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Abstract

The control or prediction of the precise timing of events are central aspects of the many tasks assigned to the cerebellum.

Despite much detailed knowledge of its physiology and anatomy, it remains unclear how the cerebellar circuitry can achieve such

an adaptive timing function. We present a computational model pursuing this question for one extensively studied type of

cerebellar-mediated learning: the classical conditioning of discrete motor responses. This model combines multiple current
assumptions on the function of the cerebellar circuitry and was used to investigate whether plasticity in the cerebellar cortex

alone can mediate adaptive conditioned response timing. In particular, we studied the effect of changes in the strength of the

synapses formed between parallel ®bres and Purkinje cells under the control of a negative feedback loop formed between inferior
olive, cerebellar cortex and cerebellar deep nuclei. The learning performance of the model was evaluated at the circuit level in

simulated conditioning experiments as well as at the behavioural level using a mobile robot. We demonstrate that the model

supports adaptively timed responses under real-world conditions. Thus, in contrast to many other models that have focused on
cerebellar-mediated conditioning, we investigated whether and how the suggested underlying mechanisms could give rise to

behavioural phenomena.

Introduction

The classical conditioning paradigm was introduced by Pavlov in the

early 20th century to study associative learning (Pavlov, 1927; 1928).

If an initially neutral stimulus (conditioned stimulus, CS) is

repeatedly presented paired with a motivational stimulus (uncondi-

tioned stimulus, US) which elicits a certain response (unconditioned

response, UR), the CS will eventually trigger a similar response

(conditioned response, CR). During training the CS and US are

usually presented with a ®xed interstimulus interval (ISI) and the

acquired CR reaches its peak amplitude (e.g. measured as strength of

the EMG for conditioned motor responses) just before the US is

expected to occur. Hence, the CR re¯ects knowledge about an

association between CS and US and their temporal relationship.

Classical conditioning of discrete motor responses, such as the

eyeblink response, has been studied extensively over many decades

(Gormezano et al., 1983), and multiple lines of evidence illustrate the

central role of the cerebellum in this type of learning (Thompson

et al., 1983; Lavond et al., 1993). The pathways for CS, US and CR

have been identi®ed (Kim & Thompson, 1997; Thompson et al.,

1998) but the relative contribution of the cerebellar cortex and the

deep nuclei remains dif®cult to assess (Welsh & Harvey, 1989;

Attwell et al., 2001; Mauk, 1997). Synaptic changes in both sites

seem to be involved in classical conditioning, but may affect different

properties of the CR (Raymond et al., 1996). It has been suggested

that plasticity in the cerebellar nuclei is permissive for the CR

expression while plasticity in the cerebellar cortex controls the CR

timing (Perret, 1998; Ohyama & Mauk, 2001; Bao et al., 2002).

In this paper we present a neural model of the cerebellum to

investigate whether plasticity in the cortex alone is suf®cient to

adaptively control the timing of CRs. Our model includes ®ve

assumptions:

d Inferior olive, cerebellar cortex and deep nucleus are organized in

distinct microcomplexes (Ito, 2001) which constitute negative

feedback loops (Thompson et al., 1998).

d Plasticity in the cerebellar cortex is controlled by these olivo-

cortico-nuclear feedback loops (Hesslow & Ivarsson, 1996).

d Induction of long-term depression (LTD) (Ito and Kano, 1982) and

long-term potentiation (LTP) (Salin et al., 1996) of the synapses

formed between parallel ®bres and Purkinje cells depends on US-

related climbing ®bre and CS-related parallel ®bre activation.

Purkinje cell dendrites function as asymmetric coincidence detectors

for these signals (Fiala et al., 1996; Wang et al., 2000).

d The learning procedure leads to a pause in Purkinje cell activity

following CS presentation (Houk et al., 1996; Hesslow & Ivarsson,

1994; Medina and Mauk, 2000).

d A CR is triggered by rebound excitation in the deep nucleus upon

release from Purkinje cell inhibition (Hesslow, 1994b; Hesslow,

1994a; Aizenman & Linden, 1999).

In addition, we assume that Purkinje cells operate in two distinct

modes: a spontaneous and a CS-driven mode.

The relationship between the model's parameters and its learning

performance was studied in simulated conditioning experiments. For

behaviourists, learning is de®ned as a long-lasting experience-

dependent change in behaviour (Mackintosh, 1974) and can as such

only be inferred from observing the interaction of a behaving system

with its environment (Webb, 2000). Therefore, we also evaluated the
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learning performance of the model by studying the behaviour of a

mobile robot in an obstacle avoidance task. Examining the behaviour

of the robot allowed us to determine whether the assumptions

embedded in the model can account for associative learning under

more realistic conditions (Voegtlin and Verschure, 1999; Verschure,

1998), i.e. when the occurrence of CS and US is not controlled by an

experimenter but caused solely by the interaction of the learning

system with its environment.

Theoretical background

While it is generally accepted that the cerebellum is critically

involved in the classical conditioning of discrete motor responses, the

relative contribution of the two sites where CS- and US-related inputs

converge, i.e. cerebellar cortex and deep nuclei, is unresolved (Krupa

& Thompson, 1997; Mauk, 1997). For instance, Mauk and associates

demonstrated that aspiration lesions of the deep nuclei completely

abolish CR expression, while lesions of the cortex result in non-

adaptive, short-latency CRs (Perrett et al., 1993; Perrett & Mauk,

1995; however, see Llinas et al., 1997; Attwell et al., 2001). Based on

these ®ndings it has been suggested that plasticity in the cerebellar

cortex and cerebellar deep nuclei serve different functions (Raymond

et al., 1996). The `latent learning' hypothesis states that temporal

speci®c learning occurs initially in the cerebellar cortex, but that a CR

can only be elicited after synaptic changes driven by cortical output

occurred in the deep nucleus (Ohyama & Mauk, 2001). Most recent

®ndings are consistent with the hypothesis that the cerebellar cortex

may play a crucial role in the adaptation of the CR timing (Svensson

& Ivarsson; 1999; Hesslow et al., 1999; Bao et al., 2002; Perret,

1998) while synaptic changes in the deep nucleus serve to enhance a

CR (Gruart et al., 2000). The goal of our modelling study was to

investigate whether synaptic changes within the cerebellar cortex

alone are suf®cient to support stable CR timing when examined in the

context of other aspects of the cerebellar circuit and physiology. This

section describes the biological ®ndings that led to the assumptions

embedded in our model and illustrates how these different

components of cerebellar-mediated learning contribute to adaptive

CR timing (Fig. 1).

The negative feedback loop within the cerebellar microcircuit

The most extensively studied example of cerebellar-mediated con-

ditioning is the acquisition and extinction of the eyelid or nictitating

membrane response (NMR) (Gormezano et al., 1983). In this

conditioning paradigm a tone CS predicts the occurrence of a corneal

air puff or periorbital shock US. Parts of lobule HVI, a different

region of the cerebellar cortex, anterior parts of the interpositus

nucleus and the medial part of rostral dorsal accessory olive are

involved in the conditioning of the NMR (Yeo et al., 1985a; b; 1986).

Functionally these regions form a microcomplex (Ito, 1984; Ito,

2001). Our model describes the minimal computational unit within

such a microcomplex, a microcircuit comprising one Purkinje cell

and its peripheral afferents and efferents (see also Barto et al., 1999).

For clarity and brevity, we will use abbreviations (listed in Table 1)

when referring to model elements. A Purkinje cell (PU) receives CS-

and US-related signals via parallel ®bres (pf) and climbing ®bres (cf),

respectively, (Steinmetz et al., 1986; Steinmetz et al., 1989). Activity

in the deep nucleus (DN) activates motor nuclei via the red nucleus

and predicts the amplitude±time course of the motor CR (McCormick

& Thompson, 1984; Rogers et al., 2001; however, see Gruart et al.,

2000). Distinct cell groups in the inferior olive (IO), cerebellar cortex

and deep nuclei are interconnected and form negative feedback loops

(Hesslow & Ivarsson, 1996; Ito, 2001). It has been demonstrated that

inhibition of the inferior olive by the deep nucleus can prevent

climbing ®bre responses to a US (Kim et al., 1998). Thus, the output

of the deep nucleus may control the reinforcing US pathway

(Thompson et al., 1998). We address the question of how the

negative feedback loop formed between IO±PU±DN affects learning

related plasticity in the cerebellar cortex.

Synaptic plasticity in the cortex

While various kinds of plasticity in the cerebellar cortex have been

described (for a review see Hansel et al., 2001), the best studied form

is the long-term depression (LTD) of the synapse formed between

parallel ®bres and Purkinje cells (Linden & Conner, 1995; Ito, 2001).

It has long been suggested that this type of plasticity plays a crucial

role in motor learning (Albus, 1971; Ito & Kano, 1982). More

recently, some evidence has been presented for the long-term
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FIG. 1. The learning mechanism embedded in the cerebellar microcircuit. Excitatory connections between cells are indicated with arrows, inhibitory
connections are indicated with bars. Boxed traces represent activity in model elements. (A) Purkinje cells (PU) receive CS- and US-related input via parallel
®bres (pf) and climbing ®bres (cf), respectively. LTD and LTP of synapses formed between pf and PU depend on the temporal pattern of pf- and cf-input. PU
inhibits cells in the deep nucleus (DN), which in turn inhibit cells in the inferior olive (IO) that give rise to cf. Thus, IO, PU and DN form a negative
feedback loop. DN activity controls the reinforcing pathway by preventing US-related cf-activity through IO inhibition and it triggers the expression of CRs.
(B) In a naive circuit PU tonically inhibits DN and no CR is expressed. LTD is induced if a cf-signal coincides with a prolonged response in the PU dendrite
due to a previous pf-signal. (C) In a trained circuit there is a pause in PU spiking following the CS presentation. During this disinhibition DN repolarises and
triggers a CR. DN inhibition of IO prevents US-induced cf-activation. LTP is induced because the pf-signal is not reinforced by a cf-stimulus.
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potentiation (LTP) of the same synapse (Salin et al., 1996; Linden

and Ahn, 1991). LTD and LTP of the parallel ®bre to Purkinje cell

synapse are often assumed to constitute the crucial synaptic

mechanism of cerebellar-mediated learning (Mauk et al., 1998;

Medina et al., 2000; Barto et al., 1999; Gluck et al., 2001) and were

therefore included in our model.

Because only a certain range of ISIs leads to behavioural

conditioning, the underlying learning mechanism must respond

asymmetrically to the occurrence of CS and US (Montague &

Sejnowski, 1994). For example, using the delay conditioning

paradigm, the NMR can be learned only when the CS precedes the

US by » 0.07±3 s (Gormezano et al., 1983). It has been shown that

the induction of LTD depends on the temporal relationship of parallel

®bre and climbing ®bre stimulation (Ito, 2001). Although the precise

induction properties vary for different preparations, several studies

have reported that LTD is strongest if the parallel ®bre stimulation

precedes the climbing ®bre stimulation by 80±250 ms (Schreurs et al.,

1996; Chen & Thompson, 1995), i.e. intervals which fall within the

range of behaviourally effective ISIs.

However, such temporal induction properties for LTD require

some persistent trace of the parallel ®bre stimulation to allow for

coupling with climbing ®bre stimulation (Linden & Conner, 1995;

Sutton & Barto, 1990). A prolonged metabolic second-messenger

response in Purkinje cells following parallel ®bre stimulation could

constitute such a trace (Fiala et al., 1996). The induction of LTD may

depend on the coincidence of responses to the second messenger

inositol 1,4,5-triphosphate as a result of parallel ®bre activity and

postsynaptic depolarization or Ca2+ entry following climbing ®bre

activity (Miyata et al., 2000). Single spines of Purkinje cells could

serve as coincidence detectors of CS- and US-related responses

(Wang et al., 2000). It has been suggested that there is a negative

correlation between the postsynaptic Ca2+ concentration and the

changes in the ef®cacy of the synapses formed between parallel ®bres

and Purkinje cells following parallel ®bre stimulation (Hartell, 2002;

Shibuki & Okada, 1992). Hence, functionally, LTD and LTP can be

interpreted as antagonistic processes. However, because in the

cerebellum LTD is a postsynaptic mechanism while LTP occurs

presynaptically, it is unclear to what extent LTD and LTP can truly

reverse each other at the molecular level (Ito, 2001; Kitazawa, 2002).

In our model we implemented a functional approximation of these

mechanisms underlying LTD and LTP at the parallel ®bre to Purkinje

cell synapse (see Fig. 1B and C), where LTD results from coincident

pf- and cf-activation, while LTP results from pf-stimulation alone

(Hansel et al., 2001).

Nuclear release from cortical inhibition

Purkinje cell inhibition forms the sole output of the cerebellar cortex.

Thus, if the adaptive timing of the CR depends on the cerebellar

cortex there needs to be a mechanism that allows the inhibitory

Purkinje cell output to control the timing of excitatory responses in

the deep nucleus. Purkinje cells are spontaneously active (Raman &

Bean, 1999), supplying tonic inhibition to the deep nucleus. The

activity pattern of Purkinje cells is altered during conditioning

(Schreurs et al., 1998) and some cells show a reduced ®ring rate to a

CS following conditioning (Hesslow and Ivarsson, 1994). Cells in the

deep nuclei show a characteristic feature called rebound excitation

following their disinhibition (Hesslow, 1994b). In particular, a

hyperpolarizing pulse deinactivates low-threshold voltage-gated

Ca2+ channels (Aizenman et al., 1998). Upon the release of inhibition

these channels mediate the repolarisation of the membrane potential

which is followed by a burst of Na+ spikes. This suggests that a timed

pause in Purkinje cell spiking could control the timing of rebound

excitation (Aizenman & Linden, 1999). Thus, synaptic changes

affecting Purkinje cell responses to a CS could control the timing of

motor CRs (Gauk & Jaeger, 2000; Medina et al., 2000). Based on this

assumption, we implemented synaptic changes in our model which

alter the excitatory response of PU to a presented CS. During a pause

in PU spiking, DN repolarises and can trigger a CR.

Stimulus representation and CS trace

To allow for the expression of a CR adapted to the ISI the temporal

relationship of CS and US needs to be encoded. Little is known about

the mechanism used in the nervous system to encode time. A recent

study demonstrated that individual animals can produce differently

timed CRs when stimulation of the same subset of mossy ®bres (CSs)

is paired with an eye-shock US at various ISIs (Perret, 1998). Even a

single-pulse CS can lead to the acquisition of differently timed CRs.

These ®ndings indicate that precerebellar pathways are not necessary

for maintaining the neural activity to elicit a CR and that the

representation of time does not require the recruitment of different

mossy ®bres by the CS. Mossy ®bre activity related to the onset of the

CS may thus be suf®cient to support correct CR timing. Similarly,

climbing ®bres ®re at ultra-low frequencies (» 1 Hz) and could not

encode the duration of the US (De Zeeuw et al., 1998; Kuroda et al.,

2001). Based on these ®ndings, we therefore only represented the

onset of CS and US as neural activity in our model. Thus, in contrast

to many other models of cerebellar information processing (see, e.g.,

Kawato, 1999; Huang et al., 2000; Medina et al., 2000) our model

does not depend on complex assumptions regarding the encoding of

the sensory stimuli.

Various models have been proposed for the putative mechanism

underlying the representation of time by the cerebellum, such as

tagged elements or delay lines (Braitenberg & Atwood, 1958; Moore

& Choi, 1997), a time-varying representation of the CS within the

cortex (Mauk, 1997), or oscillatory signals (Gluck et al., 2001) and

delayed reverberation (Kistler & van Hemmen, 1999). For most of

these hypotheses there is no profound physiological evidence, or it

has been demonstrated that the biological substrate would not meet

the requirements for the suggested mechanism. A signal travelling

along parallel ®bres will not be delayed by up to several seconds

constitute delay lines (MacKay & Murphy, 1976). In our model the

prolonged responses in PU dendrites constitute a CS as required for

parallel ®bres to trace allowing for the association of CS and US,

which is supported by physiological studies (Wang et al., 2000). This

internal representation of the CS has a different time course from the

CS presented externally and relates to the concept of a stimulus trace

suggested by Hull (1939). The notion of an `eligibility trace' has been

used (Sutton & Barto, 1990; Barto et al., 1999) to describe that

synapses which have been activated by a CS-related input remain

eligible to US-induced weight changes for some period of time (see

Discussion).

The model

Our neural model is based on the anatomy of the cerebellar

microcircuit (see Fig. 2) and requires minimal assumptions on the

encoding of stimuli and the representation of time. The goal of the

model design was not to resemble the physiological mechanisms

involved in cerebellar-mediated learning as closely as possible, but to

®nd an abstract description of the underlying principles. In this

section we describe how the implementation of the model function-

ally accounts for the assumptions on cerebellar information process-
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ing introduced above. More details on soft- and hardware and lists of

model parameters (Tables 1±3) are given in the Appendix.

Model equations

The model elements are based on a generic type of integrate-and-®re

neuron. The summed excitatory input of neuron i at time t, Ei(t), is

de®ned as:

Ei�t� � 
E
XN

j � 0

Aj�t�wij�t� �1�

where gE is the excitatory gain of the input, N is the number of

afferent projections, Aj(t) is the activity of presynaptic neuron j Î N,

at time t, and wij is the ef®cacy of the connection between the

presynaptic neuron j and postsynaptic neuron i.

The summed inhibitory input of neuron i at time t, Ii(t), is de®ned

as:

Ii�t� � ÿ
I
XN

j � 0

Aj�t�wij�t� �2�

where g I is the inhibitory gain of the input.

The membrane potential of neuron i at time t + 1, Vi(t + 1), is

given by:

Vi(t + 1) = bVi(t) + Ei(t) + Ii(t) (3)

where b Î [0,1] is the persistence of the membrane potential which

de®nes the speed of decay towards the resting state.

The activity of an integrate-and-®re neuron i at time t, Ai(t), is

given by:

Ai(t) = H(Vi(t) ± qA) (4)

where qA is the ®ring threshold and H is the Heaviside function:

H�x� �
�

1

0

if x > 0

otherwise
�5�

If Vi of integrate-and-®re neuron i exceeds qA, the neuron is active and

emits spikes. The duration of a spike is 1 simulation timestep (ts) and

is followed by a refractory period of 1 timestep. The model elements

PO, GR, I and IO, representing pons, granule cells, inhibitory

interneurons and inferior olive, respectively, are constructed with

such generic integrate-and-®re neurons.

DN rebound excitation

A variant of a generic integrate-and-®re neuron was used to model

rebound excitation of the deep nucleus, DN. The membrane potential

of DN neuron i at time t + 1, Vi(t + 1), is given by:

Vi�t�1�� �Vi�t���H�Vi�t�ÿ�R�H��RÿVi�tÿ1�� � ��� Ii�t� �6�

where qR is the rebound threshold and m is the rebound potential. The

potential of DN is kept below qR by tonic inhibitory input from PU.

However, when DN is disinhibited, its membrane potential slowly

repolarises. If the rebound threshold qR is reached, the membrane

potential is set to a ®xed rebound potential m. Subsequently the
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FIG. 2. The anatomy of the model circuit. As discussed in Fig. 1, CS- and US-related input converge on PU, and the IO, PU and DN form a negative
feedback loop. The model elements PO, GR and I represent pontine nucleus, granule cells and inhibitory interneurons in the cerebellar cortex. The model
elements CSpathway, USpathway and CRpathway stand for the pathways upstream of the pontine nucleus and the inferior olive and downstream from the
deep nucleus, respectively. PU comprises three model compartments: PU±SYN, PU±SP and PU±SO, accounting for responses in synaptic regions, the
spontaneous activity and the somatic regions of Purkinje cells, respectively. The CS-related input is conveyed to GR via mossy ®bres (mf) originating in PO.
Parallel ®bres (pf) form excitatory synapses at PU±SYN, while PU±SO receives US-related input via climbing ®bres (cf). I receives input from pf and inhibit
PU±SP. Because we focused on the functional role of the cerebellar cortex only, CS- and US-related signals, conveyed to the deep nucleus via collaterals of
mossy ®bres and climbing ®bres, respectively, were omitted.
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potential of DN decays and spikes are emitted as long as it is above the

spiking threshold qA (equation 4). The output of DN activates the CR

pathway downstream of the deep nucleus (CRpathway) and inhibits

IO. This inhibition outweighs a US-related excitatory input to IO. As a

result, US-related cf-activity during DN rebound activity is prevented.

A three-compartment model of the Purkinje cell

The modelled Purkinje cell, PU, is composed of three different

compartments: PU±SP accounts for the tonic, spontaneous activity of

the Purkinje cell, PU±SO represents the soma and PU±SYN represents

the dendritic regions where synapses are formed with parallel ®bres.

PU±SP is a spontaneously active element which emits spikes unless

inhibited by I. PU±SO is a generic integrate-and-®re element and

receives excitatory input from PU±SP and PU±SYN, and IO,

re¯ecting cf-input. The activity of PU±SO forms the output of the

modelled PU, inhibiting DN and activating CRpathway. The meta-

bolic postsynaptic responses in Purkinje cell dendrites to parallel ®bre

stimulation are represented by PU±SYN. Unlike a generic integrate-

and-®re neuron, PU±SYN does not emit spikes but shows continuous

dynamics according to:

Ai(t) = H(Vi(t) ± qA) Vi(t) (7)

Due to a high persistence, which will be referred to as bSYN, PU±SYN

shows a prolonged response to a CS-related pf-input according to

equations 1 and 3. In our model this prolonged response constitutes

the intrinsic memory trace for the CS and the eligibility trace for

synaptic changes.

The weight of the synapse formed between parallel ®bre and

Purkinje cell, the pf±PU-synapse, is de®ned as the connection

strength between PU±SYN and PU±SO and can be altered by LTD

and LTP. Synaptic changes can only be induced while there is an

active stimulus trace of a CS (i.e. APU-SYN > 0). In this case, at any

simulation timestep the induction of LTD and LTP depends on the

summed excitatory input to PU±SO (see equation 1) according to:

wij�t � 1�
�
�wij�t�
wij�t�

if Ei 2 �ELTD
min ; ELTD

max �
otherwise

�8�

wij�t � 1�
�

wij�t� � ��wmax
ij ÿ wij�t��

wij�t�
if Ei 2 �ELTP

min ; ELTP
max �

otherwise
�9�

The values de®ning the ranges in which LTD is triggered, E LTD
min and

ELTD
max, and the rate constant for LTD, e, were chosen to allow exactly

one strong depression event as the result of a cf-stimulus following a

pf-input. The values de®ning the ranges in which LTP is triggered,

ELTP
min and ELTP

max, and the rate constant for LTP, h, were chosen to allow

several weak potentiation events following a pf-input. As a result, pf

stimulation alone leads to a weak net increase in the connection

strength of the pf±PU-synapse, while pf-stimulation followed by cf-

stimulation leads to a large net decrease. Thus LTD and LTP,

respectively, decrease and increase the excitatory drive from PU±SYN

to PU±SO.

Two response modes of the circuit

To support the learning mechanism outlined in the previous section

the model needs to account for the acquisition of a pause in Purkinje

cell activity following a CS, required to allow rebound excitation in

the deep nucleus (see Fig. 1). For such a pause to occur, the tonic

activity of Purkinje cells must be suppressed. In our model, PU±SP is

suppressed by I, where I represents the inhibitory interneurons in the

cerebellar cortex (see Fig. 2). One central assumption of our model is

that the inhibitory effect of I onto PU following pf-activation is

matched to the duration of the CS-trace, i.e. as long as there is ongoing

activity at PU±SYN, I inhibits PU±SP. Whenever there is no active CS-

trace the output of PU is determined by PU±SP and supplies tonic

inhibition to DN. A pf-signal switches PU into a mode where its output

is no longer driven by PU±SP but only by the CS-related input. Thus,

the PU operates in two modes: a default, spontaneous mode and a CS-

mode. Only in the CS-mode can synaptic changes be induced, can

rebound excitation of the DN occur and thus can a CR be triggered. The

properties of the model components are illustrated by cell traces before

(Fig. 3A) and after (Fig. 3B) a CR is expressed. In summary, we based

the design and implementation of our model on several assumptions on

the functioning of cerebellar components proposed in the current

literature. In simulated conditioning experiments and robot studies we

evaluated our hypothesis that the combination of these assumptions

supports associative learning

Simulated conditioning experiments

The aim of the simulated conditioning experiments was to understand

how central circuit parameters in¯uence the learning performance of
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FIG. 3. Learning-related response changes in the model. The most relevant
neural responses to a CS±US pair (ISI of 100 ts) are presented for (A) a trial
before signi®cant learning occurred and (B) when a correctly timed CR is
expressed. A CS-related pf-signal (1) evokes a prolonged response in PU±
SYN, the CS-trace (3). While there is an active CS-trace, I is active (4) and
inactivates SP (5). In the CS-mode the membrane potential of PU (6) is
driven by the relayed CS-input. Only in this CS-mode can synaptic changes
be induced and a pause in PU spiking occur. (A) In Trial 1 the US-related cf-
input (2) occurs while there is an active CS-trace (3), in this case following
the CS-related pf-input (1) with an ISI of 100 ts. These conditions induce
LTD (not illustrated in the ®gure). Because the PU membrane potential
remains above spiking threshold, PU is active (7) and supplies constant
inhibition to DN while in the CS-mode. Thus, DN cannot repolarise (8) and
remains inactive (9) so that no CR is triggered (10). (B) Later in the
experiment (Trial 51), the synaptic weight of the pf±PU-synapse has been
reduced due to previous LTD. As a result, the PU potential (6) falls below
the spiking threshold, which leads to a pause in PU spiking (7). DN
membrane potential repolarises (8), so that rebound spikes are emitted (9).
This rebound excitation triggers a CR (10). DN inhibition of IO prevents US-
related cf-activity (2). Thus, although a US signal is still presented to the
circuit, the reinforcing US pathway is blocked. These conditions induce LTP
(not illustrated in the ®gure). The direction of change in the synaptic ef®cacy
following a CS is thus dependent on the occurrence of a US as well as on the
activity in the olivo-cortical-nuclear loop.
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the model. The effect of the relative strength of LTD or LTP was

studied varying the rate constant for LTD, e, or the rate constant for

LTP, h, respectively. Furthermore, circuits with different persistence

of the CS-trace, i.e. varying in their value of PU±SYN, bSYN, were

tested. CS and US were represented as short activations (A = 1 for 1

simulation timestep) of CSpathway (CS pathway upstream of pons)

and USpathway (US pathway upstream of inferior olive), respect-

ively. Responses in CRpathway were counted as CRs if they occurred

before the presentation of the US.

Acquisition experiments

An acquisition experiment consisted of 10 blocks of 10 trials each. In

the ®rst nine trials of a block the CS preceded a US with a ®xed ISI

(CS±US trials). In the last trial of a block the CS was not followed by

a US (CS-alone trial).

The acquisition performance of the model is illustrated in Fig. 4 for

an ISI of 100 simulation ts. The three curves allow a comparison of

the learning performance of model circuits varying only in their value

of the rate constant for LTD, e. The acquisition curves of the three

circuits show several common properties. None of the circuits elicits

a CR within the ®rst two blocks. Over the next few blocks there is a

rapid increase in the percentage of elicited CRs. All circuits reach a

maximum value of 100% CRs per block. Once this maximal value is

reached the percentage of CRs per block ¯uctuates between 90 and

100%. The depicted curves approximately follow an S-shape similar

to acquisition curves typically obtained in behavioural conditioning

experiments (Bower & Hillgard, 1981).

When comparing the three graphs in detail it is apparent that the

value of e has a strong impact on the acquisition behaviour. The

maximal percentage of CRs per block (and the ®rst CR, not explicitly

shown) is expressed earlier in the training procedure for lower values

of e. Thus, the lower the chosen value of e, the stronger the LTD (see

equation 8) and the faster the acquisition of a correctly timed CR.

Extinction experiments

In acquisition experiments using an ISI of 100 ts, we determined that

a circuit elicits the maximal rate of CRs if the synaptic weight of the

pf±PU-synapse has been reduced by LTD to 0.2052 (data not shown).

In extinction experiments this value was used as initial synaptic

weight and 10 blocks of 10 CS-alone trials were presented.

The extinction performance of the model is illustrated in Fig. 5 for

an ISI of 100 ts. The three curves allow a comparison of the

extinction behaviour for three model circuits varying only in their rate

constant for LTP, h. Initially 100% CRs per block are expressed but,

over a number of blocks, the percentage of CRs decreases signi®-

cantly until no more CRs are elicited. When comparing the three

graphs in detail it is apparent that the value of h strongly in¯uences

the extinction behaviour. The smaller the value of h, the later a block

with less than 100% CRs occurs and the later the CR is completely

abolished. Thus, the higher the chosen value of h, the stronger the

LTP (see equation 9) and the faster the extinction of a CR.

Adaptation of PU response duration

The learning mechanism underlying acquisition (and extinction) can

be studied in more detail by examining the adaptation of the PU

response to a CS (Fig. 6). As discussed above (see Fig. 3), the

persistence of the CS-trace, bSYN, de®nes how long PU is in the CS-

mode following pf-activity. When in the CS mode, PU in the naive

circuit constantly inhibits DN but training leads to a gradual

shortening of the PU response duration until a pause in PU spiking

allows for DN rebound excitation to trigger a CR. Thus, the

acquisition and timing of the CR is re¯ected by changes in the PU

response duration following the CS.

The change in PU response duration is illustrated for an acquisition

experiment with a training ISI of 60 ts for three circuits varying only

in their persistence of the CS-trace, bSYN (Fig. 6A). The initial

excitatory response duration to a CS is longer for higher values of

bSYN (i.e. it lasts 65, 127 and 187 ts for the circuits with a value of

bSYN of 0.970, 0.985 and 0990, respectively). All curves initially

show a signi®cant reduction in the PU response duration (label 1 in

Fig. 6A). Subsequently the response duration stabilises (label 2). The

three curves eventually converge to the same response duration, i.e.
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FIG. 4. The rate constant for LTD, e, determines the speed of the
acquisition of a CR. Comparison of the acquisition behaviour of circuits
with values for e of 0.965 (dashed line, diamonds), 0.975 (solid line, stars)
and 0.985 (dashed±dotted line, circles). The percentage of CRs is plotted
over 10 blocks of 10 CSs of an acquisition experiment for an ISI of 100 ts.
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FIG. 5. The rate constant for LTP, h, determines the speed of the extinction
of a CR. Comparison of the extinction behaviour of circuits with values for
h of 0.0001 (dashed line, diamonds), 0.0002 (solid line, stars) and 0.0004
(dashed±dotted line, circles). Initially, the weight of the pf±PU-synapse was
set to 0.2052 allowing for the expression of a CR for a training ISI of
100 ts. The percentage of CRs is plotted over 10 blocks of unreinforced
CSs.
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50 ts, which allows rebound excitation of DN just before the US is

presented. This re¯ects the fact that the same anticipatory CR timing

is acquired by all three circuits.

Figure 6A shows a direct relationship between the initial response

duration of PU to a CS and the number of trials required to elicit a

correctly timed CR. The higher the persistence of the CS-trace, bSYN,

the longer the initial PU response duration to a CS and the more the

synaptic weight has to be depressed before a CR can be triggered.

Therefore, if all other parameters are kept constant, the higher the

value of bSYN, the more trials are needed before the response duration

of PU is adapted to a given ISI.

After the acquisition of a correctly timed CR, the response duration

of PU does not have a ®xed value but ¯uctuates slightly (Fig. 6B).

Whenever a CS±US pair is presented and no CR is expressed, pf- and

cf-activation of PU coincide and trigger LTD. The resulting decrease

in synaptic weight is re¯ected by a strong decrease in PU response

duration (see arrow labelled LTD in Fig. 6B). However, if a CR is

expressed, DN rebound excitation which triggers the CR also inhibits

IO. By this negative feedback mechanism US-related cf-activation is

prevented. Consequently, the CS±US pair does not lead to coincident

pf- and cf-activation of PU, but to pf-activation alone. Thus, if a

correctly timed CR is expressed, the induction properties for LTP, not

those for LTD, are met. LTP results in a slight increase in the synaptic

weight which is re¯ected by a gradual increase in PU response

duration over trials (see arrow labelled LTP in Fig. 6B). Only when,

after several trials, DN activity is too late to prevent US-related cf-

activity, LTD is induced again. Thus, after a correctly timed CR has

been acquired, there are regular ¯uctuations in CR latency caused by

the ongoing interaction of LTD and LTP. This mechanism implies

that a US cannot always be prevented although the CR timing is

adapted overall to the training ISI.

Robot associative learning experiments

To analyse the performance of the model at the behavioural level, a

mobile robot was interfaced to the circuit. The learning behaviour of

the model was evaluated by observing the behaviour of the robot in

an unsupervised obstacle avoidance task. In robot experiments CS

and US occurrences were not controlled by an experimenter; the

stimuli occurred purely as a result of the interaction of the learning

system with its environment. In standard classical conditioning

experiments, as well as in our simulated conditioning experiments,

CS and US are presented in a ®xed temporal relationship. It is unclear

to what extent this constant ISI approximates the temporal relation-

ship between CS and US under realistic conditions where ¯uctuations

in their temporal coupling can be expected. Our robot experiments

allowed us to investigate this issue.

Experimental set-up

The experiments were performed using a Khepera microrobot

(K-team, Lausanne, Switzerland; Fig. 7A). The robot was equipped

with a set of basic unconditioned re¯exes triggered by stimulation of

the (proximal) infra-red (IR) sensors. Activation of these sensors (US)

due to the collision with an obstacle triggered a turn (UR) of » 110° in

the opposite direction. In addition the camera mounted on the robot

constituted a distal sensor. In a separate process, cells with receptive

®elds much like complex cells in the visual cortex responded to

certain spatial frequencies in the camera picture. The activity of a cell

responding to a spatial frequency of » 0.16 periods per degree

signalled the initially neutral CS. Visual CSs and collision USs

(stimulation of two frontal IR sensors) were conveyed to CSpathway

and USpathway of the cerebellar circuit, respectively (each stimulus

resulting in an activity of A = 1 for 1 ts). The activation of

CRpathway (activity of A = 1 for 1 ts) triggered a speci®c motor

CR, i.e. a strong (» 150°) turn.

The obstacle avoidance task

The robot was placed in a circular arena with a striped border

(Fig. 7B) exploring its environment with a constant speed. Thus,

when the behaviour is purely UR-driven, collisions with the wall of

the arena occur regularly. A spatial frequency CS was detected at

some distance when the robot approached the wall (Fig. 8A). Shortly

afterwards, the collision with the wall stimulated the frontal IR

sensors triggering a US (Fig. 8B). Hence, as in conditioning

experiments, the CS was correlated with and predicted the US.

However, the ISIs of these stimuli were not constant but showed

some variability under these uncontrolled conditions, e.g. due to noise

in sensor sampling as well as the precise angle at which the robot

approached the wall (Fig. 9). The aim of the robot studies was to

determine whether the model circuit could support behavioural

associative learning, i.e. reduce the number of collisions by

adaptively timed CRs, under these less controlled, noisy, real-world

conditions.

Alterations of the model circuit

Two elements needed to be added to alleviate shortcomings of the

model under real-world conditions. Firstly, in the early learning

phase, a CR could be expressed after a US had already been triggered.

In previous simulation studies these long-latency responses would

also occur, but were by de®nition excluded from the analysis. Their

impact in robot experiments led to undesirable behaviour that was

prevented by adding an inhibitory connection from IO to CRpathway.

Secondly, the response timing acquired at the circuit level had to

be matched to the required timing at the behavioural level. To

compensate for transduction delays from the occurrence of a CR

signal in CRpathway of the cerebellar circuit to the completion of the

CR (turning response) a delay of 15 ts was added to the inhibition

from DN to IO. These examples illustrate how the real-world

evaluation of a model may reveal limitations of a model not identi®ed
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FIG. 6. Change of the PU response duration to a CS. (A) The excitatory
response duration (in simulation timesteps, ts) is plotted over 100 trials of
an acquisition experiment for an ISI of 60 ts (indicated with dotted line).
Three circuits varying in the persistence of their CS-trace, i.e. bSYN of 0.970
(dashed line), 0.985 (solid line) and 0.990 (dashed±dotted line), are
compared. For explanation of labels 1 and 2 see text. (B) Close-up of
¯uctuations in PU response duration after a CR has been acquired
(bSYN = 0.985). See text for explanation.
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in simulations. Possible analogous neural substrates are explored

further in the Discussion.

Observable change in behaviour

Associative learning mediated by the cerebellar model signi®cantly

altered the robot's behaviour in the obstacle avoidance task (Fig. 10).

At the beginning of the experiment, when the behaviour was

determined by URs, the robot drove forward until it collided with the

wall and only then performed a turn (Fig. 10A). Later in the

experiment the robot usually turned just before it would collide with

the wall so that regions close to the wall were avoided (Fig. 10B).

Thus, associative learning reduced the number of collisions in the

obstacle avoidance task. The robot performed signi®cantly more

successfully when exploiting the associative properties of the model

than when relying purely on its URs.

The position of the robot when CSs, USs and CRs occurred in these

two periods of the experiment can be examined at the circuit level

(Fig. 10C and D). The ®rst 10 CSs were all followed by a US which

triggered a UR (Fig. 10C). While the ®rst seven CSs did not trigger

CRs, later CSs, i.e. CSs 8±10, elicited CRs at the circuit level.

However, at the behavioural level these ®rst CRs did not avoid the

occurrence of a US. They were triggered with a long latency with

respect to the CS (indicated by dotted lines), i.e. when the robot was

already so close to the wall that a CR-turn could not prevent the

collision. After 30 CS-events (Fig. 10D), all CSs triggered CRs. The

latencies of these CRs with respect to the CSs were much shorter than

those of the ®rst CRs. Thus, most turns were performed some distance

from the wall, preventing a subsequent collision. For those antici-

patory responses the CS was not followed by a US. Note that the CR

was not triggered immediately after a CS was detected, but rather the

CR latency was adjusted with respect to the CS in such a way that the

CR-turn just prevented the collision-US.

The timing of CRs

The increase in the performance supported by the model can be

explained by the changes in ISI (or CS±US interval) and CR latency

(or CS±CR interval) over the course of an experiment on a trial-by-

trial basis (Figs 11 and 12). At the beginning of an experiment, when

the behaviour of the robot was purely driven by URs, the CS was

generally followed by the US and the ISIs ranged from 58 to 65 ts

(Fig. 12A). The ®rst CR was triggered with a long latency with

respect to the CS, i.e. 63 ts. Because such long-latency CRs could not

avoid the collision with the wall, the next few CSs were still followed

by USs. As a result of LTD caused by these reinforced CSs, the CR

latency further decreased, until most CRs prevented the occurrence of

a US. Thus, associative learning lead to the expression of CRs, which

prevented the occurrence of most USs. The strong decrease in CR

latency at the beginning of the experiment was followed by slight

¯uctuations in the CS±CR interval (Fig. 11). If consecutive CSs were

not followed by a US, there was a gradual increase in the CS±CR

interval (Fig. 12B). This increase was due to the accumulative effect

of LTP induced by several unreinforced CSs (as discussed for

Fig. 6B). However, if a CS was followed by a US there was a strong
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FIG. 7. The robot and its environment. (A) Khepera microrobot. The robot consists of a base plate with two motors and eight IR sensors, the processor
module and an additional camera board carrying a colour camera. The robot has an diameter of 50 mm and a height of 80 mm. It was tethered to the host PC
via a 2-m-long cable. To allow the recording of its trajectories, an IR diode was mounted on the robot. (B) The robot environment. The robot experiments
were performed in a circular arena with a diameter of 60 cm, surrounded by a 15-cm-high Plexiglas wall. Paper with a pattern of vertical, equally sized black
and white bars was placed against the wall. Patterns with bar widths of 9.5, 11 and 12.5 mm were used in the experiments.
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FIG. 8. Detection of CS and US. Eight IR sensors constitute the proximal
sensors of the robot, the camera constituting the distal sensor. (A) A CS (a
speci®c spatial frequency in the visual ®eld of the camera) is detected a
certain distance from the wall. (B) A US (the stimulation of the two frontal
IR sensors) is detected directly at the wall.
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decrease in the CS±CR interval (Fig. 12C) due to the induced LTD.

Thus, the CR latency was constantly adapted to the current

experiences in the environment. The ISIs occurring later in the

experiment were generally shorter than those in the beginning of the

experiment. The timing of the CRs was at ®rst suitable to avoid USs

for long ISIs, which occurred primarily when the robot drove

perpendicularly toward the wall (i.e. if its trajectory formed an angle

of » 90° with the tangent of the arena wall; see Fig. 9). USs for

shorter ISIs, i.e. those occurring with more shallow angles of

approach, could only be avoided with lower synaptic weights and

thus required more LTD. It was mostly the few remaining USs

occurring under short ISIs that maintained the short CR latency via

the induction of LTD.

Avoidance of USs

In Figs 11 and 12 all CRs are plotted that were triggered at the circuit

level. Although after the rapid learning phase every CS generally

elicited a CR, some CRs did not prevent the occurrence of a US. To

obtain a more meaningful evaluation of the performance in the

obstacle avoidance task, we introduced the measure of `effective

CRs', which includes only CRs that prevent the US occurrence

(Fig. 13). In unconditioned re¯ex-driven behaviour, generally every

CS is followed by a US. The percentage of effective CRs is

equivalent to the percentage of USs that could be prevented compared

to UR-driven behaviour. After the rapid learning phase the percentage

of effective CRs per block ¯uctuated between 70 and 100%, meaning

that between 7 and 10 out of 10 expected USs could be anticipated.

Over the whole experiment » 80% of the USs expected for UR-driven

behaviour were successfully anticipated by the model. As in

simulated experiments, the learning curve is of S-shape, indicating

a rapid initial learning phase followed by ¯uctuations around

asymptotic performance.

20 15 10 5 0 5 10 15 20

FIG. 9. Region in which a CS can be detected for the pattern with a bar
width of 9.5 mm. Half of the environment is displayed; numbers indicate
the distance (in cm) from the centre of the environment on the midline.
Whether and where a CS can be detected (indicated by banana-shaped
region) depends on the angle of approach of the robot to the wall. When
approaching the wall with an angle steeper than » 60° no CS is detected.
The further from the wall the CS occurs, the longer the ISI.
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FIG. 10. Learning performance of the robot. (Top row) Trajectories of the robot, arrows indicating beginning of trajectories. (A) Beginning of the experiment
(CS 1±10, occurring after » 0±5 min). (B) Later in the experiment (CS 31±40, occurring after » 15±20 min). (Bottom row) The same periods of the
experiment examined at the circuit level. The symbols indicate the position of the robot where CSs (diamonds), USs (stars) and CRs (circles) occurred. CS±
US pairs are connected by dashed lines, CS±CR pairs by dotted lines. (C) CS 1±10. (D) CS 31±40.
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Generalisation of results

Simulated conditioning experiments are deterministic and give

exactly the same learning curves when repeated. Successive runs of

a robot experiment in the real world differ, in particular due to the

variations that occur in the ISI distribution. To assess whether there

were clear trends in the learning performance we studied the averaged

data of ®ve experiments (Fig. 14).

The average number of effective CRs over blocks (of 10 CSs)

shows an initial fast learning phase followed by a stable phase with

much higher values of the percentage of effective CRs (Fig. 14A). On

average » 75% of the USs can be anticipated after the rapid learning

phase. The changes in the average CS, US and all CR occurrences

over time similarly illustrate an increase in the number of CR

occurrences followed by a decrease in the number of US occurrences

(Fig. 14B). After an initial rapid learning phase, every CS triggered a

CR and USs occurred on average at an approximately constant rate

which is again signi®cantly lower than when behaviour was re¯ex-

driven. The robot travelled less distance until the detection of the next

CS because areas close to the wall were avoided. This caused a slight

increase in the number of CS occurrences over time. To illustrate

average changes in CR latency and ISI, the CS±CR interval and the

CS±US interval were plotted over blocks of 10 CSs (Fig. 14C). As

previously discussed, the average ISI decreased slightly over the
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FIG. 12. Detailed plots of the same experimental data as depicted in
Fig. 11. CS±US intervals (ISIs) are indicated with stars, CS±CR intervals
(CR latencies) are indicated with circles. (A) Initial rapid-learning phase.
(B) Period in which no USs occurred. (C) Effect of US occurrences.
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FIG. 13. Effective CRs (CRs that prevent the occurrence of a US).
Percentage of effective CRs per block of 10 CSs during the experiment
illustrated in Figs 11 and 12.
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FIG. 14. Average of ®ve experiments to illustrate trends in learning
behaviour. Experiments lasted 20 000 ts (» 40 min) in an environment with
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course of the experiment, because those USs that would occur for

long ISIs could be avoided most effectively. The CR latency with

respect to the CS decreased quickly at the beginning of the

experiment, but stabilised after a few blocks. The ®nal adapted

CS±CR interval is » 15 ts shorter than the ISI of the remaining CS±

US pairs. This interval is equivalent to the time required from the

occurrence of a CR at the circuit level to the performance of a

complete CR turn. The averaged variables plotted show little

variation (in their minimum and maximum values), indicating that

the course and the overall effect of learning was similar for different

runs of an experiment. Thus, the learning performance previously

discussed for one long experiment (Figs 11±13) can be generalized.

Shifts in ISI distribution

The next experiment was designed to test whether the timing of CRs

could be adapted to environmental changes that cause major shifts in

occurring ISI ranges (Fig. 15). These ISI shifts were induced by

changing the bar widths of the pattern of the arena border. The wider

the bar width of the pattern, the further from the wall the spatial

frequency CS is detected and thus the longer the occurring ISIs. In

particular, bar widths of 9.5, 11 and 12.5 mm resulted in average ISIs

of » 39, 48 and 56 ts, respectively. A change from a bar width of 11

to 12.5 mm was used to cause a large increase in the average ISI after

20 000 ts. A change from a bar width of 12.5 to 9.5 mm resulted in a

large decrease in the average ISI after 40 000 ts.

The average results of ®ve experiments show three distinct plateau

values in the average ISI resulting from the three different patterns

used (Fig. 15B). After less than four blocks the CR latency was

adapted to the new ISI range, i.e. » 10±15 ts shorter than the average

CS±US interval. The sudden increase in the average ISI after

20 000 ts resulted in a short-term decrease in the number of USs

detected per time bin (Fig. 15A). The circuit was previously trained

to shorter ISIs and thus, immediately after the pattern transition, CRs

were triggered early with respect to the new ISI. Thus the ®rst CRs

following the pattern transition were executed a signi®cant distance

from the wall, preventing almost all USs. However, the consecutive

unreinforced CSs induced LTP. This lead to a slow increase in the CR

latency with respect to the CS until again a stable number of USs

occurred per time bin. In principle, this process is equivalent to a

slow extinction of the previously acquired timing of a CR. If the

ISIs suddenly decrease (after 40 000 ts), the learning process is

equivalent to that during acquisition. Immediately after the pattern

transition, the latency of the previously acquired CR is not

suf®cient to prevent the occurrence of USs, because CRs would

be triggered too late. As a result, immediately after the second

pattern transition the number of detected USs increased. However,

reinforced CSs trigger LTD, leading to a decrease in the CR latency

with respect to the CS. These results show that the continuous

interaction of LTD and LTP leads to a circuit which can, within a few

blocks of training, readapt the timing of the CR to major changes in

the environment.

Discussion

We have presented a neural model which includes anatomical and

physiological constraints of the cerebellar microcircuit while consti-

tuting a suf®ciently reduced description to allow real-time simula-

tions combined with real-world devices. In simulated classical

conditioning experiments we have demonstrated that the model

supports acquisition and extinction of accurately adaptively timed

CRs. This performance is controlled by a limited number of model

parameters, i.e. the rate constants for LTD and LTP and persistence of

the CS-trace. Moreover, using a mobile robot we have demonstrated

that the model microcircuit can support effective associative learning

under less controlled, real-world conditions.
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9.5 mm after 40 000 ts. (B) ISI (CS±US interval, stars) and CR latency (CS±CR interval, circles) over blocks of 10 CSs measured in simulation timesteps
(ts). For all ®ve experiments the transition of patterns took place between blocks 11 and 12 and blocks 22 and 23 (indicated by dashed vertical lines).

The cerebellum in action 1371

ã 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 16, 1361±1376



Models of cerebellar information processing

Since Marr (1969) and Albus (1971) proposed functional models of

the cerebellum based on its unique anatomical organization more than

30 years ago, many computational models of cerebellar-mediated

classical conditioning have been suggested (for a recent review see

Medina & Mauk, 2000). These models range from algorithmic,

functional top-down models (e.g. Moore & Choi, 1997) to detailed

bottom-up models (e.g. Medina et al., 2000; Fiala et al., 1996). Our

model constitutes a compromise between these two approaches, in

that it represents an abstract and functional implementation of

assumptions on cerebellar-mediated learning that are strictly based on

biological ®ndings. Our goal was to design a minimal model which

extracts the principles of cerebellar information processing and to

understand how certain aspects of the underlying learning mechanism

affect the learning performance. Thus, the purpose of our studies was

neither to mimic detailed dynamics or mechanisms of the underlying

cellular responses as closely as possible nor to generate learning

curves that match exactly those obtained in behavioural studies. This

explains why we did not attempt to match simulation time to time

measured in biological experiments.

Many of the assumptions embedded in our model have also been

included in other models of cerebellar-mediated learning. Both

bidirectional synaptic changes of the synapses formed between

parallel ®bres and Purkinje cells and negative feedback control of

these synaptic changes are common to several recent models in this

context (Spoelstra et al., 2000; Medina et al., 2000; Gluck et al.,

2001).

In particular, a model proposed by Barto and colleagues, which

also focuses on a single Purkinje cell, shows at ®rst glance several

similarities to the model described in this paper (Barto et al., 1999).

Initially, Barto and Sutton applied reinforcement-learning algorithms

established in the ®eld of machine learning to models of classical

conditioning (Barto & Sutton, 1982). In their more recent work, they

attempt to match functional aspects of temporal difference algorithms

to the cerebellar circuitry (Sutton & Barto, 1990; Barto et al., 1999).

As in our model, an error signal is signalled by the climbing ®bres

and drives a temporally asymmetric form of plasticity at the synapses

formed between parallel ®bres and Purkinje cells. Based on earlier

work by Klopf (1982), this asymmetry is mediated by an eligibility

trace in parallel ®bres, similar to our CS-trace. However, while the

amplitude of the eligibility trace in the model of Barto and colleagues

de®nes the amount of synaptic change induced, the CS-trace in our

model only determines whether the learning rules for LTD and LTP

are activated. The model suggested by Barto and colleagues focuses

at the cerebellar control of movements and includes the cerebellar

interaction with a (formalised) premotor network. The model requires

complex and prede®ned parallel ®bre inputs which encode speci®c

variables, such as the current position and resting position of the

simulated limb. The inversion of the inhibitory output of Purkinje

cells to a motor command signal is achieved by a cortico-rubro-

cerebellar network while, in our model, this inversion is caused by the

rebound depolarization in the deep nucleus. The model output is

stabilised, not due to the activity in the negative feedback loop

formed between inferior olive, cerebellar cortex and deep nucleus as

in our model, but by bipolar climbing ®bre error signals, i.e. positive

and negative signals induce left- and rightward corrections of

movements, respectively. In our model the climbing ®bre signal is

more simple, signalling the occurrence of an unpredicted event.

Reinforcement models are popular among learning theorists, but a

prede®ned discrete input space and a bipolar error signal are strong

assumptions (Schultz et al., 1997; Schultz & Dickinson, 2000). Our

model shows that the cerebellar component of classical conditioning

can be accounted for without making these assumptions.

Interaction of components

Although we did not include plasticity within the cerebellar nucleus

in our model, our studies demonstrate that in order to understand

cerebellar-mediated timing of CRs both cortical and nuclear

components need to be taken into account. The expression of the

CR depends on the rebound excitation in DN. The timing of this DN

response is de®ned by the onset of the acquired pause in PU activity

following CS presentation which is modulated by LTD and LTP of

the pf±PU-synapse. However, in the absence of DN±IO inhibition,

these synaptic changes would not lead to stable CR timing.

Presentation of reinforced CSs after the acquisition of a correctly

timed CR would continue to induce LTD and further reduce the CR

latency. Hence, to stabilize the correct duration of the acquired pause

in PU activity, LTD must be prevented once a correctly timed CR is

expressed. This is achieved by the negative feedback from DN to IO

because LTP is induced if US-related cf-activity is prevented. Thus,

the negative feedback loop formed between microcomplexes of

interconnected groups of cells in the inferior olive, Purkinje cells and

cells in the deep nucleus is crucial for the stabilization of the CR

timing.

Implication of the learning mechanism

The implemented learning mechanism is based on the continuous

interaction of LTD and LTP. This leads to two important features of

the asymptotic learning performance of the model. Firstly, while the

timing of CRs is in general adapted to the training ISI, there will

always be slight ¯uctuations. Secondly, some USs will intermittently

be anticipated incorrectly. If the synaptic weight changes due to LTD

are relatively strong in comparison to LTP, learning is fast and few

CSs will fail to elicit a CR. However, this also means that extinction

of a previously learned CR and readaptation to long ISIs can only be

acquired slowly. Thus, there is a trade-off between the adaptability of

the circuit and the stability of its performance.

A functional analysis of model elements

Our modelling approach allows us to ascribe functional roles to

certain model elements. In our model, cf-signals the occurrence of a

prediction error to PU (as suggested in Bloedel & Bracha, 1998;

Schultz & Dickinson, 2000), while activity in the deep nucleus can be

interpreted as an internal prediction of the occurrence of a US. The

integration of signals pertaining to the prediction and occurrence of

the US takes place in the IO. It has been argued that such integration

of inhibitory deep nucleus and excitatory US-related signals could

occur at the level of the olivary glomeruli (De Zeeuw et al., 1998).

This is in accord with ®ndings that US-evoked activity in the inferior

olive decreases during the acquisition of a CR and increases again

following the extinction of a CR (Hesslow & Ivarsson, 1996; Sears

and Steinmetz, 1991; Medina et al., 2002). LTP and LTD serve

functionally as a continuous check for the current internal US

prediction and can only constitute a highly adaptive functional

learning mechanism under the control of the nuclear-olivo-cortical

feedback loop (Hesslow and Ivarsson, 1996). The control of the

reinforcing signal by the negative feedback from the deep nucleus to

the inferior olive could explain why cerebellar-mediated classical

conditioning does not obey the law of effect (Thorndike, 1898;

Gardner & Gardner, 1988). Because the US-related signal is blocked

by deep nuclear inhibition of the inferior olive, the timing of an

acquired eye-blink CR is stabilised not only when the behavioural CR

actively prevents the aversive US (i.e. eyelid closure to avoid airpuff
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US) but also if the US cannot be avoided (i.e. electric shock US)

(Gormezano et al., 1983).

Associative learning vs. simulated conditioning experiments

The strength of our approach lies in the possibility of elucidating how

the suggested underlying mechanisms at different levels of descrip-

tion could interact and scale up to behavioural learning. Models of

cerebellar learning have been evaluated using real-world devices in

the past (Van der Smagt, 2000), e.g. to study trajectory planning

(Kawato, 1999) or smooth pursuit (Huang et al., 2000; Coenen et al.,

2001). However, in these studies, the cerebellar circuitry modulates

motor commands that are generated elsewhere and parallel ®bre

signals carry complex, prewired information. In our model of

cerebellar-mediated classical conditioning, the cerebellum receives

simple CS representations and triggers the expression of motor

responses. This is in accord with data demonstrating that motor CRs

can be learned in decerebrated animals (Mauk & Thompson, 1987).

Associative learning, when CS and US occurrences arise from the

interaction of the learning system with its environment, differs in at

least two important aspects from (simulated) classical conditioning

experiments. Firstly, the ISIs vary. This variability can be attributed

to the interaction of the robot with its environment (i.e. the angle at

which the robot approached the wall), to intrinsic properties of the

behaving system (e.g. noise in sensor sampling), and to the learning

process itself. In the simulated classical conditioning experiments, the

required CR timing was well de®ned, i.e. the CS has to trigger a CR

with a latency just smaller than the ISI. However, in robot studies,

successful learning was de®ned by the avoidance of collision USs

and, as a result of unpredictable ISI variations, the required CR

timing was less clearly de®ned. Secondly, in simulation studies, the

reinforcing cf-signal is entirely controlled by the inhibition of IO by

DN. However, in robot studies the expression of a CR turn may, in

addition, actively prevent the occurrence of a collision US at the

behavioural level. Despite these differences in the learning condi-

tions, the learning behaviour of the circuit in robot experiments is in

many ways similar to that observed in simulated conditioning

experiments. There is an initial rapid learning phase after which the

performance reaches asymptotic levels. However, in robot studies,

strong and irregular ¯uctuations in the CR timing can be observed.

These ¯uctuations illustrate how the internal US prediction is

constantly adapted to recent experiences in the environment. This

allows the adaptation of the CR timing to minor variability or noise

and to major shifts in the ISI distribution. A gradual decrease in the

ISIs on nonsuccessful trials was observed over time. This can be

understood in terms of the learning mechanisms implemented in our

model. Due to the gradual acquisition of a pause in PU activity, at

®rst only US occurrences with long ISIs can be prevented. Hence,

only after these events are captured by the learning system can shorter

ISIs be acquired. In summary, our robot experiments demonstrate that

the mechanisms of cerebellar conditioning in the context of the

nuclear-olivo-cortical loop support robust and adaptive learning in a

real-world system which imposes variable ISIs. The adaptation of the

CR latency is predominantly driven by short-latency USs that were

not anticipated correctly.

Alterations to the model circuit

In order to adapt our model of the cerebellar microcircuit to the

performance in the real world, two functional elements had to be

added. Firstly, we observed that in the initial learning phase CRs

could be expressed after a US had already triggered a UR. However,

animal studies indicate that the expression of CR and UR may

overlap (Gormezano et al., 1983), but not that a CR occurs after a

UR. This suggests that the cerebellar microcircuit and/or its periphery

includes mechanisms that prevent the expression of a CR after a UR.

In our model this issue was solved functionally by including an

inhibitory connection from IO to CRpathway preventing the expres-

sion of CRs after US-related cf-activation. This solution is in accord

with the notion that climbing ®bre activity may prevent rebound

excitation of cells in the deep nucleus (Hesslow, 1994b). In particular,

it has been shown that single-pulse cortical stimulation following a

train stimulation can inhibit the expression of a CR. Although a

complex spike initially triggers a short temporary pause in simple

spike activity, this pause is, in most cells, followed by a signi®cant

increase in simple spike activity (Sato et al., 1992). It remains to be

studied whether climbing ®bre activation could thereby interfere with

rebound depolarization of cells in the deep nucleus, before a Na+

burst is elicited.

Secondly, when examining the performance of the circuit at the

behavioural level, transduction delays between the robot and the

model circuit had to be taken into account. In particular, there is a

signi®cant delay between the CR triggered at the level of DN and the

action of the effectors, i.e. the complete execution of a motor CR.

Similarly, physiological recordings show that activity of cells in the

deep nucleus occurs » 40±60 ms before a behavioural CR is observed

(McCormick & Thompson, 1984). Hence, the internal timing

acquired at the circuit level has to be matched to the peripheral

timing required at the behavioural level. In our model this was

achieved functionally by adding a delay in the projections from DN to

IO. Spoelstra et al. (2000) also added a delay to the inhibition of the

deep nucleus to the inferior olive in their model of cerebellar-

mediated control of movements to align the cerebellar output with the

error signal within the olivo-cortico-nuclear loop. What the biological

substrate for such a delay could be is unclear and needs further

experimental analysis.

Two modes of operation

One critical assumption embedded in our model is the operation of

PU in two modes: a default spontaneous mode and a CS-mode.

During the spontaneous mode, DN is tonically inhibited by the

spontaneous activity of PU, while CS-related input drives PU output

in the CS-driven mode. Recently, Thompson and associates studied

the effect of two different types of Purkinje cell inhibition onto cells

in the deep nucleus, namely basal and stimulus-activated inhibition

(Bao et al., 2002). The learning mechanism embedded in our model is

in good accord with their ®ndings that basal inhibition modulates CR

expression, while CS-activated inhibition is required for the proper

timing of the CR. While there is no physiological evidence that

Purkinje cells may switch between two modes of operation, dual

response properties have recently been described for other cells, such

as deep nuclear cells (Aizenman et al., 1998; Aizenman & Linden,

1999) and thalamic relay cells (Sherman, 2001). It remains to be

studied whether the activity of cortical interneurons or some intrinsic

mechanism could mediate such a switch in Purkinje cell operation

following a CS.

Future work

Our model focused on the description of a single microcircuit in a

microcomplex. In future work we will investigate how a collection of

these microcircuits can constitute a complete microcomplex. This

requires that the peripheral signals feeding into a microcomplex are

more explicitly modelled (Hansel et al., 2001). In our current model a

representation of the CS is readily available to the circuit. However,

under natural learning conditions such a representation of the CS may

®rst have to be acquired or enforced. In the study of classical
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conditioning two distinct phases of learning are distinguished

(Lennartz & Weinberger, 1992, Mintz & Wang-Ninio, 2001). In a

®rst, fast, nonspeci®c phase an emotional response is acquired by a

process involving the amygdala. In a second, slow, phase discrete

motor responses speci®c to the US are acquired in the cerebellum. We

have proposed that the early nonspeci®c learning phase serves to

identify a CS (Verschure & Voegtlin, 1999). For instance, it has been

shown that the primary auditory cortex quickly enlarges the

representation of tones that are paired with US-derived signals

(Kilgard & Merzenich, 1998). We have previously presented a

biophysically detailed model that can account for this aspect of

auditory conditioning (Sanchez-Montanes et al., 2000). In future

work we will interface our model of CS identi®cation with the model

presented here to realize a more complete account of the neuronal

systems implementing the two-phase theory of classical conditioning.
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Appendix

Soft- and hardware

The model was implementing using the neural network simulation software
IQR421 (Bernardet et al., 2002; noncommercial, developed by P.
Verschure) running in a Linux environment (Redhat 6.1). The simulated
conditioning experiments ran on one computer (Intel Pentium III, 650 MHz;
USA). In robot experiments the processes controlling the cerebellar model,
the robot, the camera mounted on the robot and the tracking camera were
running distributed on four such machines.

Connectivity

Each described model element constitutes a group of 100 cells. All cell
groups were connected one-to-one, except for PU-S0 for which each
element received input from all PU±SYN elements. Thus, each PU receives
input from only one cf but multiple pf. While the set of experiments
described in this paper could have been mediated by a single PU cell with
its afferents and efferents, the complexity of the circuit has been exploited
in subsequent experiments involving multiple CS±US pairs.

Parameter speci®cation

Abbreviations used for model elements are set out in Table 1. The values
of cell parameters used are given in Tables 2 and 3. The cell types refer to
possible settings in IQR421. A rebound threshold, qR, of ±0.19 and a

rebound potential, m, of 1.5 were used for the simulation of the DN. The
hyperpolarized membrane potential was clamped at a value of ±0.23. With
these parameters DN emits spikes 8 ts after its disinhibition.

The value of Wij
max, denoting the maximal (and initial) strength of the

connection between the parallel ®bre and Purkinje cell, was set to 0.4. The
values E LTD

min and E LTD
max were set to 1.1 and 1.5 and the values for E LTP

min and
E LTP

max were set to 0.05 and 0.054. If not explicitly denoted otherwise the
values of the b of PU±SYN, the LTD rate e and the LTP rate h used in the
circuit tested in stimulated classical conditioning experiments were 0.985,
0.985 and 0.0002, respectively. Having established the relationship between
the model's parameters and performance in simulation studies, the model's
parameters could be chosen to allow for the desired fast acquisition and
extinction characteristics for a given ISI. For the robot experiments
presented the values of the b of PU±SYN, the LTD rate e and the LTP rate
h were 0.972, 0.95 and 0.006 (Figs 10±14) and 0.972, 0.94 and 0.002
(Fig. 15), respectively.

TABLE 2. Model parameters

Model element Type w gE gI qA b

PO IntegrateFire 1 1 ± 0.01 0.1
GR IntegrateFire 1 1 ± 0.01 0.1
IO IntegrateFire 1.5 1 3 0.01 0.5
I IntegrateFire 1 1 ± 0.175 0.1
DN Rebound 1 ± 1 0.5 0.97

Description of the neuron types and the values of parameters. w, weight to
connecting cell groups; gE, excitatory gain; gI, inhibitory gain; qA, ®ring
threshold; b, membrane persistence.

TABLE 3. Model parameters of Purkinje cell

Model element Type w gE gI qA b

PU-SP Spontaneous 0.1 ± 3 0.01 0.5
PU-SO IntegrateFire 1 1 ± 0.06 0.1
PU-SYN Linear threshold Changing 1 ± 0.15 Var.

Description of the neuron types and the values of parameters used for
implementation of the three compartments of the modelled Purkinje cell. w,
weight to connecting cell groups; gE, excitatory gain; gI, inhibitory gain; qA,
®ring threshold; b, membrane persistence; Var., variable.

TABLE 1. Model elements

Abbreviation Representing

cf Climbing ®bre
CRpathway CR pathway downstream of deep nucleus
CSpathway CS pathway upstream of pons
DN Deep nucleus
GR Granule cell
I Cerebellar cortical interneurons
IO Inferior olive
mf Mossy ®bre
pf Parallel ®bre
PO Pons
PU Purkinje cell
PU-SO PU compartment: soma
PU-SP PU compartment: spontaneous activity
PU-SYN PU compartment: synaptic regions
USpathway US pathway upstream of inferior olive
bSYN Model parameter: persistence of CS trace
e Model parameter: rate constant for LTD
h Model parameter: rate constant for LTP
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