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Mammalian visual systems are characterized by their ability to
recognize stimuli invariant to various transformations. Here, we
investigate the hypothesis that this ability is achieved by the
temporal encoding of visual stimuli. By using a model of a cortical
network, we show that this encoding is invariant to several
transformations and robust with respect to stimulus variability.
Furthermore, we show that the proposed model provides a rapid
encoding, in accordance with recent physiological results. Taking
into account properties of primary visual cortex, the application of
the encoding scheme to an enhanced network demonstrates fa-
vorable scaling and high performance in a task humans excel at.

Mammals demonstrate highly evolved visual object recog-
nition skills, tolerating considerable changes in images

caused by, for instance, different viewing angles and deforma-
tions. Elucidating the mechanisms of such invariant pattern
recognition is an active field of research in neuroscience (1–5).
However, very little is known about the underlying algorithms
and mechanisms. A number of models have been proposed
which aim to reproduce capabilities of the biological visual
system, such as invariance to shifts in position, rotation, and
scaling (6–8). Most of these models are based on the ‘‘Neocog-
nitron’’ (9), a hierarchical multilayer network of spatial feature
detectors. As a result of a gradual increase of receptive field
sizes, translation-invariant representations emerge in the form of
activity patterns at the highest level. These models do not
consider time as a coding dimension for neural representations.
Recently, however, the importance of the temporal dynamics of
neuronal activity in representing visual stimuli has gained in-
creased attention (10, 11). Hence, it seems timely to consider the
role of temporal coding in the context of tasks like invariant
object recognition. In recent years, several modeling studies have
addressed properties of temporal codes (12–14). For instance,
Buonomano and Merzenich (15) proposed a model for position-
invariant pattern recognition which uses temporal coding. In this
model, feed-forward inhibition modulates the spike-timing such
that stimuli are represented by the response latencies of the
neurons in the network. This architecture naturally leads to
translation invariant representations. This model assigns a crit-
ical role to inhibitory interactions in the feed-forward path of the
visual system (retina-LGN-V1), whereas anatomical studies sug-
gest that these connections are predominantly excitatory (16).
Furthermore, the majority of inputs to cortical neurons are
excitatory and of cortical origin (17). Indeed, a recent theoretical
study has shown that lateral excitatory coupling has pronounced
effects on the global network dynamics (18). In particular, the
combination of intracortical connectivity and dendritic process-
ing allowed context-dependent representations of different stim-
uli to be expressed in the temporal dynamics of the network.
Here, we build on these previous proposals and concepts (15)
and investigate the formation of invariant representations by the
dynamics of activity of neuronal populations.

In this study, we investigate a model of primary visual cortex
consisting of a map of integrate-and-fire neurons with lateral
excitatory interactions. A central feature of this model is the
monotonic relationship between transmission delays in this
lateral coupling and the distance between pre- and postsynaptic

neurons. We hypothesize that this network property induces
dynamics of neuronal activity (Fig. 1a) that are specific to the
geometry of a stimulus and invariant with respect to several
transformations. The advantage of such a representation is that
it emerges naturally without the need of training the network
repeatedly for different stimulus positions or orientations. To
investigate the validity of this hypothesis, we determined the
amount of information contained in the temporal population
responses of this network for different parameters and stimulus
sets. Furthermore, we investigate the speed of encoding and its
robustness to synaptic noise. If the proposed encoding scheme
reflects relevant properties of the mammalian visual system, it
should be well suited for those tasks at which mammals excel.
Therefore, we tested it in two demanding tasks taken from the
domain of pattern recognition. The results suggest that invariant
pattern recognition can be achieved by using temporal coding at
the population level.

Methods
The basic network we investigated consisted of a two-
dimensional array of 40 � 40 conductance-based leaky integrate-
and-fire neurons, which included a spike-triggered potassium
conductance-yielding frequency adaptation (see Appendix). Un-
der constant excitation and after adaptation, these neurons
spiked regularly. Each neuron connected to a circular neighbor-
hood of fixed size, such that neurons with Euclidean distance �9
cells were connected. The synapses were of equal strength (�)
and were modeled as instantaneous excitatory conductances,
whereas transmission delays were related to the Euclidean
distance between the positions of the pre- and postsynaptic
neurons with a proportionality factor of � � 1 ms per cell. Stimuli
were presented continuously to the network and first passed
through an edge-detection stage (LGN), and the resulting
contours were projected topographically onto the array of
neurons (V1) by using a tonic excitatory input conductance (Fig.
1a). After frequency adaptation, the stimulated neurons spiked
at a frequency of �42 Hz.

For some experiments, a more sophisticated network was
investigated, incorporating orientation and spatial frequency
selectivity. The input was preprocessed at three different reso-
lutions (40 � 40, 20 � 20, and 10 � 10 pixels). Subsequently,
orientation selective filters of four different orientations (0°, 45°,
90°, and 135°) were applied, and the resulting preprocessed
stimuli were fed into three networks of corresponding size, i.e.,
40 � 40 � 4, 20 � 20 � 4, and 10 � 10 � 4 neurons. Thus, the
different networks consisted of four different layers, each of
which was responsible for the processing of visual information in
one of the four orientations. Within each layer, lateral connec-
tivity is long-range and asymmetric. Each neuron projects within
a segment of a circle along the preferred orientation with an apex
angle of 30° and radii of 13, 10, and 6 cells for the three
resolutions, respectively. Between layers, connectivity is short-
range and symmetric. Neurons project within a circle with a

*To whom correspondence should be addressed at: Institute of Neuroinformatics, Univer-
sity�ETH Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. E-mail: rwyss@
ini.unizh.ch.

324–329 � PNAS � January 7, 2003 � vol. 100 � no. 1 www.pnas.org�cgi�doi�10.1073�pnas.0136977100



radius of two cells for all resolutions. There are no connections
between networks of different resolutions.

Results
In our first experiment, we investigated the concept and tested
the basic network’s performance in the invariant encoding of
hand-drawn stimuli. The arrangement of the six stimulus classes
(Fig. 1a Left) reflects an intuitive notion of topology; i.e., class
1 is visually more similar to class 2 or 3 than to class 5 or 6. For
each stimulus class, 24 samples were presented to the network.
The spike raster plot for a sample of class 1 illustrates the
network activity (Fig. 1b). An initial synchronous phase is
followed by a dispersion of activity. Such raster plots give a good

description of network activity. However, because activities of
such large numbers of neurons are rarely recorded simulta-
neously in visual cortex, they do not allow a direct comparison
to physiological data. Therefore, population-averaged histo-
grams are not used to describe physiological data but rather
describe time-averaged histograms (19). For comparison, we
compute the multiunit cross-correlation function (Fig. 1c). The
central peak signifies the population bursts, and the satellite
peaks are a sign of the temporally structured activity. Overall,
this cross-correlation function resembles those acquired in the
visual cortex of mammals (20, 21).

For a quantitative analysis, the responses of the network are
clustered into six classes by using the temporal correlation of the

Fig. 1. (a) Schematic of the encoding paradigm. The stimulus set contains six stimulus classes, each of which consists of a horizontal and a vertical bar of equal
length, but intersecting at different locations for the individual classes. From each stimulus class, 24 hand-drawn samples are presented to the network (12
samples for classes 1 and 6 are shown in the middle). These ‘‘solid’’ input patterns pass through an edge-detection stage and the resulting contour is projected
topographically onto a map of cortical neurons. Because of the lateral intracortical interactions, the stimulus becomes encoded in the network’s activity trace.
(b) Spike raster of 130 neurons of the network while presenting a stimulus sample of class 1. (c) The population cross-correlation function for the neurons shown
in b. (d) After response clustering, the entries of the hit matrix represent the number of times a stimulus class is assigned to a response class (� � 0.13 nS). (e) Speed
of encoding. Average information encoded in the network’s activity traces as a function of time with � � 0.13 nS. ( f) Influence of synaptic noise on encoding.
Percentage of stimuli being classified either correctly, to a nearest neighbor, or to a nonnearest neighbor for different noise levels �, with � � 0.13 nS.
(g) Correctly classified stimuli as a function of the inverse of transmission speed and synaptic strength of the lateral coupling.
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population response as a similarity measure. For each stimulus,
the correlation is computed with all other responses over an
interval of 100 ms. It is assigned to the response class which
maximizes the average of this measure (see Appendix). The
resulting hit matrix (Fig. 1d) reveals that 91% of the stimuli are
classified correctly (diagonal entries). The misclassifications
(9%, nonzero off-diagonal entries), however, do show some
regularity. They only occur among visually similar stimuli. In-
deed, more than half of the misclassifications result from a
confusion of classes 4 and 5, which only differ in the precise
position of the vertical bar. To investigate the relationship
between the strength of the lateral coupling, �, and the encoding
performed by the network, we vary this parameter in the range
of 0 � � � 0.25 nS. For each of these conditions, we calculate
the mutual information from the hit matrix (see Appendix). We
find that for � � 0.01 nS, the activity traces contain no infor-
mation about the input stimuli. For 0.01 � � � 0.25 nS, however,
mutual information reaches 1.77 � 0.21 bits (mean � SD, of
log2(6) � 2.6 bits possible), and all hit-matrices qualitatively
resemble the one shown in Fig. 1d. In summary, the network
successfully and reliably encodes the six stimulus classes in a
large range of lateral coupling strengths.

In the next step, we investigated the classification of rotated
stimuli. A stimulus set was constructed by taking one sample
from each stimulus class (Fig. 1a Left) and generating the
complete sets by rotating each sample by 23 evenly spaced angles
between 0° and 360°. As in the previous experiment, no infor-
mation about the input is conveyed by the network’s activity
traces for � � 0.01 nS. For 0.01 � � � 0.25 nS, mutual
information reaches 1.54 � 0.31 bits. Maximal information of 2.2
bits is attained for � � 0.075 nS, where 92% of the stimuli are
classified correctly, 7% are confused with nearest neighbors, and
only 1% with nonnearest neighbors. Hence, the population-
activity trace reliably encodes the six stimulus classes invariant to
rotation.

To analyze the speed of encoding, we determined the amount
of information encoded in the network’s activity trace at differ-
ent times after stimulus onset. By varying the length of the
interval used to compute the correlation between different
responses between 2 and 100 ms, we observed that 66% of the
information is available after 20 ms (Fig. 1e). This property of
our encoding scheme is compatible with the impressive speed of
processing found in the mammalian visual system (22).

It has been argued that a potential problem of encoding
information in the timing of action potentials is the highly
unreliable transmission of signals across synapses (23). Thus, we
investigated the robustness of the proposed encoding scheme
with respect to synaptic noise in the lateral coupling. Synaptic
noise is modeled by perturbing the individual synaptic conduc-
tances dynamically: each conductance is multiplied by a random
factor f, drawn from a normal distribution with a mean of one
and variance �2, i.e., f � N(1, �2). To prevent negative conduc-
tances, the normal distribution was clipped at zero. The system’s
performance in encoding the input stimuli decreases linearly
with increasing noise (Fig. 1f ). The number of correctly classified
stimuli decreases by not more than 25% for � � 1, which
corresponds to a signal-to-noise ratio of 1. Furthermore, mis-
classifications are, to a substantial degree (90% for � � 1),
caused by the confusion of nearest neighbors (Fig. 1f ). Thus, the
information encoded at the population level is robust with
respect to synaptic noise.

In the following experiment, we investigated the network’s
encoding performance for different speeds of tangential inter-
actions. For this purpose, the temporal resolution of the simu-
lation was increased to �t � 0.1 ms, allowing for the delay slopes
� to take values from 0 to 2 ms per cell in 0.1 ms per cell steps.
For the clustering, we binned the network responses with a
temporal resolution of 1 ms. In addition, the synaptic strength �

was varied simultaneously in the range from 0 � � � 0.2 nS to
detect combined effects of � and � on encoding performance. As
it is shown in Fig. 1g, the performance does not significantly
depend on �, as long as the latter is above �0.3 ms per cell.
Furthermore, apart from weak synaptic strengths (i.e., � � 0.04
nS), we do not observe any systematic relationship between � and
�. Thus, the encoding scheme proposed here is remarkably
invariant to the choice of two defining parameters of the lateral
coupling, which constitutes the central component of the pro-
posed network.

As a further control, we studied the encoding of random
stimuli. We presented random dot patterns which had the same
pixel density as the bar-stimuli investigated before. The random
stimuli are compared with the clusters of the bar stimuli from the
first experiment. We find that the distance of the random stimuli
from these clusters, in units of the width of the distribution of the
bar-stimuli, is large (29.8 � 2.4, mean � SD, n � 500.000).
Hence, with a reasonable choice of a classification threshold,
e.g., a distance of at most 3 SDs resulting in �0.5% false
rejections, the number of false positives is virtually zero. Thus,
it is unlikely that in the proposed encoding scheme random
stimuli are confused with structured stimuli.

So far, the network we have investigated only incorporates
excitatory coupling between neurons, whereas inhibitory inter-
actions, which are ubiquitous throughout the cortex, have not
been considered. Hence, as a control, we add lateral inhibitory
connections to our network model. Each cortical neuron inhibits
its direct neighbors in the map with a synaptic conductance of 10
nS and a delay of 2 ms. We find that for all stimulus sets
presented above, there is no significant difference in the system’s
performance; i.e., base set, 1.78 � 0.19 bits; rotation set, 1.5 �
0.27 bits. These results indicate that the proposed encoding
scheme is not affected by incorporating inhibitory interactions in
the neural network.

The effect of the presence of multiple stimuli was addressed
as a further control. We investigated a four times wider network.
The activity induced by a target stimulus was evaluated by
pooling neuronal activity within a large region (readout region),
which, however, does not encompass the whole network. Two
randomly chosen stimuli serve as distractors on either side (Fig.
2a). When the readout region of the stimulus includes the
distractors, a small decrease in performance is observed (Fig.
2c). If, by virtue of the tangential connections in the network, the
distractors interact with the representation of the target stimu-
lus, the encoded information is more reduced (Fig. 2b). A
combination of both effects leads to a more severe interference
(Fig. 2d). Note, however, that this situation creates a continuous
stimulus pattern that poses severe problems for any recognition
system. Furthermore, given the scaling properties of the network
(see below), it is possible to encode pairs of neighboring stimuli
as one compound stimulus. Hence, the presence of multiple
stimuli does not pose a fundamental problem to the encoding
scheme investigated here.

To test the basic encoding principles in more realistic and
demanding tasks, we studied an enhanced version of the net-
work. In this case, the network units are endowed with orien-
tation- and spatial frequency-selective responses similar to neu-
rons in primary visual cortex. The lateral connections depend on
the neural response preferences (see Methods). This network was
tested on handwritten digits from 250 writers contained in the
modified database of the National Institute of Standards and
Technology (MNIST; Fig. 3a; ref. 24), which is a standard
benchmark in the domain of character recognition. To facilitate
comparison with other systems tested on this database, we used
the original partitioning into a training set and a test set, with
5,400 samples and 950 samples per digit, respectively. Our model
is capable of classifying 94.8% of the stimuli correctly (Fig. 3b).
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In a final control, we studied scaling of the model to very large
numbers of synthetic stimulus classes. Stimulus classes were
defined by randomly choosing five points in the input field and
connecting each pair of points by a straight line with a probability
of 0.3. Individual samples of each class were constructed by
jittering the position of the vertices and the thickness of lines to
varying degrees (Fig. 4 a–c). We investigated classification by the
network for up to 800 stimulus classes (Fig. 4d). For an increasing
number of stimulus classes, the encoded information stayed
close to the theoretical limit. Even in the case of high variability
and the maximal number of stimulus classes, 80% of the infor-
mation is represented in the temporal structure of neuronal
activity. Thus, the proposed encoding scheme scales to problems
of interesting complexity.

Discussion
We have shown that, in a model of a cortical network, the
interaction of network and stimulus topology induced stimulus-
specific but transformation-invariant temporal dynamics. Thus,
stimuli are represented by a temporal population code. This
representation is position- and rotation-invariant and reasonably
robust to stimulus variability. The stimulus encoding preserves
the intuitive notion of visual similarity. Furthermore, it is robust

Fig. 2. Multiple stimuli. (a–d) Target stimulus (black), the distracting stimuli (gray), and the readout region (dashed rectangle) in four characteristic situations.
(a) Control condition: stimuli do not interact, and readout only captures the target stimulus. (b) Representations of the stimuli interact through the lateral
coupling within the network. (c) Readout captures activity from the distracting stimuli. (d) Conditions b and c are combined. (e) The performance of the system
in encoding and classifying stimuli in the four situations, respectively. (Bars � �SD over 20 trials.)

Fig. 3. The MNIST database contains handwritten digits from 250 different
writers. (a) Five samples for each digit, as they were presented to the network.
The stimulus set is split into a training set (5,400 samples per class) and a test
set (950 samples per class). (b) The hit matrix. Please note that some stimuli,
such as 0 or 1, reach a higher number of hits, whereas others, such as 4 or 9,
are likely to be confused because of the writing habit of some writers.

Fig. 4. Performance vs. number of stimulus classes. (a–c) Samples of the
random stimuli generated synthetically (vertical, different classes; horizontal,
different samples). Each class is defined by five randomly chosen points; i.e.,
Pi(xi,yi) for i � 1. . . 5 with xi,yI � U (0, 1) (uniformly distributed, the plane [0,1]
� [0,1] corresponds to the input to the network). Each pair of points was
connected with a probability of 0.3 by a bar of thickness d � 0.12. The different
samples were created by varying the positions of the points and the thickness
of the bars randomly: P�i (xi � �x,yi � �y) for i � 1. . . 5 with �x,y � N(0,�pos

2 )
and d� � d � �d with �d � N(0,�thick

2 ). a: �pos
2 � 0.03, �thick

2 � 0.018; b: �pos
2 � 0.04,

�thick
2 � 0.0216; c: �pos

2 � 0.05, �thick
2 � 0.0252. (d) Information encoded by the

network as a function of the number of stimulus classes. Optimal performance
[information � log2(no. of classes)] is indicated by the thin dashed line.
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with respect to synaptic noise. These properties apply in a range
of the strength and speed of the lateral coupling, each spanning
more than one order of magnitude. As these results demonstrate
only basic properties of the encoding scheme and leave many
questions open, we investigated an extension of the network
which incorporates orientation- and spatial frequency-selective
neurons. We show that this leads to invariant representations
and reliable classification of large stimulus sets of increased
complexity.

In this study, we tried to understand how key functional
properties of the visual system can be accounted for by a
temporal population code. Compared with area 17, however, our
model contains several assumptions. It is composed of conduc-
tance-based integrate-and-fire neurons, which are coupled
through excitatory connections. The key assumption of our
model is that the transduction latencies of these connections
depend systematically on the distance between pre- and postsyn-
aptic neurons. Indeed, indirect evidence for such a relationship
has been found (25–26). These transduction delays could result
from dendritic delays caused by the distance a signal has to travel
between the synapse and the soma of the postsynaptic neuron
(27). Thus, our study predicts that a positive correlation exists
between the separation of receptive fields and the distance
between the dendritic location of the respective synapses and the
soma.

The speed of information flow found in biological visual
systems poses severe constraints upon computational models of
pattern recognition. Experimental studies (28) have shown that
the analysis and classification of complex visual patterns can be
carried out by humans in not more than 200 ms. Considering that
a minimum of 10 areas are involved to reach the relevant
processing areas from the retina, little time is left for intra-areal
processing. This view is supported by studies in macaque mon-
keys (29–30), which show that single visual areas can process
significant amounts of information in just 20–30 ms. This result
is compatible with our finding that 66% of information about a
stimulus becomes encoded within 20 ms. The gradual increase of
encoded information over the time period we observed indicates
that subsequent processing stages can be engaged before all of
the information about a stimulus has been encoded. Indeed,
experimental data on signal timing in the macaque visual system
show that the distribution of onset latencies of different visual
areas overlap substantially (31). This property suggests that the
dominant mode of processing in the visual system is concurrent
rather than strictly feed-forward.

A number of studies have proposed a role for temporal
dynamics in the formation of visual representations. One of the
first proposals (32) suggested that local features of visual stimuli
are coded in the temporal patterns of spikes of single neurons.
Based on principal component analysis of the response patterns
of single neurons, a significant amount of information carried
by the first (�firing rate) as well as the higher components
(�temporal pattern) was found (29). An important difference
with the present study is that we consider temporal coding at the
population level, rather than at the level of a single neuron.
Recently, Buonomano and Merzenich (15) presented a model on
the generation of temporal population codes that contained
orientation-selective feature detectors and strong feed-forward
inhibition. It was shown that the latencies between stimulus onset
and the first spike of the neurons in the network constitute a
representation that is invariant to the position of presented
stimuli. In contrast, by relying on lateral interactions, the present
model accumulates information over time, which results in
reliable encoding.

In a widely used benchmark on the recognition of hand written
digits, nearly 95% correct classification was achieved. This falls
short of the performance of the very best specialized character
recognition systems (24). However, it compares well to an

approach in which a k-nearest neighbor clustering is applied
directly to the spatial representation of the stimuli centered at a
common position (24). Thus, the encoding process performed by
the network discards part of the information for the generation
of invariant representations, while preserving the relevant in-
formation for classification of the stimuli.

As a particular example of a temporal population code,
synchronized neuronal activity has been intensively studied (10,
11, 33). A large number of experiments have reported synchro-
nized activity in a variety of species and cortical structures (20,
34). In particular, it has been argued that the synchronization of
neural activity provides a substrate for the binding and segmen-
tation of visual patterns (35, 36). Furthermore, it has been shown
that the synchronization of neuronal activity is mediated by
intracortical connections without changing receptive-field prop-
erties of the postsynaptic neurons (37, 38). Thus, synchronous
activity does not contain information about stimulus features as
such and can be seen as a binary signal about global stimulus
properties. Our model shows that synchronous activity at a broad
time scale, combined with dispersion on a fine time scale,
provides a high-dimensional signal in a temporal population
code. This signal contains detailed information about a stimulus,
including local features and their global relationship. Indeed,
experimental evidence is available which shows that cortical
neurons can produce feature-specific phase lags in their activity
(39). Theoretical studies argue that synchronous and dispersed
activity are different functional modes of the same basic network
structure (40). The transition between these modes depends on
the transmission delays in the lateral coupling. Moreover, Maass
(41) has shown that neurons that encode information in their
spike-timing have interesting computational properties. There-
fore, we believe that the temporal population code we present
here provides a promising approach toward both invariant
pattern recognition and the understanding of the encoding of
information by the nervous system.

Appendix
The Neuron. The time course of a leaky integrate-and-fire neu-
ron’s membrane voltage V(t) is described by the differential
equation:

Cm

dV
dt

� 	
Iexc
t� � Iinh
t� � IK
t� � Ileak
t��, [1]

where Cm is the membrane capacitance (Cm � 0.2 nF), and I
represents the transmembrane current, i.e., excitatory input
(Iexc), inhibitory input (Iinh), spike-triggered potassium current
(IK), and leak current (Ileak). These currents are computed by
multiplying a conductance g with the driving force: I(t) �
g(t)(V(t) 	 V rev), where V rev is the reversal potential of the
conductance (V exc

rev � 60 mV, V inh
rev � 	70 mV, V K

rev � 	90 mV,
V leak

rev � 	70 mV). The neuron’s activity at time t, A(t), is given
by A(t) � H(V(t) 	 �), where H is the Heaviside function, and
� is the firing threshold (� � 	55 mV). Each time a spike is
emitted, the neuron’s potential is reset to Vrest � V leak

rev . The
constant leak conductance gleak is 20 nS. The time course of the
potassium conductance is given by �KdgK�dt � 	(gK(t) 	
gK

peakA(t)), where A(t) � {0,1}, with a time constant �K and a peak
conductance gK

peak (�K � 40 ms, gK
peak � 200 nS). The synaptic

interactions are ‘‘instantaneous,’’ such that the total synaptic
conductance at time t is the linear sum over all active conduc-
tances derived from the individual synapses at time t. In the
discrete-time simulations, the equations above are integrated
with Euler’s method and a temporal resolution �t of 1 ms.

Clustering Algorithm and Mutual Information. The algorithm for
clustering the responses of the network was adapted from Victor
and Purpura (42). The network’s responses to stimuli from C
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stimulus classes S1, S2, . . . , SC are assigned to C response classes
R1, R2, . . . , RC, yielding a C � C hit matrix N(S	, R
), whose
entries denote the number of times that a stimulus from class S	

elicits a response in class R
. Initially, the matrix N(S	, R
) is set
to zero. For each response, r � S	, we calculate the average
temporal correlation of r to the responses r� � r elicited by stimuli
of class S�:

�� 
r, S�� � Z	1�
Z
�
r, r����r� elicited by S��, [2]

where �(r, r�) is the temporal correlation between r and r�, 
��
denotes the average. Z is the Fisher Z-transform given by Z(�) �
1⁄2 ln((1 � �)�(1 	 �)), which transforms a distribution of
correlation coefficients � into an approximately normal distri-
bution of coefficients, Z(�). The average correlation is also
computed for the stimulus class S	 which elicited r, but because
r � r�, the term �(r, r) is excluded from (2). The response r is
classified into the response-class R
, for which ��(r, S
) is maxi-
mal, and N(S	, R
) is incremented by one. If k �� share
the maximum, each corresponding matrix element is increased
by 1�k.

An information-theoretic measure, the mutual information I,
quantifies the extent to which this clustering is random. For

stimuli that are drawn from discrete classes S1, S2, . . . , and
responses that have been grouped into discrete classes
R1, R2, . . . , the mutual information I is given by

I �
1

Ntot
�
	,


N
S	, R
� �log2 N
S	, R
� � log2 Ntot


 log2 �
	

N
S	, R
�	log2 �



N
S	, R
�� , [3]

where Ntot is the total number of stimuli. For C equally probable
stimulus classes, random classification corresponds to
N(S	, R
) � Ntot�C2 for @	, 
 � {1, . . . , C}, where I becomes
zero. For perfect classification, where each diagonal element of
N(S	, R
) is equal to Ntot�C, the mutual information becomes
maximal, i.e., I � log2 C.
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