
600 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

An aVLSI Basis for Dendritic Adaptation
Christoph Rasche

Abstract—We have developed and described an analog elec-
tronic circuit that adapts the electrotonic properties of a silicon
dendrite. The dendrite is modeled by the method of compart-
mental modeling, consisting of three dendritic compartments
each containing a synaptic conductance, and one somatic com-
partment containing a spiking mechanism. Dendritic synaptic
input is represented as an activity signal, which scales the leakage
conductance of the dendrite. This adaptive feedback loop ensures
a controlled synaptic integration in the dendrite, and so regulates
the somatic firing frequency. The general adaptive mechanism can
therefore be used for building highly dynamic neural networks.

Index Terms—Adaptation, dendrite, short-term.

I. INTRODUCTION

EXPERIMENTAL and theoretical studies suggest that neu-
rons continuously regulate their own I/O relation. The reg-

ulation seems to occur at all functional levels—soma, synapse,
dendrite—and on different time scales—milliseconds to hours
and days. At thesomaticlevel, there exists “spike frequency
adaptation,” the phenomenon of increasing inter-spike interval
length, in response to a sustained step current [1], [2]. A sim-
ilar form of adaptation also seems to take place at the long-term
scale: the neuron changes its I/O relation to adapt to its own
input [3]–[6]. At thesynapticlevel, it is the synaptic strength
that changes on a short- and long-term scale [1]. In response
to a presynaptic spike, the synaptic strength can either increase
or decrease. While the long-term changes (long-term depres-
sion and potentiation) are associated with learning of synaptic
weights in a network, the short-term changes like synaptic de-
pression and facilitation are associated with for example cortical
gain control [7], [8]. Finally, at thedendritic level, there is evi-
dence for adaptation as well. Ionic conductances in the dendrite
can change according to the synaptic activity and so influence
electrotonic spread in dendrites [9], [10]. Although modeling
this dendritic mechanism has been less popular in network ap-
proaches, modelers have now also attacked this form of regu-
lation [11]. All these forms of adaptation at various functional
levels and time scales are presumably important for a balanced
operation of neurons in a network with continuously changing
inputs.

Neuromorphic engineers try to replicate this flexibility by
building neurons that adapt their I/O function to changes in their
input as real neurons do (see discussion for implemented ex-
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amples). Here we report on an analog circuit executing adapta-
tion of electrotonic spread in a silicon dendrite. Dendrites are
modeled by the method of compartmental modeling [12]. The
idea of this method is to discretize the dendrite into equivalent,
connected cylinders of dendritic membrane, so-called compart-
ments [Fig. 1(a)]. Each compartment contains a circuit,
which represents the electrical passive behavior of that piece of
membrane. The compartments are serially connected by axial
(or horizontal) resistors, which emulate the axial resistance (or
internal resistance) of the dendritic cable. In engineering terms
this circuit is called a -delay line. We have constructed such a
dendrite in aVLSI and we report on this in detail elsewhere [13].
In this work we change the leakage conductance of each com-
partment by an activity signal, which represents the synaptic
activity of the entire dendrite. Such modulation of the leakage
conductance influences the electrotonic spread of synaptic prop-
agation and therefore its integration in the dendrite.

II. M ETHODS

Our dendritic -delay line is a mixture of Elias’ and our
method of simulating resistors: The compartmental circuit
is approximated by a follower integrator, whose (fixed, positive)
input is the resting potential of the neuron [13]; the axial re-
sistance is simulated by Elias’ switched-capacitor method [14].
Each compartment contains an excitatory synaptic conductance
[shown in Fig. 1(b)in equivalent electrical form]. We feed these
synaptic circuits with presynaptic pulses (SPK) of 1–ms width,
which generate a synaptic current that lasts about 2–3 ms (de-
tails in [15]). The basic operating principles of the dendrite (ex-
citatory post-synaptic potential propagation and effects of dif-
ferent parameter values) will be reviewed in Fig. 2. As a somatic
spiking mechanism we use a previously constructed set of so-
matic ionic conductances, that is the sodium and the potassium
conductance [16], [17]. More details on our silicon dendrite are
given in [13].

The adaptation algorithm operates in three steps [Fig. 1(c)]:
Firstly, creation of an activity signal, , which is proportional
to the frequency of all synaptic input [see dotted arrows
pointing from Fig. 1(b) to (c)]; secondly, low-pass filtering
of , yielding what we call the activity sensor, ; thirdly,
comparison of to a reference voltage, SEREF, which
determines the magnitude of the leakage conductance [see
dashed arrows pointing from Fig. 1(c) to (b)].

Step 1:The creation of is analogous to the creation of the
activity signal for spike frequency adaptation and synaptic de-
pression [18] and [18], for each signal. In our case a presynaptic
spike SPK, a fixed amount of current, , is dropped onto .
SPK is thus used twice, for triggering the synaptic circuit as well
as the adaptation circuit. is generated by transistors, T1x and
T2, and a current mirror, CM1. For each synapse (x) there is a
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Fig. 1. Adaptive dendritic circuits. (a) Electrical diagram of a compartmental model of a piece of dendrite:RC circuits (leakage conductance and membrane
current) are connected by axial conductances.C represents the membrane capacitance.R simulates the membrane resistance, through which current (I )
leaks away.V represents the resting potential of the entire neuron.V andV , represent the membrane potentials in compartmentsx andx + 1,
respectively.R simulates the axial resistance. (c) Each of the dendritic compartments contains a synaptic circuit (grey box) which contributes to the activity signal
at the time of presynaptic stimulation: dotted arrow leading from synaptic switches to adaptation circuit in (c). (c) Analog circuits for the adaptation mechanism
consisting of three blocks. See text for details. Comparator output drives leakage conductance of dendrite: dashed arrow leading to (b). (d) Current–voltage (I–V )
relationship of the comparator.

separate transistor T1x. Transistor T2 determines the magnitude
of according to its gate voltage SIIN (signal in). The current
mirror changes the sign of the current. The dynamics are as
follows:

(1)

where is the output current of FI2 whose size is determined
by the bias voltage SIBUF [19]. SIREST is a reference voltage
representing the signal resting level.

Step 2:Low-pass filtering of occurs by the follower inte-
grator FI3

(2)

where is the amplifier’s bias current whose size is deter-
mined by the bias voltage SETAU, andis a constant associated
with the amplifier [19].

Step 3: is compared against SEREF by a wide-range input
differential pair [20]

(3)

where is the bias current of the differential pair, repre-
senting the maximal leakage conductance, which is determined
by the bias voltage GMAXLEAK. The resulting leakage cur-
rent, , is converted by a diode-connected transistor D1,
into a voltage , which is used as the gate voltage of the
follower-integrator emulating the circuit of a compartment
[13]. This closes the adaptive, negative feedback loop. When
is rising due to synaptic activity in the dendrite, the leakage con-
ductance increases, inhibiting in turn the membrane potential.
Fig. 1(d) depicts the current voltage relationship of the wide-
range input differential pair being a sigmoid [19], [20]. The knee
point of the sigmoid is given by the gate voltage SEREF. The
limiting factor in the adaptation range is the small linear range of
the follower integrator FI2. Its output has to be kept within a
range of 100 mV (above SIREST, marked by “operating range
of ”). Higher voltages cannot be followed due to the short
linear range of the amplifier [19]. To ensure that stays in
this small linear range, we adjust the parameter SIIN when all
synaptic circuits are stimulated with maximal frequency.

Figs. 2–4 show recordings from a fabricated chip. We have
designed a four-compartment neuron, in which three compart-
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Fig. 2. Spreading properties of the adaptive dendrite. (a) Neuron model: A four-compartment neuron in which three compartments are dendritic compartments
(1, 2, 3) and one is the somatic compartment (s). Each dendritic compartment contains a synaptic conductance. Adaptation is based on one activity signal for the
three dendritic compartments. (b) Spreading properties for two values ofV , SIREST= 2.0 and 2.1 V. (c) EPSP propagation for two different values ofV ,
SIREST= 2.0 and 2.1 V, SEREF= 2.15 V, GMAXLEAK = 4.38 V.

Fig. 3. Response of a single compartmentV and the corresponding activity
variables (V ; V ) to presynaptic stimulation. (a) SETAU= 0 V: no adaptation
occurs. (b) SETAU= 0.1 V: medium adaptation occurs, the sum of EPSPs
decreases about 20 ms after onset of stimulation. (c) SETAU= 0.2 V: high
adaptation occurs immediately. SIIN= 0.25 V; SIBUF= 0.21 V. Remaining
parameter values as in Fig. 2.

ments are dendritic compartments each containing an excita-
tory synapse [Fig. 2(a)]. The fourth compartment is the soma
and contains the spiking mechanism. The three dendritic com-
partments are regulated by the same activity signal. A chip was
fabricated using standard 1.2-m CMOS technology. Transistor
sizes are generally 6m by 6 m. The following results show
recordings from this chip.

III. RESULTS

We begin the analysis of our adaptating dendrite by deter-
mining the desired electrotonic properties. We stimulate a den-
dritic compartment with a step current to adjust the space con-
stant by tuning the cable parameters. When the voltages have
saturated, we measure the steady-state voltage of each compart-
ment and plot it against the dendritic location (the compartment
number) [Fig. 2(b)]. This gives us a measure for the electrotonic
spread in the dendrite [13]. We do these spread measurements
for the minimal and maximal value of the activity signal (and
sensor) to simulate the two extremes of adaptation. In the case
of a low activity signal (SIREST low), electronic spread reaches

into the fourth compartment, showing a steady-state depolar-
ization of about 180 mV. In the case of a high activity signal
(SIREST high), electrotonic spread reaches only significantly
into the third compartment. Another way to get an intuition for
the two extreme values of propagation is to look at the excita-
tory-postsynaptic potential (EPSP) spread in the two different
conditions [Fig. 2(c)]. An EPSP elicited at one end of the den-
drite (compartment 1) spreads toward the somatic compartment
while decaying in amplitude and broadening in width [13].

Next, we look at EPSP summation in a single compartment
and how adaptation proceeds for three different values of
SETAU (Fig. 3). A single synapse was stimulated with a
presynaptic train of spikes. The activity signal was tuned to
have a decay time constant of about 20 ms in order to keep the
activity signal in the linear range of the transconductance. The
activity signal increases identically in all three cases because
of identical synaptic stimulation. The activity sensor, however,
increases in proportion to the value of the parameter SETAU
and leads therefore to different EPSP summation. In case of no
adaptation, the EPSPs sum up and saturate due to the leakage
and axial conductance in the cable [Fig. 3(a)]. For a medium
value of SETAU, adaptation becomes evident after about
50 ms [Fig. 3(b)]. For a high value, adaptation occurs very fast
[Fig. 3(c)]. This fast form of adaptation should not be confused
with synaptic depression, in which the amplitude of the EPSP
decreases. Here, it is the increasing leakage conductance that
repolarizes the membrane potential and leads to inhibition. In
the remaining recordings, we chose slow adaptation dynamics,
which is biologically more plausible (see Section IV).

We now turn to I/O relations of the adaptating dendrite. In all
these experiments, the input is a presynaptic frequency (F) either
to a single synapse or to all of the three synapses in the dendrite.
The output is always measured when adaptation has reached its
steady-state. The resulting output is either a voltage (V) of a
compartment or of the soma, or the somatic spike frequency (F).
We term these plots the voltage–frequency curve (V–F curve)
and the frequency–frequency curve (F–F curve), respectively.

We expect that the slope of these adapted I/O-relations will
be shallower than the slope for the unadapted ones, as shown
in Fig. 4(a). To test this I/O relation first on a compartment,

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 06,2010 at 17:39:09 UTC from IEEE Xplore.  Restrictions apply. 



RASCHE: AN aVLSI BASIS FOR DENDRITIC ADAPTATION 603

Fig. 4. I/O relations for unadapted and adapted compartments and dendrites. (a) Schematic graph of adaptation. (b) Voltage-frequency curve for a dendritic
compartment. SIIN= 0.21 V. (c) Voltage-frequency curve for a branch. SIIN= 0.15 V. (d) Frequency-frequency curve for a branch. SIIN= 0.15 V. (e) Somatic
membrane voltage for the 120 Hz stimulation of (d). Neuron parameter values: resting potential= 2.0 V, spiking threshold= 2.6 V, sodium reversal potential=
5.0 V, potassium reversal potential= 1.5 V. Remaining parameter values as in Fig. 2.

we stimulate the synapse of one compartment and measure the
average membrane potential when adaptation has reached its
steady-state. The resulting voltage-frequency curve is shown in

Fig. 4(b). The V–F curve for the unadapted case is steadily in-
creasing, while the adapted V–F curve saturates due to the in-
creasing leakage conductance. We obtain a similar curve for the

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 06,2010 at 17:39:09 UTC from IEEE Xplore.  Restrictions apply. 



604 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

V–F curve of the dendrite [Fig. 4(c)], where the three synapses
were stimulated with the same frequency and the membrane
voltage in the soma was measured. The adapted curve does not
saturate because the somatic leakage conductance is not regu-
lated in our model. Finally, we measure the F–F curve of the
dendrite with more realistic input conditions [Fig. 4(d)]. We use
Poisson distributed spike trains as inputs to the three synapses.
In the soma we measure the output frequency of the spiking
mechanism. The almost sigmoidal F–F curves for both the un-
adapted and adapted case are partly due to the nonlinear be-
havior of the spiking mechanism [17]. Fig. 4(e) shows the so-
matic membrane voltage for one presynaptic stimulation fre-
quency. The synaptic stimulation pattern is exactly the same for
both the unadapted and adapted case, which is best evident if
one compares the subthreshold membrane fluctuations between
the times 0.22 and 0.3 s.

IV. DISCUSSION

Various forms of plasticity have already been implemented
in aVLSI neurons with the purpose of exploring these adaptive
effects in an analog electronic neural networks. At thesomatic
level, both the short- and long-term forms of adaptation, spike
frequency adaptation and regulation respectively, have been im-
plemented [21], [22], [17]. Both forms are based on a model
of intracellular calcium concentration in the soma. In the case
of spike frequency adaptation, the calcium sensitive channel is
the after-hyperpolarizing conductance, which inhibits the mem-
brane voltage [21], [17]. In the case of regulation, the leakage
conductance is modified by activity sensors reporting the vari-
ance and mean level of calcium [22]. In these two forms of
adaptation, the neuron regulates its own (spiking) output. At
thesynapticlevel, short-term depression was implemented [18].
Synaptic depression is the phenomenon of a decreasing EPSP
amplitude in response to an increasing input frequency. A single
synapse acts in this way adaptating to its own input. We have
now presented adaptation in a dendrite which can be seen as
an intermediate form between somatic and synaptic adaptation.
In contrast to synaptic depression, dendritic adaptation is un-
specific to the input because it responds to the pool of synaptic
input. However, it is specific to the neuron’s output, because a
reduced depolarization in the dendrite leads to a reduced output
frequency. This form of dendritic adaptation could therefore be
seen as a part of a continuum of forms of adaptation from the
input side (the synapse) to the output side (the soma).

We have not yet specified the activity signal. In our work, the
dynamics of the activity signal are too fast (time constant 20
ms) to represent any known signal. To yield slower dynamics,
for example, comparable to intracellular calcium concentration
(decay time constant of about 100 ms [1]), the capacity and
linear range of FI2 had to be increased. The activity signal was
then low-pass filtered at a slow rate to model adaptation on
a long time scale. This seems reasonable given the increasing
number of computational models that support a model of cal-
cium-mediated long-term adaptation via various calcium sen-
sors [23], [3], [4]. To yield very slow dynamics however, on the
order of 500 ms and more, a different delay scheme, for example
using floating gates, had to be implemented.

Another way to exploit such an adaptating mechanism is
to simulate the concentration of a neuromodulator. Neuro-
modulators can change the integration properties of neurons
substantially [24], [25]. One modeling study even exploits
this mechanism to explain binding and segmentation of visual
scenes [11]. In that model the leakage conductance of the
dendrite was changed to achieve an altered synaptic integration
in a similar way as in our circuits.

The design of the circuits is modular. Adaptation could easily
be constructed for more elaborate dendrites having several
branches with independent adaptation. Thus, the adaptive
dendritic circuits presented here can well be the basis for
building highly dynamic networks as different engineering
groups pursue it [26], [27], [21].
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