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Abstract. Hierarchical neural networks require the parallel extraction
of multiple features. This raises the question how a subpopulation of
cells can become specific to one feature and invariant to another, while
a different subpopulation becomes invariant to the first but specific to
the second feature. Using a colour image sequence recorded by a camera
mounted to a cat’s head, we train a population of neurons to achieve
optimally stable responses. We find that colour sensitive cells emerge.
Adding the additional objective of decorrelating the neurons’ outputs
leads a subpopulation to develop achromatic receptive fields. The
colour sensitive cells tend to be non-oriented, while the achromatic cells
are orientation-tuned, in accordance with physiological findings. The
proposed objective thus successfully separates cells which are specific for
orientation and invariant to colour from orientation invariant colour cells.
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1 Introduction

In recent years there has been increasing interest in the question on how the
properties of the early visual system are linked to the statistics of its natural
input. Regarding primary visual cortex (V1), the spatial properties of simple [[T]]
as well as complex [[2]] cells could be explained on the basis of sparse coding. A
different coding principle based on the trace rule originally proposed by Féldiak
[B]], namely temporal coherence or stability, has also been shown to lead to the
emergence of simple [[4]] and complex [[5]] type receptive fields when applied to
natural image sequences. These studies use greyscale images and thus address
spatial properties only. However, a considerable fraction of primate V1 neurons is
sensitive to colour and their spatial properties deviate from those of achromatic
cells [[6]7]]. We here address whether temporal coherence leads to the emergence
of colour-sensitive cells, how their spatial receptive fields are related to their
chromatic properties, and how their fraction relative to the whole population is
determined.
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2 Methods

Natural Stimuli. Sequences of natural stimuli are recorded using a removable
lightweight CCD camera (Conrad electronics, Hirschau, Germany) mounted to
the head of a freely behaving cat, while the animal is taken for walks in various
local environments. The output of the camera is recorded via a cable attached
to the leash onto a VCR carried by the experimenter and digitized offline at 25
Hz and 320x240 pixels. A colour-depth of 24-bit is used and encoded in standard
RGB format. In each of the 4900 image frames thus obtained, at 20 randomly
chosen locations a 30x30 pixel wide patch is extracted. This patch together with
the patch from the same location of the following frame constitutes a stimulus
pair. Each colour channel of each patch is smoothed with a Gaussian kernel
of width 12 pixel to reduce boundary effects. For computational efficiency a
principal component analysis (PCA) is performed on the stimuli to reduce the
input dimensionality of 2700 (30x30 pixels times 3 colours). Unless otherwise
stated, the first 200 principal components are used for further analysis, which
explain 97 % of the variance. In order to process the stimuli independently of
the global illumination level, the mean intensity is discarded by excluding the
first principal component.

Objective function. We analyse a population of N=200 neurons. The ac-
tivity of each neuron is computed as

Ai(t) = Zsz * 1(t) (1)

where I is the input vector and W the weight matrix. We define the temporal
coherence of each neuron as
d 2
((H40)7)

w;table — var (AZ (t)) t (2)

where () denotes the mean and var, the variance over time. The temporal deriva-
tive is calculated as the difference in activity for a pair of stimuli from consecutive
frames. We refer to this objective as ’stability’, since it favours neurons, whose
responses vary little over time. The total stability is defined as sum over the

individual stabilities: pstable Z ¢§mble 3)

3

Furthermore, we define the decorrelation objective as
ecorr 1
YA = — s (DD (05(1)) (4)
(N-1) o
) t

where o;;(t) denotes the correlation coefficient between A;(t) and A;(t). Com-
bining these objectives we define

![,total _ Lpstubl@ + ﬁ!pdecmv' (5)

where 3 is a constant.
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The network is trained from random initial conditions by gradient ascent:
For each iteration ¥*°** is computed over the complete natural stimulus set

and the weightmatrix W is changed in the direction of the analytically given

gradient, dﬁ;al to maximise ¥t All presented results are taken after 60

iterations, when the network has converged under all analysed conditions.

Simulations are performed using MATLAB (Mathworks, Natick, MA).

Analysis of neuron properties.
By inverting the PCA the receptive
field representation in input space is
obtained from the rows of W. For fur-
ther analysis we convert this colour
channel (RGB) representation into a
representation separating the hue, the
saturation and the value (brightness)
of each pixel (HSV representation)
by the standard MATLAB function
rgb2hsv using default mapping. To il-
lustrate the colour properties of a re-
ceptive field abstracted from its topog-
raphy, we plot the projection of each of
its pixels onto the isoluminant plane.
We quantify the colour content of a
receptive field by the mean saturation
over all pixels and define a cell to be
colour sensitive if its mean saturation
falls above 0.2. The isotropy of a re-
ceptive field is assessed using a stan-
dard method [[§]]: The tensor of in-
ertia is computed on the pixel values
and anisotropy is defined as the ratio
of the difference between the tensor’s
long and short principal axis divided
by the sum of these axes. This mea-
sure is 0 for an isotropic structure and
approaches 1 for a perfectly oriented
structure.

3 Results

We train the network to optimize
wtotal on natural stimuli. After con-
vergence one observes an about equal
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Fig.1. (a) Four examples of receptive
fields of a simulation using 8 = 5 after con-
vergence (60 iterations) sorted (from left to
right) by increasing 3tebte.
(b) All pixels of each receptive field
from (a) projected onto the isoluminant
plane. Points close to the center indicate
low saturation, i.e. little colour content,
points to the periphery indicate saturated
(coloured) pixels. The scaling is identical
for all plots.
(¢) Dependence of mean saturation on
stable  Encircled points represent exam-
ples from (a) and (b).

fraction of chromatic and achromatic cells. The achromatic cells have lower indi-
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vidual values of 13*?%'¢ than the colour sensitive cells, indicating that the stability
objective favours chromatic cells (Figure 1).

The relative contribution of the decorrelation and the stability objective can
be regulated by changing the parameter 5. In order to investigate the influence
of the stability objective alone, we set 5 = 0. In this case nearly all cells become
colour-sensitive (Figure 2 left). This shows that colour-sensitive cells have more
stable responses to natural stimuli than achromatic cells.

Strengthening of the decorrelation objective — by increasing # — on the other
hand forces the cells to acquire more dissimilar receptive fields. In this case
some cells have to acquire receptive fields which are suboptimal with respect
to the stability objective, yielding an increasing fraction of achromatic cells
(Figure 2). Thereby the parameter 3 controls the relative fraction of chromatic
versus achromatic cells.
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Fig. 2. Histograms of mean saturation for different values of 5. Rightmost panel: mean
of each histogram vs. 8

Robustness with respect to the in-
put dimensionality is a desirable prop-
erty, especially when embedding the
proposed system into a hierarchical i :;:_:U
model. We thus determine the fraction x 1A
of colour selective cells in dependence
on the PCA dimension used. We find
the results to be over a wide range
independent of the input dimension
(Figure 3). This is in contrast to stud-
ies using independent component anal-
ysis (ICA), where the fraction of colour
sensitive cells strongly depends on the ® *
PCA dimension [[9]]. 0
Unlike achromatic cells, most colour o PCA dimension 250
sensitive neurons in primate V1 are
non-oriented, i.e. they do not exhibit a  Fig. 3. Percentage of colour cells (mean
pronounced orientation preference [[6, saturation > 0.2) vs. PCA dimension for
7]]. We thus analyse the dependence of  two values of 3 compared to ICA results of
the model cells‘ anisotropy (see meth- reference [[9]].
ods) to their mean saturation. We in-
deed find a strong tendency for chromatic cells to be non-oriented. On the other

100

% colour cells
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hand most achromatic cells show the orientation tuning typical of V1 simple
cells (Figure 4), in compliance with the application of the stability objective on
greyscale images.

Concluding, unoriented chromatic cells exhibit optimally stable responses
on natural stimuli. When cells are forced by decorrelating to achieve suboptimal
stability, a second subpopulation emerges, oriented achromatic cells. This implies
that colour is the most stable feature in natural scenes, but that on the other
hand achromatic edges are more stable than chromatic edges.

4 Discussion

A common problem in hierarchical
networks is the separation of different
variables. Here we obtain two distinct

populations, one specific for colour and 1
invariant to orientation and the other
vice versa. The individual stability .
wft“ble of each cell provides a system i
inherent measure to distinguish be- é.i T
tween both populations. Furthermore, § . s L.
the relative size of both populations is R
regulated by a single parameter. These IR '
properties make the proposed stability . A _" Lo
objective promising for the use at dif- : - '_.._ ree
ferent stages of hierarchical systems. L S
. . 0. PSPPI, TRLE. o - N
We showed in a previous study how 0 mean saturation 0.5

the stability objective can be imple-

mented in a physiologically realistic

framework [[10]]. A possible implemen- Fig. 4. Value anisotropy vs. mean satura-
tation of the decorrelation objective in tion for a simulation of 3 = 5.

neural circuits is mediated by strong

lateral inhibition. Due to response la-

tencies this mechanism would have larger impact with increasing distance from
the input layer. The fact that stronger decorrelation leads to less chromatic cells
thus is in compliance with the physiological finding that in primate V1 most
chromatic cells are found in layer 4.

A number of studies recently addressed the application of ICA on standard
colour natural stimuli [[9]] and on hyperspectral images [[TTUT2]]. These studies
find colour-sensitive cells, similar to the ones described here. However, none of the
studies quantifies the relation of the cells’ spatial to their chromatic properties,
leaving an important issue for the comparison to physiology unaddressed. Here
we find a strong correlation between spatial and chromatic properties comparable
to physiological findings. Another remarkable difference between stability and
ICA is the dependence of the latter on the input dimension. This implies that
the relative size of the emerging chromatic and achromatic subpopulations might
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be influenced by changes in feedforward connectivity. In the case of stability on
the other hand, the subpopulations’ size is regulated by the relative strength of
decorrelation, which might be mediated by lateral connections.
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