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Abstract. Encoding, storing, and recalling a temporal sequence of stim-
uli in a neuronal network can be achieved by creating associations be-
tween pairs of stimuli that are contiguous in time. This idea is illustrated
by studying the behavior of a neural network model with binary neurons
and binary stochastic synapses. The network extracts in an unsupervised
manner the temporal statistics of the sequence of input stimuli. When a
stimulus triggers the recalling process, the statistics of the output pat-
terns reflects those of the input. If the sequence of stimuli is generated
through a Markov process, then the network dynamics faithfully repro-
duces all the transition probabilities.

1 Introduction

Our current understanding of the neuronal mechanisms that permit biological
systems to encode and recall temporal sequences of stimuli is still marginal.
In the last decade many studies attempted to relate the problem of encoding
temporal sequences to the generation of associations between visual stimuli [1,
2,3]. Interestingly, in one simple case [4], in which the stimuli were presented
in a fixed temporal order, it was possible to study the neural correlate of this
type of associative memory. Cortical recordings displayed significant correlations
between the patterns of activity elicited by neighboring stimuli in the tempo-
ral sequence. Hence these internal representations of the visual stimuli encode
the temporal context in which stimuli were repeatedly presented during train-
ing. These patterns of activities were stable throughout long time intervals and
have been interpreted as global attractors of the network dynamics [3]. Despite
the fact that the learning rule used by Griniasty [3,5] makes use of only the
information about the contiguity of two successive stimuli, these attractors are
correlated up to a distance of 5 in the temporal sequence, similar to that ob-
served in the experiment of Miyashita [4]. Here we extend these mechanisms to a
more general situation. First, we show that the network in the presence of noise
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of sufficient amplitude can spontaneously jump to a pattern of activity repre-
senting a different stimulus. The pattern of connectivity between the internal
representations of the stimuli encodes the transition probability, and the pre-
sentation of a single stimulus can trigger the recalling of a sequence of patterns
of activity corresponding to temporally correlated stimuli. Noise is exploited as
in [2], and time is essentially encoded in the escape rates from the attractors.
Second, the pattern of connectivity encoding the transition probabilities can be
learned when the network is repeatedly exposed to the temporal statistics of
the stimuli. The transition probabilities are automatically extracted during this
“training phase” and encoded in the synaptic matrix. The learning rule was in-
spired by the one introduced in [3] and it makes use of the information carried
by the current stimulus and by the pattern of activity elicited by the previous
stimulus. A possible mechanism for making this rule local in time has been sug-
gested in [6,5] and relies on the stable activity that is sustained by the network
in the interval between two successive stimuli.

2 The Model

We implemented a recurrent neural network with N excitatory neurons, labeled
by index i, i = 1 . . . N . The state of neuron i is described by the variable Si:
Si = 1 (Si = 0) corresponds to a firing (quiescent) neuron. The network is fully
connected with binary excitatory synapses Jij from neuron j to neuron i [6].
The neuron’s state is updated using the Glauber dynamics (see, for example,
[7]), in which Si=1 with probability gβ(hi) ≡ 1

1+exp(−2βhi)
, where 1/β is the

pseudo temperature of the network and hi =
∑

j JijSj − I the synaptic input, or
field, to the neuron. The global inhibition I dynamically adjusts the activity of
the network. I depends on the fraction F = 1

N

∑
k Sk of neurons that are active

as expressed by the following equation:

I(t + 1) =
{

s0(F (t) − s1), If F > fm

Im If F ≤ fm
(1)

where fm is the threshold for the global activity, and Im the minimum inhibition.
The parameters s0 and s1 are chosen so that s0(f0−s1) = I0, where I0 is usually
chosen between the maximum input to quiescent neurons and the minimum input
to active neurons when the network state corresponds to a learned pattern of
activity, and f0 is the average activity of the learned patterns.

2.1 Learning Rule

Following [8], we implemented learning as a stochastic process. During the pre-
sentation of a pattern ηµ

i , the µ-th pattern of a temporal sequence, the neuron
states are set to Si = ηµ

i and the binary synapses are updated according to the
following rules:

– If both the pre and the post-synaptic neurons are active, then a transition
to the potentiated state occurs with a probability q+.
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– If only one of the two neurons connected by the synapse is active, then
a transition to the depressed state of the synaptic weight occurs with a
probability q−.

– If both the neurons are inactive, the synapse is left unchanged.
– If the pre-synaptic activity imposed by the previous stimulus in the sequence

is high and the post-synaptic activity induced by the current stimulus is
also high, then a transition to the potentiated state of the synaptic weight
Jij : 0 → 1 occurs with a probability q× = λfq+, where λf < 1 (see [6,
5]). This part of the rule allows one to connect events that are separated in
time and to encode the information about the temporal context in which the
stimuli are presented.

In the case of random patterns, if the average activity is f , the probability for
two randomly chosen neurons to be both active is f2, whereas the probability
for the two neurons to have different activities is 2f(1 − f). In order that the
probability for long term depression is approximately equal to the probability of
long term potentiation, we choose q− = fq+

2(1−f) .
The learning of a transition results in making neurons that belong to the

same pattern have a finite probability of providing a nonzero synaptic input to
neurons belonging to a different pattern. In the case where several patterns and
transitions have been learned, the transition probability is shown, for a suitable
choice of the network parameters, to be a monotonically increasing function of
the relative frequency of presentation of the patterns during the learning phase.

2.2 Learning Markov Processes

We assume that the sequence of patterns to be learned is generated according to
a Markov process, that is to a random process in which the probability for which
a pattern is chosen depends only on the immediate preceding chosen pattern.
Given a Markov matrix M , the element Mµν is the probability of transition from
state sµ to state sν . To teach the network to encode a Markov process, a pattern
ηµ

i is randomly chosen from a pool of p patterns. The next pattern ην
i is chosen

according to the transition probability of the Markov process from state sµ to
state sν . The two patterns are presented to the network, which thus learns them
and the transition from the first to the second. This process is repeated until
the synaptic matrix has reached its asymptotic configuration. Alternatively, the
probability for each synapse to be potentiated can be analytically calculated
in the limit for vanishing q+ and a pattern sequence of infinite length [9]. Cal-
culating the weight matrix in this way is computationally less expensive than
on-line learning. Given the auxiliary variables Pij and Qij , which are respec-
tively proportional to the number of events leading to synapse potentiation and
depression, {

Pij =
∑p

µ=1(η
µ
i ηµ

j q+ +
∑p

ν=1(η
ν
i ηµ

j Mµνq×))
Qij =

∑p
µ=1((1 − ηµ

i )ηµ
j q− + q−ηµ

i (1 − ηµ
j )) (2)

the probability for the synapse Jij to be 1 is given by pij = Pij

Pij+Qij
.
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Fig. 1. Transition probabilities as a function of the Markov process transition proba-
bilities for different combinations of β and I0. Upper and lower error bars have been
calculated using the formula in Meyer [10] , with k = 1 and n = 700 (490 neurons,
7 patterns). An increase in β decreases the transition probabilities corresponding to
low Markov transition probabilities and increases those corresponding to high Markov
probabilities. A low I0 or β makes the dynamics less dependent on the connectivity pat-
tern. The corresponding plot is shallower, indicating a poor capability in reproducing
the statistics of the input sequences.

3 Results

The performance of the network was evaluated on a sequence generated by a
Markov chain. The network was able to reproduce the statistics of the input
sequences without an external input. Given an initial pattern of activity, the
network made spontaneous transitions to other patterns with a probability close
to the corresponding Markov chain probability. The performance of the net-
work strongly depended on the temperature 1/β and inhibition I0. The on-line
learning procedure and the analytical derivation of the synaptic matrix led to
qualitatively equivalent results (data not shown).

To evaluate the performance we computed the transition probability matrix
Tµν . This matrix describes the probability that the network makes at some
time t a transition from an initial state highly resembling pattern µ (the overlap
mµ = 1

N

∑
i Siη

µ
i [7] between the network state and pattern ηµ is the maximum),

into a state that resembles maximally pattern ην .
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Fig. 2. Left: performance index Π as a function of I0 and β. Lower values of Π corre-
spond to better performance (Π ≥ 0). Right: mean value of the transition probabilities
(λf = 0.1). Both diagrams show the average over 10 networks with different synaptic
configurations: the other parameters are identical. The transition probability matrix
was measured after 100 transitions per pattern from the starting state and allowing a
maximum of 100 updates of all neurons to make a transition. The performance of the
network is maximal in a region around I0 = 0.01 and β = 14. For I0 up to 0.04 the
optimal β is roughly proportional to I0 and for higher inhibition the best performance
lies in the area just above the sharp boundary in the plot. In the right-hand plot, the
sharp boundary goes together with a sudden decrease in the mean value of the tran-
sition probability for an increasing β. Very low temperatures trap the network in the
initial basin of attraction.

3.1 Performance Evaluation

The Markov matrix M used to generate the input patterns has been compared
with the transition probability matrix T . The closer the elements of the transi-
tion probability matrix Tµν are to the corresponding values of the Markov ma-
trix Mµν , the better the network is at reproducing the statistics of the Markov
process. We have analyzed the performance of the network as a function of I0
and β using a Markov matrix whose rows are randomly reshuffled versions of
{0, 0, 0, 0.1, 0.2, 0.3, 0.4}. Figure 1 shows the performance of the network for four
combinations of λf , β and I0. Depending on the combination of the parame-
ters, the network reproduces more or less faithfully the statistics of the temporal
sequence used for training. Π has been chosen as the performance index of a
network that has learned P patterns.

Π =
1

P 2

P∑
µ, ν = 1
Mµν �= 0

|Mµν − Tµν |
Mµν+Tµν

2

(3)
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Figure 2 shows the performance index Π and the mean value of the transition
probabilities as a function of I0 and β for λf = 0.1.

4 Conclusions

We described a recurrent neuronal network consisting of binary neurons and
binary synapses that is able to learn and reproduce the statistics of the input
sequences used in the learning phase. The performance has been evaluated by
comparing the transition probability matrix with the Markov matrix used in gen-
erating the input sequences. The performance of the network strongly depends
on the temperature and global inhibition. The binary coding of the variables,
the stochastic nature of the network and its scalability makes this architecture
attractive for implementation in hardware.
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