaining three curves were the measured
output voltages of the neurons when an increasing number of foreground neurons received the larger input current. The topmost curve is the
network response for five foreground neurons. (b) Magnified responses of the output voltages of the foreground neurons. The curves show the
reduction in the output voltage (solid curve) of the 9th neuron (the initial sole foreground neuron) as more neurons with the larger input current
are added. These responses illustrate the normalizing behavior of the network in this regime.

output currents for 1, 2, 3, and 5 foreground neurons.
As more neurons were added to the foreground, the out-
put voltage of the initial sole neuron in the foreground
decreased as shown by the magnified superimposed
curves in Fig. 5(b). The output voltage of the fore-
ground neuron was normalized to the increased number
of neurons sharing the same input current.

The network response in the two operating regimes
for two spatially separated groups of four neurons
whose input currents are higher (Vin = 3.5 V) than
those of the remaining neurons (Vin = 3.7 V) is shown
in the next experiment. The response of the network in
the soft-max regime is shown in the lowermost curve
in Fig. 6. There are multiple winners as illustrated by
the similar output voltages of the neurons in the two
groups. The output voltages of the winners are slightly
different because of the mismatches in the neuron cir-
cuitry. The coefficient of variation (standard devia-
tion/mean) of the actual current outputs was around 3%.
As we increased Va , the network transitions to a WTA
regime and only one of the neurons in the two groups
wins as shown in the topmost trace of Fig. 6.

3.3. Response of Common-Node Voltage, VT

The common-node voltage VT of the circuit in Fig. 2
reflects the inhibitory current to the excitatory neu-

5 10 15 20 25
0

1

2

3

4

5

M
ea

su
re

d 
re

sp
on

se
 (

V
)

Neuron number

1 V 
Increasing Va

 

Fig. 6. Response of network in Fig. 2 with two spatially separated
groups of four foreground neurons: These groups receive a higher
input current (Vin = 3.5 V) than the remaining neurons (Vin = 3.7 V).
The neurons in the network share a constant bias current. The three
curves correspond to three values of Va (0.85 V, 1.0 V, and 1.1 V).
The curves have been shifted relative to one another for ease of
comparison. The lowermost curve shows the response of the network
operating in the soft-max regime (Va = 0.85 V). The topmost curve
shows the response of the network when operated in the WTA regime.
One neuron wins and takes all the bias current.

rons. It codes the strengths of the inputs independent
of the number of inputs. In these experiments, we
measured VT of the fabricated circuit as we increased
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Fig. 7. (a) Common-node voltage VT as a function of the number of “active” neurons with the same input current. The network was operated
in the soft-max regime (Va = 0.8 V, Vb = 0.7 V). The voltage VT codes the input strengths independent of the number of “active” neurons. The
saturation value of VT increases with the input current. (b) The number of neurons at which VT saturates depends on Va . The different curves
correspond to Va ranging from 0.6 V to 1 V and Vin = 4.3 V. As Va increases, the curve saturates earlier.

the number of the neurons that receive an input cur-
rent. These measurements (Fig. 7(a)) show that this
voltage initially increased and eventually saturated as
more neurons received the same input current. This
response is described by equation (1). The experi-
ment was repeated for two other input voltages; the
value at which VT saturates depends on the input
voltage.

The number of inputs at which VT saturates is de-
pendent on the ratio, Ib/Iα (described by equation (1)).
By holding Vin constant and varying Va (thus Iα), we
see that the lowermost curve in Fig. 7(a) saturates at
different points as plotted in Fig. 7(b).

4. Conclusion

We described a normalizing aVLSI network with con-
trollable winner-take-all properties. By varying a pa-
rameter, the network can transition between a soft-
max regime or a winner-take-all regime. A recent
aVLSI network by Hahnloser [18] also displays soft-
max properties. This network does not exhibit winner-
take-all properties unless the neurons receive additional
self-excitation. The inhibitory signal is generated via a
diode-connected transistor rather than a current source
and the neuron circuit uses more transistors. Our net-
work is useful in a signal processing task that requires
either soft-max or winner-take-all computation. The
global inhibitory signal codes the relative magnitudes
of the input strengths in the soft-max regime. The net-
work can be used to model the gain control properties

of the direction-selectivity in the fly visual system and
the normalizing properties of cortical processing.
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