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Silicon Synaptic Adaptation Mechanisms for
Homeostasis and Contrast Gain Control

Shih-Chii Liu, Member, IEEE,and Bradley A. Minch, Member, IEEE

Abstract—In this paper, we explore homeostasis in a silicon
integrate-and-fire neuron. The neuron adapts its firing rate over
time periods on the order of seconds or minutes so that it returns
to its spontaneous firing rate after a sustained perturbation.
Homeostasis is implemented via two schemes. One scheme looks at
the presynaptic activity and adapts the synaptic weight depending
on the presynaptic spiking rate. The second scheme adapts the
synaptic “threshold” depending on the neuron’s activity. The
threshold is lowered if the neuron’s activity decreases over a
long time and is increased for prolonged increase in postsynaptic
activity. The presynaptic adaptation mechanism modoolsels the
contrast adaptation responses observed in simple cortical cells.
To obtain the long adaptation timescales we require, we used
floating-gates. Otherwise, the capacitors we would have to use
would be of such a size that we could not integrate them and so we
could not incorporate such long-time adaptation mechanisms into
a very large-scale integration (VLSI) network of neurons. The
circuits for the adaptation mechanisms have been implemented
in a 2- m double-poly CMOS process with a bipolar option. The
results shown here are measured from a chip fabricated in this
process.

Index Terms—Adaptation, contrast gain control, floating-gate
circuits, homeostasis, integrate-and-fire neurons, long time con-
stants, neuron circuits.

I. INTRODUCTION

RESEARCHERS have postulated continual adaptation
mechanisms, which, for example, preserve the firing

rate of the neuron over long time invervals [2] or use the
presynaptic spiking statistics to adapt the spiking rate of the
neuron so that the distribution of this spiking rate is uniformly
distributed [3]. This homeostatic process (or homeostasis)
whereby a neuron returns to a stable state of equilibrium after
a long-term perturbation, is observed inin vitro recordings [4].
In these recordings, the cell returns to its original spiking rate
in a couple of days if the potassium or sodium conductances of
the cell are perturbed by adding antagonists. These adaptation
mechanisms are important in preserving the sensitivity of the
neuron to changes in input activity.

This paper differs from previous work that explores the
adaptation of the neuron’s firing threshold and gain through
the regulation of Hodgkin–Huxley-like conductances [5] and
regulation of a silicon Morris–Lecar neuron to perturbation in
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the conductances [6]. These mechanisms do not use long-time
constant adaptation mechanisms in regulating the output of the
neuron. Our neuron circuit is a simple integrate-and-fire neuron
(we do not model details of the Hodgkin–Huxley conductances)
and our adaptation mechanisms have time constants of seconds
to minutes. These long time constants are important in a
system that has to perform in a noncontrolled environment.
This homeostatic process allows the system to change its
equilibrium state and to maintain a high dynamic range by
adapting out slow changes in the environment.

In this work, we show two different synaptic circuits: One
circuit adapts its synaptic weight to changes in the presynaptic
spiking rates, and the other circuit implements postsynaptic
adaption. The presynaptic adaptation mechanism can describe
the contrast gain control curves measured in cortical simple
cells [7]. These circuits were fabricated on a 2-m double-poly
CMOS process with a bipolar option. To implement the long
time constant circuits, we used floating gates instead of capaci-
tors. The floating gate is not connected to any diffusion nodes
so the charge on this gate cannot leak to the substrate. Tunneling
and injection mechanisms are used to remove charge from and
to add charge onto a floating gate, respectively, [8]. A simple
model of these mechanisms has been described elsewhere [9].
Even though the injection mechanism that we employed in
this work made use of the special bipolar option in the CMOS
process in which we fabricated the circuits, the circuits can
be altered easily for any digital CMOS process by instead
using FET hot-electron injection [10]. We incorporated these
synaptic mechanisms into a simple integrate-and-fire neuron
circuit [11].

II. A DAPTATION MECHANISMS IN SILICON NEURONCIRCUIT

In order to permit continuous operation with only posi-
tive polarity bias voltages, we use two distinct mechanisms to
modify the floating-gate charges in our neuron circuits: electron
tunneling and hot-electron injection. We use Fowler–Nordheim
tunneling through high-quality gate oxide to remove electrons
from the floating gates [12]. Here, we apply a large voltage
across the oxide, which reduces the width of the Si–SiO
energy barrier to such an extent that electrons are likely to
tunnel through the barrier. We model the tunneling current with
a simplified model of the Fowler–Nordheim tunneling [12]
given by

(1)

where is the voltage across the tunneling
oxide; is the tunneling voltage; is the voltage of the
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Fig. 1. Schematic of an integrate-and-fire neuron circuit with a presynaptic long-time-constant adaptation mechanism. The neuron circuit comprises transistors
M toM and capacitorsC andC . The operation of the circuit is described in the text. The currentI that charges up the membrane voltageV is generated
by the synaptic circuit comprising of transistorsM toM and capacitorC . The source voltage,V , ofM andC determine the dynamics and current gain
of the synaptic circuit. The presynaptic spike input,V , goes to the gate ofM and the synaptic efficacy is set by the gate voltageV of the pbase transistorM .
The voltageV of the floating gate can be increased by turning on the tunneling mechanism and decreased by turning on the injection mechanism. The tunneling
mechanism is continuously on and the tunneling rate is set byV . The injection mechanism is enabled through the second pbase transistorM by settingV to
a high voltage. In our experiments,V was set to 4 V during injection. The amount of injection is determined by the current throughM and its drain-to-channel
voltage. The current throughM mirrors that ofI through transistorsM ,M andM toM . The voltageV can be influenced through the voltageV
to the top gate of transistorsM andM . This voltage was kept constant during the experiments described in the text.

floating gate; and and are measurable device parame-
ters. For the 400-Å oxides that are typical of a 2-m CMOS
process, a typical value of is 1000 V and an oxide voltage of
about 30 V is required to obtain an appreciable tunneling cur-
rent. Note that, in more modern technologies with thinner gate
oxides, the oxide voltage required to get significant tunneling
becomes much smaller.

We use subthreshold channel hot-electron injection in an
FET [8] to add electrons to the floating gate. In this process,

electrons in the channel of theFET accelerate in the high
electric field that exists in the depletion region near the drain,
gaining enough energy to surmount the Si–SiOenergy barrier
(about 3.2 eV). To facilitate the hot-electron injection process,
we locally increase the substrate doping density of theFET
using the -base layer that is normally used to form the base of
a vertical bipolar transistor. The symbol for this transistor
structure is denoted by in Fig. 1. The -base substrate
implant simultaneously increases the electric field at the drain
end of the channel and increases theFETs threshold voltage
from 0.8 V to about 6 V, permitting subthreshold operation at
gate voltages that permit the collection of the injected electrons
by the floating gate. We model the hot-electron injection
current with a simplified injection model [10] given by

(2)

where is the source current; is the drain-to-channel
voltage; and and are measurable device parameters.
The value of is a bias dependent injection parameter and
typically ranges from 60 mV to 0.1 V. This circuit can easily be
changed so that we make use ofFET hot-electron injection in
a standard CMOS process [10].

III. PRESYNAPTICADAPTATION

The presynaptic mechanism adapts the synaptic efficacy to
the presynaptic firing rate over long time constants. The circuit
for this adaptation mechanism is shown in Fig. 1. The neuron
circuit comprises to , and the capacitors and
[11]. The current charges up the membrane voltage of
the neuron until it exceeds a threshold. The spike output
of the neuron then becomes active and starts discharging
through and . The capacitor provides positive feed-
back because the change in is coupled back into . The
amount of coupling is given by . The refrac-
tory current discharges when is active. Once is
discharged past the transition threshold of the inverter,be-
comes inactive and the cycle of charging and discharging starts
again. The voltage, , controls the rate at which the neuron
is discharged; thus the refractory period and pulse width of the
spike output . The period of the spike is

, where is the power supply to the
chip. The spiking rate of the neuron, is approximately

(3)

for large . In this equation, .
The current is generated by a series connection of two

transistors; , which is driven by the presynaptic spike input,
, and , which is driven by the floating-gate voltage, .

The floating-gate voltage controls the efficacy of the synapse.
A discrete amount of charge is removed from the capacitor,,
during a presynaptic spike. The charge removed depends on the
pulse width, , of the spike and [13]. The current is
mirrored through transistors, and into the excitatory
postsynaptic current . The dynamics and gain of the current
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mirror, which affects the value of depend on and .
Assuming that the transistors are operating in subthreshold, the
steady-state current for a presynaptic frequency, is given by

(4)

where ; is the thermal
charge stored on the capacitor ; is the thermal voltage;

is the coupling efficiency from the gate to the channel of
a subthreshold transistor; is the preexponential constant
of the subthreshold current through the pbase transistor; and

is the steady-state voltage of the floating gate. For small
, (4) simplifies to

(5)

where .
The tunneling mechanism (controllable through ) is con-

tinuously on so the efficacy of the synapse increases slowly over
time. The injection circuitry consists of the transistors to

. Transistor is the injection transistor. By setting the
drain voltage of at a high enough voltage, injection
occurs in this transistor. The injection current depends on the
current flowing through and its drain-to-channel voltage.
The current through mirrors that of through transis-
tors , , and to . By setting the dimensions of the
current-mirror transistors, and , to the same values, and
the dimensions of and to the same values, the injection
current depends on through the equation described in (2).
To understand the dynamics of this adaptation mechanism, we
compute the transfer function of the neuron for both the transient
and steady-state conditions in Sections III-A and III-B. We will
also show in Section V that this presynaptic adaptation mecha-
nism can lead to the contrast adaptation curves observed in the
visual cortex.

A. Steady-State Analysis

To obtain the steady-state spike rate of the neuron in response
to a fixed presynaptic input frequency, we need to solve for
the synaptic current to the neuron. This current is determined by

. In steady-state, the tunneling current [from (1)]

(6)

is equal to the injection current defined through (2)

and by substituting from (5), the injection current can be
reexpressed as

(7)

By equating (6) and (7), we solve for the steady-state
floating-gate voltage , and then compute the synaptic
efficacy

(8)

is assumed to be constant and depends on the preexponen-
tial constants of the injection current equation and the tunneling
parameters. The steady-state input current is then

(9)

and is approximately independent of the presynaptic input fre-
quency. Hence, the dc gain is zero. This input independence
arises because the steady-state synaptic efficacy is inversely pro-
portional to the steady-state presynaptic frequency.

B. Transient Analysis

From (3) and (5), we first express the neuron’s spike fre-
quency in terms of presynaptic input frequency

(10)

By differentiating (10), we can see that the transient gain
decreases with increasing

(11)

C. Experimental Results

We measured both the transient and steady-state dynamics of
this circuit, which was fabricated in the 2-m CMOS process
using four presynaptic frequencies (100 Hz, 150 Hz, 200 Hz,
and 250 Hz). In these measurements, the drain of the pbase in-
jection transistor (see Fig. 1) was set at 4 V and the tunneling
voltage was set at 35.3 V. For each presynaptic frequency,
we presented step increases and decreases in the presynaptic rate
of 15 Hz, 30 Hz, 45 Hz, and 60 Hz around that frequency. The
instantaneous postsynaptic spike response is plotted along one
the four steep curves in Fig. 2. After every measurement, the
presynaptic rate was returned to its dc value before the next step
change in presynaptic frequency. From Fig. 2, we can see that
the dc gain is approximately zero as described by (9), while the
transient gain of the curves decreased for higher input spiking
rates as described by (11).

The dynamics of the adaptation mechanism for a step decrease
in the presynaptic frequency (from 350 to 300 Hz at )
can be seen from the measurement of the postsynaptic spiking
rate of the neuron plotted in Fig. 3. The system adapts over a
time constant of minutes back to the initial output frequency.
These data show that the synaptic efficacy adapted to a higher
weight value over time. The time constant of the adaptation
can be increased by either decreasing the tunneling voltage
or the pbase injector’s drain voltage .

IV. POSTSYNAPTICADAPTATION

In the second mechanism, the neuron’s spike rate determines
the synaptic “threshold.” The schematic of this adaptation cir-
cuitry is shown in Fig. 4. The floating-gate pbase transistor,
provides an input to the neuron so that the neuron fires at a
quiescent rate. Notice that the output of the neuron is now ac-
tive low. The tunneling mechanism is continuously on so the
floating-gate voltage increases with time resulting in an increase
in the neuron’s spiking rate. On the other hand, the injection
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Fig. 2. Response curves of the neuron in Fig. 1 to different input frequencies
when the presynaptic long-time-constant adaptation mechanism is enabled.
The transient gain,df =df of the curves decreases with increasing presynaptic
frequencies while the dc gain is approximately zero.

Fig. 3. Temporal adaptation of postsynaptic spiking rate of the neuron in
response to a step decrease in the presynaptic input from 350 Hz to 300 Hz.
The smooth line is an exponential fit to the measured data.

mechanism only turns on when the neuron spikes. The time con-
stant of this adaptation can be set for seconds to minutes. The
increase in the floating-gate voltage is equivalent to a decrease
in the synaptic threshold. If the neuron’s activity is high, the
injection mechanism turns on thus decreasing the floating-gate
voltage and the input current to the neuron. These two opposing
mechanisms ensure that the cell will remain at a constant ac-
tivity under steady-state conditions.

Another way of looking at this process is that the threshold
of the neuron is modulated by its output spiking rate. This
threshold continuously decreases; however during every output
spike, the threshold increases. A circuit which models the
adaptation in the firing rate of pyramidal cells to a persistent
stimulus was described in [13]. This adaptation mechanism
works on short time scales in the order of milliseconds and
does not utilize floating gates. That circuit models the fast
adaptation dynamics of pyramidal cells. Our circuit models the
long-time constant homeostatic process described in [4]. In our
circuit, the output spiking rate always returns to the same qui-
escent value: This rate is determined by a balance between the
average injection current and the quiescent tunneling current.

Temporal changes in the input signal rather than the signal
itself, modulates the tonic input current to the neuron. As in
Section III, we compute the transfer function of the neuron for
both the transient and steady-state conditions in Sections IV-A
and IV-B.

A. Steady-State Analysis

As in the presynaptic steady-state analysis, we solve for the
input current, , hence, the floating-gate voltage by using the
fact that in steady-state, the tunneling current, defined by

(12)

is equal to the average of the injection current

(13)

where and are preexponential constants;is the post-
synaptic spike’s pulse width; and is the output spike rate.

Using (12) to (13) and assuming that, , and are
constant, we solve first for , and then solve for the steady-
state input current

where is a constant which depends on the tunneling and in-
jection parameters. Because and are independent of the
input voltage, the steady-state floating-gate voltage and
hence the steady-state output frequencyalways returns to the
same value.

B. Transient Analysis

We compute the change in the output frequencywhen
a small step input is applied to in Fig. 4. This step
input is coupled into the floating gate and changes its voltage
by , where is the coupling ca-
pacitance from the top gate to the floating gate and is
the coupling capacitance from the top gate to the substrate. The
input current immediately after the step input is:

where . The corresponding in-
crease in is

If we assume that the steady-state value of the inputcodes
the natural logarithm of the input firing rate, that is,

(where is a constant), then .
Using the above relationship, we solve for the change in the
output frequency, that is

(14)

Equation (14) shows that the transient change in the spike rate of
the neuron is proportional to the contrast in the input spike rate.
Over time, the floating-gate voltage adapts back to the steady-
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Fig. 4. Schematic of an integrate-and-fire neuron circuit and the postsynaptic long-time-constant adaptation circuit. The neuron circuit consists of transistorsM
toM ; and the capacitors,C andC . The circuit is similar to the neuron circuit in Fig. 1 except that the input currentI discharges the membrane node and the
outputV is active low. The “threshold” of the synapse is set by the floating-gate voltage,V , which drives the pbase transistorsM . The top gate ofM is driven
by the presynaptic inputV . TransistorM is a cascode transistor and constrains the drain voltage ofM so that no injection will occur inM . The tunneling
voltageV is set such that there is a low continuous tunneling current. If the neuron does not fire for a while,V and, hence,I will increase until the neuron
starts firing. TransistorM acts as the pbase injector. Injection occurs when the drain voltage ofM is high, that is, whenV goes low. The floating-gate voltage
can be influenced by the inputV to the top gate ofM . Each postsynaptic spike decreasesV hence increasing the “threshold” of the synaptic transistorM .

state condition (due to the continuous tunneling current) and the
spiking rate returns to .

C. Experimental Results

In these experiments, was set to 28 V, and the injection
voltage was set to 6.6 V. The output frequency of the neuron was
measured over a period of 30 min after step voltage decreases
of 0.2 V (circles) and 0.3 V (pluses) were applied to (see
Fig. 5). The initial spike frequency of about 19 Hz decreased to
13 Hz in response to the step decrease in the input but after this
initial perturbation the spiking rate returned to 19 Hz over a pe-
riod of about 10 min. Similarly, measurements were performed
after step increases of 0.2 V and 0.3 V were applied to. In
this case, the output frequency of the neuron initially increased
to 28 Hz but adapted back to the quiescent rate (20 Hz) over a
period of about 10 min.

V. CONTRAST GAIN CONTROL

Presynaptic adaptation dynamics can provide contrast gain
control observed in cortical simple cells [7]. Because the gain
of the transfer function of the cortical cell for stimulus contrast
is high, the output of the neuron is nonsaturating only for a small
range of input contrasts. The contrast response function of the
neuron shifts when it is presented with a fixed contrast for a
long period of time. This shift in the response curves is similar
to the shift of the responses of retinal cones to different back-
ground intensities. This mechanism increases the dynamic range
of the cell. The experiments of [14] show that even the contrast

of a nonpreferred stimulus over 30 s causes adaptation of the
neuron’s response to stimulus contrast. This observation sug-
gests that the gain control mechanism is presynaptic.

The output firing rate of the lateral geniculate nucleus
(LGN) cells, which are presynaptic to the cortical cell, has an
approximately linear dependence on (where is the
stimulus contrast) [7]. The firing rate dependence on the contrast
can be expressed as

where is the intercept of the curve andis the gain of the
LGN cell. The instantaneous firing rate of the cortical cell
to a change in contrast (as described in [7] and shown in Fig. 6)
is then

(15)

where is the synaptic weight. The shifting of the contrast
curves can be represented by the dependence ofon the time-
averaged value of .

Another way of describing the adaptation is by assuming
that the weight adapts to the time-averaged value of
(hence the steady-state stimulus contrast) andis constant. Our
presynaptic adaptation mechanism gives rise to response curves
(Fig. 2) that are similar to the experimental contrast gain curves
in [7] (Fig. 6). The input frequency to the neuron circuit in Fig. 1
represents and is represented by . As we have seen, the
time constant of the weight adaptation mechanism can be set for
a time scale of minutes. By adapting the weight of the synapse
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Fig. 5. Response of the silicon neuron in Fig. 4 to input step increases and decreases of 0.2 V (circles) and 0.3 V (pluses). The adaptation time constantis in the
order of about 10 min.

Fig. 6. Responses of a cortical neuron to drifting grating stimuli as a function
of contrast in [7]. The solid curves show the transient gain responses of the
neuron around five different adapting contrasts. In this graph, the transient gain
decreases for higher adapting contrasts. The dashed curve shows the steady-state
response derived from data collected in the last 40 s of an 80 s continuous
stimulation at fixed contrasts. Adapted from [7, Fig. 1b] with permission.

to the presynaptic input frequency with a dependence as
shown in (8), the steady-state gain of the neuron’s contrast re-
sponse is almost zero while the transient gain decreases with
increasing stimulus contrast as seen in (11).

Neurons with depressing synapses [15] where the steady-state
excitatory postsynaptic current (EPSC) has a dependence
on the presynaptic frequency can implement the presynaptic
adaptation process needed to obtain contrast gain control. How-
ever, the time constant required for the synapse (as measured

by the EPSC) to reach steady-state is only in the order of
hundreds of milliseconds and hence is not of the order of
minutes as is observed in the contrast adaptation experiments.

VI. CONCLUSION

In this paper, we show how two long-time constant adaptation
mechanisms can be added to a silicon integrate-and-fire neuron
in a relatively standard CMOS process. These mechanisms act
to maintain homeostasis in the output of the neuron and can
be combined with short-time constant depressing or facilitating
input synapses [16] to provide a wide range of adapting time
constants. These mechanisms increase the neuron’s sensitivity
to transient changes in the input. The presynaptic adaptation
mechanism described here can also account for the contrast gain
control mechanism observed in cortical simple cells.
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