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Learning Sensory Maps With Real-World Stimuli
in Real Time Using a Biophysically Realistic

Learning Rule
Manuel A. Sánchez-Montañés, Peter König, and Paul F. M. J. Verschure

Abstract—We present a real-time model of learning in the
auditory cortex that is trained using real-world stimuli. The
system consists of a peripheral and a central cortical network of
spiking neurons. The synapses formed by peripheral neurons on
the central ones are subject to synaptic plasticity. We implemented
a biophysically realistic learning rule that depends on the precise
temporal relation of pre- and postsynaptic action potentials. We
demonstrate that this biologically realistic real-time neuronal
system forms stable receptive fields that accurately reflect the
spectral content of the input signals and that the size of these
representations can be biased by global signals acting on the
local learning mechanism. In addition, we show that this learning
mechanism shows fast acquisition and is robust in the presence
of large imbalances in the probability of occurrence of individual
stimuli and noise.

Index Terms—Auditory system, learning, natural stimuli, real
time, real world, spiking neurons.

I. INTRODUCTION

OVER the past years neuroscientists have gained insight
in the neural mechanisms responsible for the ability of

learning and adaptation in biological systems [1], [11]. The sub-
strate of learning in these systems is thought to be provided by
the mechanisms which regulate the change of synaptic effica-
cies of the connections among neurons [31], [43]. In his seminal
work Hebb proposed that neurons which are consistently coac-
tivated strengthen their coupling [20] and form associative net-
works. Since then many experiments have addressed different
mechanisms which regulate changes in synaptic efficacies de-
pendent on specific properties of pre- and postsynaptic activity
[9], [11]. Based on these experiments, a number of Hebbian
learning rules have been proposed with different desirable prop-
erties [8], [10], [14], [36], [39].

These learning rules have been considered physiologically re-
alistic when they only rely on signals which are available to
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the synapse local in time and space. However, recent physio-
logical results on neurons in mammalian cortex give a richer
picture. These studies demonstrate, first, that an action poten-
tial triggered at the axon hillock propagates not only antero-
gradely along the axon, but also retrogradely through the den-
drites [40], [12]. Second, on its way into the dendrite the action
potential may be attenuated or blocked by inhibitory input from
other neurons [38], [45]. Third, it has been demonstrated that
these backpropagating action potentials directly affect mecha-
nisms regulating synaptic plasticity [30] which depends on post-
synaptic calcium dynamics [27]. In addition, the dramatic effect
of even single inhibitory inputs on the calcium dynamics in the
dendritic tree, in particular in its apical compartments, suggests
that regulation of synaptic plasticity can be strongly influenced
by inhibitory inputs [28]. Thus, the backpropagating action po-
tential can make information on the output of the neuron avail-
able locally at each of its afferent synapses, and inhibitory in-
puts onto a neuron can in turn regulate the effectiveness of this
signal.

The above described mechanism makes a change in synaptic
efficacy dependent on the temporal relation between pre- and
postsynaptic activity. In particular, it will be strongly affected
by the temporal relation between the inhibition and excitation
a neuron receives and its own activity. Neurons which fire with
the shortest latency to a stimulus will receive inhibition after
they have generated backpropagating action potentials. In this
case active synapses can be potentiated [28]. In contrast, neu-
rons which fire late to a stimulus would receive inhibition be-
fore they have generated a spike. Their backpropagating action
potentials are modulated by this inhibition preventing potentia-
tion of their active synapses. This dynamic seems to be reflected
in the physiology of the visual system where the optimality of
the tuning of a neuron seems to be directly reflected in its re-
sponse latency to a stimulus [24]. Given the above mechanism
this would imply that the optimally tuned neurons prevent fur-
ther learning by other neurons in the map.

Synaptic plasticity, however, is not only dependent on the
dynamics of the local network but also on modulatory signals
[2] arising from subcortical structures. For instance, it has been
shown that cholinergic and gabaergic neurons in the basal fore-
brain, which project to many areas including the cerebral cortex,
can strongly regulate mechanisms of synaptic plasticity [50].
These results were obtained in classical conditioning experi-
ments where tones were paired with aversive stimuli such as
a footshock [51]. Subsequently it was shown that the aversive
stimulus could be replaced by direct stimulation of the basal
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forebrain [23]. In these latter experiments it was shown that
more neurons in the primary auditory cortex would respond to
the reinforced frequency while the representation of the others
was not increased.

These changes are retained indefinitely [50] due to long-term
changes in the neural circuit. However, synaptic efficacies are
also regulated by mechanisms with short-term dynamics, oper-
ating on a time scale of hundreds of milliseconds [46], [41], [42].
Two different types of such a dynamics can be distinguished: fa-
cilitation and depression. These mechanisms enhance or depress
the efficacy of a synapse following the occurrence of a presy-
naptic spike. Both effects can occur simultaneously at a synapse
affecting its band pass properties [44]. For instance, short-term
depression of a synapse can act as a high-pass filter blocking the
dc component of a presynaptic signal [3].

In previous work we have shown, using computer simula-
tions, how some of these biological mechanisms can support
learning allowing extremely high learning rates and robustness
to inhomogeneities of the stimulus set [26], [34]. In addition,
our models allow for the combination of local learning mecha-
nisms, supporting the development of sensory maps, with global
signals that convey information of the behavioral significance of
the stimuli [34].

However, the brain works in the real-world, properties of
which are difficult to capture in simulations. In addition, in
simulation studies models are not exposed to the real-time
constraints imposed on the brain. Hence, our models should
be evaluated under similar constraints. Here we investigate
the properties of a biophysically realistic real-time model of
learning in the auditory cortex which is tested using real-world
stimuli. In particular we address the ability of this learning
mechanism to develop sensory maps of auditory stimuli.

II. M ETHODS

A. Hardware Setup

All experiments are conducted in a standard office environ-
ment with a room size of about 30 m. The analog audio sig-
nals are sampled using a microphone (ME64, Sennheiser, Wede-
mark, Germany) at 44.1 kHz and digitized with 16–bit resolu-
tion on an interface card (Soundblaster, Creative Technology
Ltd., Singapore, Singapore). On each block of 1024 sampled
signals a digital fast Fourier transform (DFT) is computed [17].
Input to the model is provided by the absolute values of the first
128 FFT coefficients. The whole system for the control of the
setup, the stimulus generation protocol, the simulation, and data
acquisition is defined within the distributed neural simulation
environment IQR421 [47] using three Pentium III 450 MHz PCs
[Fig. 1(a)].

B. The Network

The neural network is a very rough sketch of the mammalian
auditory system and includes five sets of integrate and fire neu-
rons: an input population, a thalamic population, cortical exci-
tatory and inhibitory neurons and an additional neuron repre-
senting the basal forebrain [Fig. 1(b)]. All neurons are simu-

(a)

(b)

Fig. 1. (a) Schema of the hardware. The sounds are generated by a pair
of speakers that receive audio signals either from a synthesizer which is
controlled by a computer using the MIDI protocol (A) or from a CD player.
The microphone sends the audio signal to the soundcard installed in computer
B; this computer calculates the FFT and sends this data toC, where the
neural model is implemented. Each computer communicates to the others
through TCP/IP (connections between computersA andC are omitted for
clarity). The whole system is controlled by the distributed neural simulation
environment IQR421. (b) Schema of the neural model. Each one of the first
128 FFT coefficients excites its corresponding input neuron. The output of
each group of three of these neurons converges into a thalamic neuron through
short-term depressing synapses. Each cortical excitatory neuron receives
excitation from the whole thalamic population. These synapses are subject to
long-term synaptic plasticity. Each cortical excitatory neuron is connected to a
cortical inhibitory neuron which sends back inhibition to the whole excitatory
population. Finally, the unit representing the basal forebrain activity sends
inhibition to the cortical inhibitory population. See text for further details.

lated in strict real time, i.e., simulated biological time matches
1 : 1 spent physical time. The dynamics of the membrane poten-
tial of neuron in population , , is defined as

(1)
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TABLE I
PARAMETERS OF THEDIFFERENTPOPULATIONS. “BF”: B ASAL FOREBRAIN.

“ARP”: A BSOLUTE REFRACTORYPERIOD

where is the time constant; is the membrane capacitance;
represents the current injected by the synapse from

neuron in population . In case is greater than the threshold
( ) the neuron emits a spike ( is current time) and the
membrane potential is reset to zero by injecting the charge

instantaneously (represented by the Dirac delta function,
). The dynamics of the membrane potential also includes an

absolute refractory period (see Table I for concrete values for
each population).

The dynamics of the synapses formed by neurons of pop-
ulation with neurons of population are modeled using a
first-order approximation

(2)

where is a constant gain factor that defines the type of
connection (positive for excitatory, negative for inhibitory) and
its maximum gain; and are two variables ranging
from zero to one that express the long-term and short-term ef-
ficacies of the synapse, respectively. There are three types of
connections in the model: 1) nonplastic (and are both con-
stant and equal to one); 2) subject to short-term plasticity; and
3) subject to long-term plasticity. A transmission delay of 2 ms
is taken into account in all the connections. In Table II the nu-
merical details for each type of connection are given.

Each input neuron receives an excitation proportional to the
absolute value of its respective analog Fourier coefficient (fre-
quencies up to a quarter of the Nyquist frequency, 5.5 kHz).
Thus we simulate in a first approximation the spectral decompo-
sition achieved by the cochlea and subcortical nuclei [22]. The
spectra of all the sounds used in the experiments are kept in this
range. Because it takes 23 ms to sample a block of audio signals,
the input to these neurons is updated every 24 ms and kept con-
stant until the next update. The time spent in DFT computation
is very low compared to the sampling time.

Each thalamic neuron receives excitation from three input
neurons in a tonotopic manner Fig. 1(b). This convergence of
information allows to process a broad frequency band with a
reduced number of neurons, making real-time processing pos-
sible. The details of this connectivity, however, are not critical
to the performance of the model.

The synapses from input neurons are subject to short-term
depression [46], making the efficacy of the synapse dependent
on previous presynaptic activity

(3)

defines the recuperation time of the synapse (4 s).defines
the speed of adaptation, being 0.1.

Each cortical excitatory neuron receives excitatory input from
all thalamic neurons and in turn projects to one cortical in-
hibitory neuron. All cortical inhibitory neurons project to all

TABLE II
PARAMETERS OF THECONNECTIONSBETWEEN POPULATIONS. “C.

EXCITATORY”: CORTICAL EXCITATORY. “C. INHIBITORY”: CORTICAL

INHIBITORY. “BF”: B ASAL FOREBRAIN. THE CONNECTIONSTRENGTH, C 
,
IS GIVEN IN UNITS OF THEPOSTSYNAPTICTHRESHOLDV

cortical excitatory neurons. The synaptic strengths of the
connections from thalamic neurons to cortical excitatory neu-
rons are initially random, with values between 0.7 and 0.8 (ho-
mogeneous distribution); therefore, the receptive fields of the
excitatory cortical neurons are initially diffuse. These synapses
are subject to long-term synaptic plasticity (see Section II-C). To
model the context of a larger network, we added an independent
excitatory input to each cortical neuron which is firing at 10 Hz
following a Poisson distribution. Finally, the one neuron repre-
senting basal forebrain activity sends inhibitory connections to
the cortical inhibitory neurons [15], [16].

C. Learning Dynamics

The synaptic strength of the thalamic projections to the cor-
tical excitatory neurons evolves according to a modification of
a recently proposed learning rule [26], [34].

1) When the backpropagating action potential and the presy-
naptic action potential arrive within a temporal associa-
tion window (i.e., the absolute value of the time differ-
ence between the two events is smaller than ms),
the efficacy of the respective synapse is increased [7],
[18], [30], [29]

(4)

is the time when the postsynaptic cell fires andis
the time when the action potential of the presynaptic cell
arrives at the synapse.

2) If the backpropagating action potential and the afferent
action potential occur within the temporal association
window , but the inhibitory input attenuates the back-
propagating action potential [38], [45], the efficacy of
the respective excitatory synapse is decreased

(5)

3) In case of nonattenuated backpropagating action poten-
tials which do not coincide with presynaptic activity,
synaptic efficiency decreases with a constant amount

(6)

Thus, in this learning rule the changes of synaptic efficacy are
crucially dependent on the temporal dynamics in the neuronal
network. In our model we used the values , ,

, ms. The weights are kept by saturation in the
0–1 range.
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D. Training Protocol and Analysis

The network is trained with different types of acoustic
stimuli. First, we use a commercial CD that is continuously
played for 2.5 h. In this experiment the synaptic weights are
sampled at intervals of 20 s for further analysis. In the second
set of experiments we use a music synthesizer (QS8, Alesis,
Santa Monica, CA) for generating the stimuli. Simple sinusoids
are played for a few minutes either together with continuous
low-band noise or without. The noise is obtained by passing
white noise through a low-pass linear filter with a cutoff
frequency of 600 Hz. Network activity, synaptic weights, sound
frequency, and amplitude are continuously recorded for further
analysis. All the parameters of the model are kept constant over
all experiments and the learning mechanism is continuously
active. Data analysis is performed using a commercial software
package (MatLab, MathWorks, Natick, MA).

III. RESULTS

A. Development of Specific Receptive Fields Presenting
Natural Stimuli

In the real world events do not occur in isolation but are com-
bined in a variety of ways. In the first experiment we assess
whether our model is able to develop specific and stable rep-
resentations under these circumstances. The initial weights of
the synapses from thalamic neurons to cortical excitatory neu-
rons are randomly chosen in the range of 0.7–0.8 [Fig. 2(a)]; this
makes the initial receptive field of all the cortical excitatory neu-
rons diffuse and no knowledge about the stimuli is put into the
network. The network is exposed for 2.5 h to the music from the
CD (“Cabo do Mundo” by Luar na Lubre, Warner Music Spain,
1999). The CD style is celtic music played with traditional in-
struments, vocals, drums and synthesizers. The CD is available
worldwide by music stores such as Amazon.

In this period the learning mechanism continuously acts
on the synaptic efficacies of the thalamo–cortical projections
shaping the receptive fields of the cortical neurons.

Due to the short-term depression in the projection from the
input neurons to the thalamic neurons, not the absolute inten-
sity but the fast dynamics of the different frequency compo-
nents is transmitted to the cortical neurons. However, due to the
initial homogeneous connections from thalamic neurons to cor-
tical excitatory neurons, most of these excitatory neurons are
active, resulting in a high level of inhibition in the network.
This inhibition leads to an attenuation of most backpropagating
action potentials within the excitatory neurons and, thus, to a
depression of thalamo–cortical synapses [Fig. 2(b), 0–200 s].
With the decrease of the activity level, inhibition is reduced
as well, and some synapses are potentiated, leading to the for-
mation of well-defined receptive fields [Fig. 2(b), 200–500 s].
After 30 min most neurons have highly specific and stable re-
ceptive fields which practically cover the full frequency spec-
trum presented to the system. In addition, the different receptive
fields provide a practically homogeneous coverage of the stim-
ulus space [Fig. 2(c)].

The ability of the network to develop receptive fields which
cover the full range of presented frequencies is the result of
a competitive process. Neurons with a receptive field which

(a)

(b)

(c)

Fig. 2. Receptive field dynamics under continuous stimulation with music.
(a) Superposition of the initial receptive fields of every cortical excitatory
neuron. (b) Evolution of the receptive field of one of the cortical excitatory
neurons. (c) Superposition of the final receptive fields of every cortical
excitatory neuron after 2.5 h of stimulation.

is specific to the provided input respond with a short latency
after stimulus onset. This in turn drives the inhibitory population
rapidly, shunting the backpropagating actions potentials in those
neurons which are not effectively representing the input, pre-
venting a change in synaptic efficacy to occur in their afferents.
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(a) (b)

(c) (d)

Fig. 3. Stimulus statistics using a pseudorandom sequence of five different tones (0.74, 1.05, 1.48, 2.09 and 2.96 kHz). The probability of occurrence is 1/2, 1/8,
1/8, 1/8, and 1/8, respectively. (a) Mean duration of each stimulus. (b) Number of presentations of each stimulus. (c) Mean intensity of each stimulus. The 0-dB
level is chosen as the averaged level of noise in the room. (d) Sound amplitude over time.

These results demonstrate that this local learning mechanism
allows single neurons to develop specific receptive fields within
minutes, which are for realistic input conditions stable over
hours. In addition, at the level of the network it allows the full
range of inputs to be represented.

B. Dynamic Modulation of Representation Size

The brain uses global signals to provide information on the
behavioral relevance of events. These signals can affect local
mechanisms which govern changes in synaptic plasticity. An
example of such a system is the basal forebrain, mentioned in
the introduction. It was recently shown that the paired activation
of this structure with a particular tone induces an enlargement
of the representation of this tone in the primary auditory cortex
[23]. This change in representation size does, however, not af-
fect the size of other representations in the cortical map and the
presentation of unpaired tones does not seem to affect the or-
ganization of this cortical area.

We investigate our model using an equivalent stimulation pro-
tocol. Sinusoidal tones with frequencies of 0.74, 1.05, 1.48,
2.09, and 2.96 kHz are generated on a digital synthesizer. These

frequencies are presented in a pseudorandom order with an av-
erage duration of 0.8 s [Fig. 3(a)] and a probability of occurrence
of 1/2, 1/8, 1/8, 1/8, and 1/8, respectively [Fig. 3(b)]. In these ex-
periments the signal-to-noise ratio is above 30 dB [Fig. 3(c) and
(d)]. High learning rates are used, , , ,
in order to demonstrate the ability of the learning mechanism to
learn with few stimulus presentations.

Fig. 4 shows a typical example of the responses in the net-
work after the presentation of the sequence 0.74, 0.74, 1.48
kHz. When a tone is presented, typically 1–3 neurons fire in
the input population and 1–2 neurons in the thalamic popula-
tion, depending on the intensity of the sound. As observed in
the first experiment, nearly all cortical excitatory neurons re-
spond initially [Fig. 4(c), 0–1000 ms; Fig. 6(a)] to a novel stim-
ulus. However, after a few presentations, the number of neurons
which respond to this stimulus stabilizes [Fig. 6(a)].

The developed receptive fields are specific: a neuron that
responds to one tone does not respond to any of the others
[Fig. 5(a) and (b)]. Furthermore, the size of the representation
of each tone, i.e., the number of neurons responding to it,
does not depend on its probability of occurrence [Fig. 6(a)
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(a)

(b)

(c)

Fig. 4. Raster of network activity responding to three tones in sequence
(0.74 kHz, 0.74 kHz, 1.48 kHz). Time zero corresponds to the onset of the
first tone. Vertical dashed lines represent the onset of each tone. (a) Input
population. (b) Thalamic population. (c) Cortical excitatory population.

and (b)]. These results demonstrate that the learning rule is
robust and can handle inhomogeneities in the occurrence of
different stimuli. In addition, it shows the ability of the network
for dynamic recruitment [26]. That is, those neurons that do
not develop specific receptive fields remain “unspecific,” while

(a)

(b)

(c)

Fig. 5. Initial (dashed line) and final (solid line) receptive fields of some
neurons. (a) Neuron finally selective to the 0.74 kHz tone. (b) Neuron finally
selective to the 1.05 kHz tone. (c) Neuron that finally does not respond to any
of the five tones used in the training. The final receptive field of each neuron
is either selective to one tone (a), (b), or insensitive to any tone used in the
training (c).

loosing any sensitivity to frequencies represented by other neu-
rons in the population [Fig. 5(c)]. These unspecific neurons can
be activated by novel tones and develop receptive fields specific
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Fig. 6. Response of the cortical excitatory neurons during training. (A) Number of neurons responding to each tone in pseudorandom sequence of consecutive
presentations. In each presentation a tone is randomly chosen from the set (0.74, 1.05, 1.48, 2.09, and 2.96 kHz) with a probability of (1/2, 1/8, 1/8, 1/8, 1/8),
respectively. The color of a bar indicates which tone is presented and its height represents the number of neurons which respond to it. (B) Distribution of the
preferred frequency of the 36 cortical excitatory neurons after training, without basal forebrain activity. Each square corresponds to a neuron. Color indicates the
preferred stimulus frequency. For better visibility, the neurons are arranged in four rows in order of increasing preferred stimulus frequency. Neurons marked in
white are not selective to any of the used tones. Thus, this representation might be compared to a top view onto the primary auditory cortex as used by Kilgard and
Merzenich (1998). (c) Same as (a), but now one of the rare stimuli (2.09 kHz) is paired with basal forebrain activity (both the start and ending of the pairing phase
are indicated by vertical dashed lines). (d) Same as (b), for the experiment described in panel (c). The receptive fields are measured after the last paired presentation
(presentation 22).

to them. Hence, the network has the ability to “reserve” neurons
for representing future novel stimuli.

As a next step, comparable to recent physiological experi-
ments done by Kilgard and Merzenich [23], we pair one of the
rare stimuli (2.09 kHz) with the activation of the basal fore-
brain unit. Basal forebrain stimulation occurs simultaneously
with stimulus onset. After a paired presentation 22 neurons de-
velop specific receptive fields to this tone [their receptive field
are similar to those in Fig. 5(a) and (b), data not shown]. The
number of neurons responding to this tone is stable since in the
following paired presentations this number does not decrease
[Fig. 6(c)]. Therefore we see that the size of representation of
this rare tone is much increased compared to the previous exper-
iment where the basal forebrain remained inactive [Fig. 6(d)]. In
that experiment the representation size of this stimulus stabilizes
after several presentations in four neurons [Fig. 6(b)].

The basal forebrain input hyperpolarizes the cortical in-
hibitory neurons, delaying their activity with respect to the
cortical excitatory neurons by about 6 ms and, thus, enlarging
the temporal window for the backpropagating action potential
to induce the potentiation of synaptic efficacies. This results
in an increase in the representation size of this stimulus. This
effect is independent of the presentation frequency of the

stimulus (data not shown) and does not affect the size of the
representation of the other stimuli. With no basal forebrain
activation, the final number of specific neurons responding to
the tones 0.74, 1.05, 1.48, 2.09, and 2.96 kHz is 2, 3, 2, 3, and
3 neurons, respectively [Fig. 6(b)]. In the experiment where the
basal forebrain is paired with the 2.09 kHz tone, the number of
specific neurons responding to the tones is 2, 4, 3, 22, and 4
neurons, respectively [Fig. 6(d)].

When pairing is discontinued after presentation 22, the size
of the representation of the previously paired tone is reduced
and reaches a size comparable with the representation of the
other tones (2, 3, 2, 2, and 2 neurons, respectively). Thus, the
learning rule dynamically modifies the size of representation
of the stimuli according to their behavioral importance, repre-
sented by the level of activity in the basal forebrain. This effect
is independent of the probability of occurrence of the stimuli
[Fig. 6(d)]. In addition, the dynamic modification does not af-
fect the representations of other stimuli [Fig. 6(d)].

C. Learning With Acoustic Noise

As an additional control we investigate the properties of the
proposed learning rule using stimuli with acoustic noise of
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(a) (b)

(c) (d)

Fig. 7. Stimulus statistics using a pseudorandom sequence of five different tones (0.74, 1.05, 1.48, 2.09, and 2.96 kHz) and very loud noise as background. The
probability of occurrence is 1/2, 1/8, 1/8, 1/8, and 1/8, respectively. (a) Mean duration of each stimulus. (b) Number of presentations of each stimulus. (c) Mean
intensity of each stimulus. The 0 dB level is chosen as the averaged level of noise in the room. (d) Sound amplitude over time.

greater amplitude in a nonoverlapping frequency band. We use
the same protocol as in the previous experiment [see Fig. 7(a)
and (b)], while a continuous low-band noise is played by the
synthesizer. The global signal-to-noise ratio of all the stimuli
is close to 1 [Fig. 7(c) and (d)].

The noise continuously excites the input neurons corre-
sponding to the lowest frequencies [Fig. 8(a)]. This in turn
drives the thalamic neurons tuned to low frequencies leading
to a response of all cortical excitatory neurons at the first
presentation due to their initially diffuse receptive fields. After
a few seconds, however, the efficacy of the synapses from the
input population to the thalamic population, which transduce
the presented frequencies, diminishes due to their short-term
depression. This prevents continuously present harmonics
from further activating the thalamic and cortical populations.
This can be analyzed by calculating the expected value of the
changes of the short-term depressing synapses (3)

(7)

The temporal dynamics of (time constant of 4 s) is much
slower than the temporal dynamics of the input neuron (time
constant of 19 ms) so we can write

(8)

where is the firing rate of the input neuron which responds
to a continuous stimulus. Using this in (7) we have that
converges to

(9)

Thus goes to zero as the firing rate of the input neuron in-
creases. Hence, continuously presented audio signals are filtered
out through rapid synaptic depression. The main harmonics of
the continuously presented signal induce high activation in the
corresponding input neuron leading to a continuous excitation
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(a)

(b)

(c)

Fig. 8. Raster of network activity following the presentation of three tones
(0.74 kHz, 0.74 kHz, 1.48 kHz) with very loud noise as background. Time zero
corresponds to the onset of the first tone. Vertical dashed lines represent the
onset of each tone. (a) Input population. (b) Thalamic population. (c) Cortical
excitatory population.

of the thalamic neurons they project to. The efficacies of the
synapses connecting these input neurons with the thalamic neu-
rons would have a very low strongly attenuating the signal
they transduce.

However, as shown in Fig. 8(b) not all aspects of the con-
tinuously presented stimulus are filtered out. This is due to
fluctuations in harmonics which have a small contribution to
the signal and are not filtered out by the short-term depressing
synapses. The weak contribution of these harmonics makes
the corresponding input neuron fire at a low firing rate. From
(9) we see that its connection to the thalamic neuron is not
strongly affected. However, in our system a thalamic neuron
needs to receive 2–3 effective spikes in a short period of time
in order to fire. This means that those input neurons firing
at a low frequency are not able to trigger a spike in thalamic
neurons, even when the connection has a high. However,
a momentary increment in the harmonic contribution would
increase the firing rate of the input neuron, thus having the
possibility to fire two to three spikes in a short period of time
with a high , making the corresponding thalamic neuron
fire. Therefore, we see that short-term depressing synapses are
not able to completely filter out the continuous noise. As a
result fluctuations in the harmonics of the noise are processed
by the cortical network, mixed with the information about the
tones presented to the system. Furthermore, these fluctuations
in the noise can activate those input neurons that are activated
when the 0.74 kHz tone is presented (Fig. 8). Therefore we
see that the noise overlaps with the signal both temporally and
spatially.

Hence, one would expect that the continuously presented
noise would interfere with the development of receptive fields
specific to the tones. However, those thalamo–cortical synapses
that transduce information about the noise tend to get weaker.
The learning rule decorrelates signals that are independent, in
this case the fluctuations in the spectrum of the noise and the
tones played by the synthesizer. This effect can be understood
by calculating the expected increment of synaptic strength per
postsynaptic spike, , from (4)–(6). First, we introduce
the notation

(10)

that is, the expected value of the quantity
given that the backpropagating action potential in the postsy-
naptic neuron is not attenuated by the inhibition (“ ”),
and that this event and the presynaptic spike fall within the tem-
poral association window (see Section II-C); and are
the times when the presynaptic and postsynaptic neurons spike,
respectively. Analogously

(11)

that is, the expected value of the quantity
given that the backpropagating action potential in the postsy-
naptic neuron is attenuated by the inhibition (“ ”), and
that this event and the presynaptic spike occur within the tem-
poral association window . Given these definitions the ex-
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pected increment of synaptic strength per postsynaptic spike can
be calculated from (4)–(6) resulting in

(12)

where “ ” means “there is a spike in theth postsynaptic
neuron.” In case theth thalamic cell encodes just fluctuations
in the noise while another signal is making the cortical excita-
tory population fire, the activity of this cell is uncorrelated with
activity of cortical excitatory cell , that is

(13)

(14)

Because both and are positive

(15)

Noting that , and using (13) and (14)

(16)

Therefore, is guaranteed to be negative (forcing the
final value of the synaptic strength toward zero) if

(17)

If the noisy output of thalamic neuroncan be described as a
Poisson process with rate, then

(18)

Using this in (17) we obtain

(19)

This equation shows that the smaller the association window
is, the easier it is for the learning mechanism to prune the

synapses that carry noisy information. In addition, the smaller
the Poisson noise rate is, the easier it is for the learning mecha-
nism to prune the synapse which transduces it.

Therefore, this learning mechanism decorrelates the noise
from the receptive fields of the cortical excitatory cells sensi-
tive to tones. Effectively, we see in [Fig. 9(a)] that the recep-
tive fields of the neurons that fire to the tones are decorrelated
from noise. A few neurons develop receptive fields specific to
frequencies that are part of the noise: two are finally selective
to frequencies lower than 0.7 kHz and one is selective to 0.90
kHz (Fig. 10). These neurons, however, do not respond to any
of the tones [Fig. 9(b)]. Finally, the remaining neurons do not
respond to either the tones or the noise, remaining “unspecific”

(a)

(b)

(c)

Fig. 9. Initial (dashed line) and final (solid line) receptive fields of selected
neurons in the experiment with very loud noise as background. (a) Neuron
finally selective to the 0.74 kHz tone. (b) Neuron finally selective to the
0.40 kHz component of the noise. (c) Neuron that finally does not respond to
any of the five tones used in the training.

[Fig. 9(c)]. This ensures the ability of the network to learn fu-
ture tones. In conclusion, the system proved to be robust against
high noise levels and the results obtained are similar to those
without noise (Fig. 10).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 01,2010 at 08:16:10 UTC from IEEE Xplore.  Restrictions apply. 



SÁNCHEZ-MONTAÑÉSet al.: LEARNING SENSORY MAPS WITH REAL-WORLD STIMULI 629

Fig. 10. Distribution of the preferred frequency of the 36 cortical excitatory
neurons after training with a sequence of tones with very loud noise ad
background using the same convention as in Fig. 6(b) and (d). Each tone in
the sequence is randomly chosen from the set (0.74, 1.05, 1.48, 2.09, and
2.96 kHz) with a probability of (1/2, 1/8, 1/8, 1/8, 1/8), respectively. The
displayed receptive fields were stable and resulted after 50 presentations.
Neurons marked in gray and gold are selective to frequencies which are part of
the noise: gray indicates a preferred frequency lower than 0.7 kHz, and gold
indicates a preferred frequency of 0.90 kHz.

IV. DISCUSSION

In this study we investigate the properties of a real-time
implementation of a biophysically realistic learning rule using
real-world stimuli. Within the framework of a model of the
mammalian auditory system we investigate a single integrated
learning mechanism which combines a local learning rule
which can be affected by a global mechanism. We show that
this model supports continuous and fast learning, provides an
even coverage of stimulus space, generates stable representa-
tions combined with the flexibility to change representations
in relation to task requirements. This is in good accord with
our previous results using computer simulations of biological
neural networks [26], [34]. In addition we have shown that this
biophysically realistic learning method is robust against noise
and strong imbalances in the statistics of the input events.

In implementing our model we made some simplifications
which are not critical to the presented results but could be
important in further extensions. For example, in our model
the auditory input neurons are band-pass filters with constant
bandwidth. However, in biology the bandwidth of these
neurons changes accordingly to their preferred frequency
(narrower at low frequencies and wider for high frequencies).
This would change slightly the activity statistics of the input
neurons, diminishing the activity of input neurons tuned to
lower frequencies (since now they have a reduced receptive
field) while increasing the activity of input neurons tuned to
higher frequencies, which now have a broader receptive field.
As it is shown in the paper, the learning rule is robust against
inhomogeneities in the input statistics. Therefore, the use of
input neurons with different bandwidths is expected to lead to
similar results to those we present in the paper.

Another aspect is the omission of temporal cues to frequency
coding for the model. The input neurons of our model code the
stimulus spectrum using a place representation (each neuron re-
sponds to a characteristic frequency). However, in the biology

the frequency of low-frequency tones is also coded by timing
information (the spikes in the neuron are locked to the phase of
the sound). We did not include this mechanism for simplicity.
This mechanism could be easily integrated by using the phase
of the DFT coefficients to modulate the firing of the input neu-
rons in order to produce phase locked spikes. However, in the
present context, the cortical network would not be able to dif-
ferentiate between locked or not locked action potentials, and
performance would not be affected.

Another simplification is that we are using chunked sampling
(24 ms), keeping stimulation of the input neurons constant
during that time. This is not crucial in our system, as long as
the envelope of the sounds we used in the experiments changes
slowly. This chunking of the input signals, however, limits
the phase information available. Although not relevant for
our present experiments this type of information is crucial for
sound source localization. Hence, the present system could not
support such forms of processing due to the loss of sound onset
information as a result of the input chunking. One solution to
this problem could be to shorten the length of the sample data.
This loss of resolution, however, would increase the sensitivity
of the DFT to noise. Other solutions could be found in using
overlapping samples or wavelet based analysis.

Another simplification is that we do not try to replicate the
huge dynamic range of the auditory system (about 100 dB). For
this reason the network does not adapt to strong changes in the
amplitude of the sound (e.g., it does not respond to very weak
sounds). A possible solution to this problem is to use adapting
gains in the neurons.

Biological systems learn from the real-world in real-time
in order to enhance their ability to survive. Learning on one
hand allows the identification of stimuli which are relevant for
behavior and on the other to shape the behavioral output of the
system. The learning abilities of biological systems has so far
not been paralleled by those of artificial systems. For instance,
one important area of research is in the domain of extraction
of basic features of sensory stimuli using learning methods [5],
[6], [13], [21], [33]. We would like to discuss critical aspects
of our work in the context of the problems which pertain to
this area.

• In the real world sensory input is a long continuous stream
of unlabeled events. Potentially relevant and to be learned
stimuli may occur at any time. Hence, a learning system
needs to be able to adaptively identify and construct rep-
resentations of relevant events or stimulus identification
[49]. In our experiments there is no distinction between
a training phase and an application or test phase. The
learning mechanisms of the system are continuously ac-
tive, allowing the system to learn new stimuli at any time.

• In contrast to simulation studies, in the real world it is not
possible to tightly control stimulus statistics. Since online
learning has no late or early phase and needs to store in-
formation at any time/continuously, the learning mecha-
nism must be able to deal with high inhomogeneities in
the coverage of stimulus space. Our model can deal with
strong inhomogeneities and we show that the size of the
representation of a stimulus does not depend on its fre-
quency of presentation. This is a highly desirable feature
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for a learning mechanism since neutral stimuli might be
very frequent while those which are behaviorally relevant
only occur sporadically. A learning mechanism which is
sensitive to the presentation frequency of a stimulus would
be saturated by neutral stimuli and insensitive to relevant
ones. Hence, a learning system which interacts with the
real world should dedicate more resources for processing
relevant or potentially relevant stimuli. This is also sug-
gested by the experimental data on auditory learning [50],
[23] and captured by our model.

• Individual stimuli should be learned on the basis of
a single or few presentations (“one-shot-learning”),
requiring high learning rates. However, this could desta-
bilize the system leading to a loss of previously learned
stimuli (“speed-stability problem,” [19]). Hence, a
learning mechanism working in the real world should be
able to use high learning rates while keeping the learned
representations stable. The learning mechanism we
propose satisfies this requirement. It allows the learning
of new stimuli while conserving the previously learned
representations.

Furthermore, it allows one-shot learning, due to the
ability of the learning mechanism to work with high
learning rates: neurons that respond faster to the stimulus
show rapid acquisition, while neurons responding late
will suffer strong depression of their activated sensory
synapses extinguishing their response to a future presen-
tation of the stimulus. This strong competition permits the
model to be stable while allowing one-shot learning. An-
other consequence of this competition is that the receptive
fields of the neurons tend to be nonoverlapping. Using
low learning rates, however, would diminish the “average
competition” allowing receptive fields to overlap. The de-
tails of this process depend on the details of the stimulus
statistics. One-shot learning, however, needs to be traded
off against the signal to noise ratio, that is, for a learning
system it is impossible to distinguish signal from noise in
just one trial. If the signal to noise ratio is close to one,
the learning rule needs more trials to prune the dynamic
noise, achieving a noise free representation of the signal.

• Real-world stimuli are inherently noisy. This includes
dynamic noise due to imperfections of sensors, but also
static noise, due to cross-talk of different individual
stimuli present simultaneously. Furthermore, some varia-
tions (e.g., distance of an object and thus its retinal size)
are not important for one aspect (e.g., recognizing its
identity) and thus represent noise but can be all decisive
for other aspects (e.g., grasping it). Thus, the system must
be able to cope with different kinds of noise appropriately
depending on the task at hand.

In our model we included a short-term depressing
mechanism in the synapses formed by the peripheral
neurons on the thalamic ones [46]. We show that this
mechanism can filter out the continuous part of the
dynamic noise. The remaining part is decorrelated from
the receptive-fields through the learning mechanism.
In this case the information provided by the temporal
relations between presynaptic and postsynaptic spikes is

crucial. However, in dealing with static noise without a
high level memory system, or other means to describe
larger statistics, noise can not be differentiated from
signal in a single trial. Our system can partly deal with
this problem if the learning rate used is not too high. In
this case, if stimuli are not presented alone but mixed
in different combinations (e.g., by using a typical music
CD) the system achieves a “sparse” representation of
the environment that minimizes the redundancy while
covering the complete stimulus space. Interestingly, this
is the type of representation that the visual cortex seems to
use [32], having the advantages of minimizing the energy
consumed [4] while minimizing the reconstruction error
[32]. In addition, it is important to obtain low-redundancy
codes (“minimum entropy codes”) in order to make the
processing by higher stages as simple as possible [5].

• Due to limitations in hardware and/or software, simula-
tions of learning in neural networks are often far from real
time, and thus not suitable to be used in real world tasks.
In this work we show that a real-time implementation of a
biophysically detailed model, with some reasonable sim-
plifications, is possible. The hardware used is based on a
Pentium III processor running at 500 MHz; the model in-
cludes 244 neurons, 1548 plastic and 1496 nonplastic con-
nections. In this type of study the critical element affecting
computational load is not the number of neurons, but the
number of connections. We estimate that with a Pentium
IV at 2 GHz it is possible to increase the size of the two
cortical populations up to 110 neurons each. This renders
an overall system size of 392 neurons, 4730 plastic con-
nections and 12 448 nonplastic connections in total.

Further optimizations of the implementation could be
achieved by recoding parts of the simulation and reducing
the number of connections. For instance, the number of
connections can be drastically reduced if we use a rough
topology in the connections between thalamic neurons and
cortical excitatory neurons and in the connections between
cortical inhibitory neurons and cortical excitatory neurons
instead of the presently applied “all to all” topology. We
gained in the computational efficiency by relying on a
distributed implementation of the overall system, running
each component of the system on a separate computer,
which is a prerequisite for the real-time simulation of large
scale networks. This is provided by the neural simulator
we use IQR421 [47]. Further optimizations can be pro-
vided by using FPGAs or analog VLSI (aVLSI) devices.
Currently we are experimenting with replacing the digital
FFT with an aVLSI model of the cochlea.

In our model a local learning rule interacts with a global
modulatory system. This represents the substantial gabaergic
projection originating in the basal forebrain, which terminates
on cortical inhibitory neurons [15], [16]. Its activation increases
the proportion of successfully backpropagating action poten-
tials in the cortical excitatory neurons [34]. Interestingly, the
much better investigated basal forebrain cholinergic projection
[37] increases the fraction of backpropagating action potentials
in cortical neurons [45]. Thus, these two subcortical projections
may act synergistically, enhancing each other’s effect. Of
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course these findings do not preclude additional actions of
acetylcholine, e.g., the modulation of effective intracortical
connectivity [48]. In addition we include a short-term de-
pressing mechanism in the synapses formed by the peripheral
neurons on the thalamic ones [46]. Experiments on this prop-
erty do not investigate the synapses which we assume to adapt,
but the abundance of data about these mechanisms in different
types of synapses [52], [41], [46] supports our hypothesis. The
integration of these biologically realistic mechanisms in the
model renders a number of interesting abilities which did not
interfere with each other.

In conclusion, we have presented a biologically realistic
neural network that performs in real time, learning sensory
maps of the environment using real-world stimuli. However,
the interaction of learning sensory representations and overt
behavior is an essential aspect of an autonomous agent. Ulti-
mately, only this interaction allows an assignment of relevance
to a subset of stimuli. Indeed, experimental evidence demon-
strates that compared to passive reception of stimuli, active
sensing qualitatively influences the development of sensory
representations [35]. Hence, the implementation of the model
on a robot interacting with the environment [25], [49] will be
an exciting topic for future work.

ACKNOWLEDGMENT

The authors would like to thank P. Paschke for his help in
developing the data acquisition system and the FFT analysis
module. They are also grateful to A. van Schaik, D. Klein, and
F. Corbacho for helpful discussions.

REFERENCES

[1] D. L. Alkon, D. G. Amaral, M. F. Bear, J. Black, T. J. Carew, N. J. Cohen,
J. F. Disterhoft, H. Eichenbaum, S. Golski, L. K. Gorman, G. Lynch, B.
L. Mcnaughton, M. Mishkin, J. R. Moyer, J. L. Olds, D. S. Olton, T.
Otto, L. R. Squire, U. Staubli, L. T. Thompson, and C. Wible, “Learning
and memory,”Brain Res. Rev., vol. 16, pp. 193–220, 1991.

[2] L. F. Abbott, “Learning in neural network memories,”Network, vol. 1,
pp. 105–122, 1990.

[3] L. F. Abbott, J. A. Varela, K. Sen, and S. B. Nelson, “Synaptic depression
and cortical gain control,”Science, vol. 275, pp. 220–224, 1997.

[4] R. Baddeley, “Visual perception. An efficient code in V1?,”Nature, vol.
381, pp. 560–561, 1996.

[5] H. B. Barlow, “Unsupervised learning,”Neural Comput., vol. 1, pp.
295–311, 1989.

[6] A. J. Bell and T. J. Sejnowski, “An information-maximization approach
to blind separation and blind deconvolution,”Neural Comput., vol. 7,
no. 6, pp. 1129–1159, 1995.

[7] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength,
and postsynaptic cell type,”J. Neurosci., vol. 18, pp. 10 464–10472,
1998.

[8] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for
the development of neuron selectivity: Orientation specificity and
binocular interaction in visual cortex,”J. Neurosci., vol. 2, no. 1, pp.
32–48, 1982.

[9] T. V. Bliss and G. L. Collingridge, “A synaptic model of memory:
Long-term potentiation in the hippocampus,”Nature, vol. 361, pp.
31–39, 1993.

[10] T. H. Brown and S. Chattarji, “Hebbian synaptic plasticity,” inThe
Handbook of Brain Theory and Neural Networks, M. A. Arbib,
Ed. Cambridge, MA: MIT Press, 1998.

[11] D. V. Buonomano and M. M. Merzenich, “Cortical plasticity: From
synapses to maps,”Annu. Rev. Neurosci., vol. 21, pp. 149–186, 1998.

[12] X. Buzsaki and E. Kandel, “Somadendritic backpropagation of action
potentials in cortical pyramidal cells of the awake rat,”J. Neurophysiol.,
vol. 79, no. 3, pp. 1587–1591, 1998.

[13] P. Comon, “Independent component analysis—A new concept?,”Signal
Processing, vol. 36, no. 3, pp. 287–314, 1994.

[14] Y. Fregnac, “Hebbian synaptic plasticity: Comparative and devel-
opmental aspects,” inThe Handbook of Brain Theory and Neural
Networks, M. A. Arbib, Ed. Cambridge, MA: MIT Press, 1998.

[15] T. F. Freund and A. I. Gulyas, “GABAergic interneurons containing
calbindin D28K or somatostatin are major targets of GABAergic basal
forebrain afferents in the rat neocortex,”J. Comp. Neurol., vol. 314, pp.
187–199, 1991.

[16] T. F. Freund and V. Meskenaite, “Gamma–aminobutyric acid-con-
taining basal forebrain neurons innervate inhibitory interneurons in
the neocortex,”Proc. Nat. Academy Sci. USA, vol. 89, pp. 738–742,
1992.

[17] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architec-
ture for the FFT,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cessing, vol. 3, Seattle, WA, 1998, pp. 1381–1384.

[18] W. Gerstner, R. Ritz, and J. L. van Hemmen, “Why spikes? Hebbian
learning and retrieval of time-resolved excitation patterns,”Biol. Cy-
bern., vol. 69, pp. 503–515, 1993.

[19] S. Grossberg, “How does the brain build a cognitive code?,”Psych. Rev.,
vol. 87, pp. 1–15, 1980.

[20] D. O. Hebb,The Organization of Behavior. New York: Wiley, 1949.
[21] I. T. Jollife, Principal Component Analysis. New York: Springer-

Verlag, 1986.
[22] J. P. Kelly, “Auditory system,” inPrinciples of Neural Science, E.

Kandel and J. Schwartz, Eds. Amsterdam, The Netherlands: Elsevier,
1985, pp. 396–408.

[23] M. P. Kilgard and M. M. Merzenich, “Cortical map reorganization en-
abled by nucleus basalis activity,”Science, vol. 279, pp. 1714–1718,
1998.

[24] P. König, A. K. Engel, P. R. Roelfsema, and W. Singer, “How precise
is neuronal synchronization?,”Neural Comput., vol. 7, pp. 469–485,
1995.

[25] P. König, E. Bizzi, N. Burgess, N. Franceschini, M. P. Kilgard, M.
Oram, G. Sagerer, and C. Scheier, “Group report: Representations in
natural and artificial systems,”Z. Naturforsch [C], vol. 53, no. 7–8, pp.
738–751, 1998.

[26] K. P. Körding and P. König, “A learning rule for dynamic recruitment
and decorrelation,”Neural Networks, vol. 13, pp. 1–9, 2000.

[27] H. J. Köster and B. Sakmann, “Calcium dynamics in single spines during
coincident pre- and postsynaptic activity depend on relative timing of
back-propagating action potentials and subthreshold excitatory postsy-
naptic potentials,”Proc. Nat. Academy Sci. USA, vol. 95, no. 16, pp.
9596–9601, 1998.

[28] M. E. Larkum, J. J. Zhu, and B. Sakmann, “A new cellular mechanism
for coupling inputs arriving at different cortical layers,”Nature, vol. 398,
pp. 338–341, 1999.

[29] J. Magee, D. Hoffman, C. Colbert, and D. Johnston, “Electrical and cal-
cium signaling in dendrites of hippocampal pyramidal neurons,”Annu.
Rev. Physiol., vol. 60, pp. 327–346, 1998.

[30] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, “Regulation of
synaptic efficacy by coincidence of postsynaptic AP’s and EPSPs,”Sci-
ence, vol. 275, pp. 213–215, 1997.

[31] S. J. Martin, P. D. Grimwood, and R. G. Morris, “Synaptic plasticity
and memory: An evaluation of the hypothesis,”Annu. Rev. Neurosci.,
vol. 23, pp. 649–711, 2000.

[32] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,”Nature,
vol. 381, pp. 607–609, 1996.

[33] R. P. Rao, “An optimal estimation approach to visual perception and
learning,”Vision Res., vol. 39, no. 11, pp. 1963–1989, 1999.

[34] M. A. Sánchez-Montañés, P. F. M. J. Verschure, and P. König, “Local
and global gating of synaptic plasticity,”Neural Comput., vol. 12, no. 3,
pp. 519–529, 2000.

[35] W. Schultz and A. Dickinson, “Neuronal coding of prediction errors,”
Annu. Rev. Neurosci., vol. 23, pp. 473–500, 2000.

[36] T. Sejnowski, “Storing covariance with nonlinearly interacting neurons,”
J. Math. Biol., vol. 4, pp. 303–321, 1977.

[37] W. Singer and J. P. Rauschecker, “Central core control of development
plasticity in the kitten visual cortex. II: Electrical activation of mesen-
cephalic and diencephalic projections,”Exp. Brain Res., vol. 47, pp.
223–233, 1982.

[38] N. Spruston, Y. Schiller, G. Stuart, and B. Sakmann, “Activity-depen-
dent action potential invasion and calcium influx into hippocampal CA1
dendrites,”Science, vol. 268, pp. 297–300, 1995.

[39] G. S. Stent, “A physiological mechanism for Hebb’s postulate of
learning,”Proc. Nat. Academy Sci. USA, vol. 70, pp. 997–1001, 1973.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 01,2010 at 08:16:10 UTC from IEEE Xplore.  Restrictions apply. 



632 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

[40] G. J. Stuart and B. Sakmann, “Active propagation of somatic action po-
tentials into neocortical pyramidal cell dendrites,”Nature, vol. 367, pp.
69–72, 1994.

[41] A. M. Thomson, J. Deuchars, and D. C. West, “Large, deep layer
pyramid–pyramid single axon EPSP’s in slices of rat motor cortex
display paired pulse and frequency-dependent depression, mediated
presynaptically and self-facilitation, mediated postsynaptically,”J.
Neurophysiol., vol. 70, no. 6, pp. 2354–2369, 1993.

[42] A. M. Thomson and J. Deuchars, “Temporal and spatial properties
of local circuits in neocortex,”Trends Neurosci., vol. 17, no. 3, pp.
119–126, 1994.

[43] J. Z. Tsien, “Linking Hebb’s coincidence-detection to memory forma-
tion,” Curr. Opin. Neurobiol., vol. 10, pp. 266–273, 2000.

[44] M. Tsodyks, K. Pawelzik, and H. Markram, “Neural networks with
dynamic synapses,”Neural Comput., vol. 10, no. 4, pp. 821–835,
1998.

[45] H. Tsubokawa and W. N. Ross, “IPSP’s modulate spike backpropa-
gation and associated Ca changes in the dendrites of hippocampal
CA1 pyramidal neurons,”J. Neurophysiol., vol. 76, pp. 2896–2906,
1996.

[46] J. A. Varela, K. Sen, J. Gibson, J. Fost, L. F. Abbott, and S. B. Nelson,
“A quantitative description of short-term plasticity at excitatory
synapses in layer 2/3 of rat primary visual cortex,”J. Neurosci., vol. 17,
pp. 7926–7940, 1997.

[47] P. F. M. J. Verschure, “Xmorph,”, Int. Rep., Inst. Neuroinform.,
ETH-UZ, 1997.

[48] P. F. M. J. Verschure and P. König, “On the role of biophysical proper-
ties of cortical neurons in binding and segmentation of visual scenes,”
Neural Comp., vol. 11, pp. 1113–1138, 1999.

[49] T. Voegtlin and P. F. M. J. Verschure, “What can robots tell us about
brains? A synthetic approach toward the study of learning and problem
solving,” Rev. Neurosci., vol. 10, no. 3–4, pp. 291–310, 1999.

[50] N. M. Weinberger, “Learning induced changes of auditory receptive
fields,” Cur. Opin. Neurobiol., vol. 3, pp. 570–577, 1993.

[51] N. M. Weinberger, R. Javid, and B. Lepan, “Long-term retention of
learning-induced receptive-field plasticity in the auditory cortex,”Proc.
Nat. Academy Sci. USA, vol. 90, no. 6, pp. 2394–2398, 1993.

[52] R. S. Zucker, “Short-term synaptic plasticity,”Annu. Rev. Neurosci., vol.
12, pp. 13–31, 1989.

Manuel A. Sánchez-Montañésreceived the B.Sc.
degree (with honors) in physics from the Universidad
Complutense de Madrid, Spain, in 1997. Currently,
he is pursuing the Ph.D. degree at the Universidad
Autónoma de Madrid.

In 1998 and 1999, he visited the Institute of Neu-
roinformatics in Zürich. His main interests include
learning and adaptation in biological systems, and the
validation of these concepts in autonomous artificial
systems.

Peter König studied physics and medicine at
the University of Bonn, Bonn, Germany. He was
with the Department of Neurophysiology at the
Max-Planck-Institute for Brain Research, Frankfurt,
Germany, where he received the Habilitation degree
in 1990.

After working as a Senior Fellow at the Neuro-
sciences Institute in San Diego, CA, he joined the
Institute of Neuroinformatics, Zürich, Switzerland,
in 1997. Here, he is using experimental and theo-
retical approaches to study the mammalian visual

system, with a particular interest in synchronization neuranal activity, the role
of top-down signals and their interaction with learning and synaptic plasticity.

Paul F. M. J. Verschurereceived both the M.A. and
Ph.D. degrees in psychology.

He is a group leader at the Institute of Neuroin-
formatics ETH-University, Zurich, Switzerland. He
works on biologically realistic models of perception,
learning, and problem solving, which are applied to
robots and on the tools and methods that support this
research.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 01,2010 at 08:16:10 UTC from IEEE Xplore.  Restrictions apply. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


