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Abstract

In this paper we present a model of the auditory system that is trained using real-world
stimuli and running in real-time. The system consists of di!erent sound sources, a microphone,
an A/D board, a peripheral auditory system implemented in software and a central network of
spiking neurons. The synapses formed by peripheral neurons on the central ones are subject to
synaptic plasticity. We implemented a learning rule that depends on the precise temporal
relation of pre- and post-synaptic action potentials. We demonstrate that this mechanism
allows the development of receptive "elds combining learning in real-time, learning with few
stimulus presentations and robust learning in the presence of large imbalances in the probabil-
ity of occurrence of individual stimuli. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Research on neuronal networks has been very much motivated by the ability of
these systems to learn from experience [1,3]. In existing biological systems, this
property is paired with the ability to interact with the real world in real time.
Although such a combination is most attractive for any type of application, their
success has been limited. For this, several reasons can be identi"ed. First, the bulk of
the work on learning in neural networks is done using arti"cial stimuli. These are
cleanly de"ned and often more symbolic than natural signals. Second, due to
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limitations in hardware and/or software, simulations of neural networks are often far
from real-time, and thus not suitable to be used in real world tasks. Furthermore,
learning rules tend to be slow, often needing thousands of stimulus presentations. This
combination makes real-time applications very di$cult. Third, learning in neuronal
networks in general use well balanced stimulus sets to avoid any instability of the
dynamics of learning. This property cannot be guaranteed in real-world applications.
These three issues have to be addressed if neural networks shall live up to the
expectations put into the "eld.
Here we investigate a learning rule inspired by recent biological results [13,10]. It
allows extremely high learning rates and is simultaneously very robust to in-
homogeneities of the stimulus set [8,11]. It is implemented in a model of the auditory
system using a high performance distributed simulation environment, IQR421 [16],
computed in real time and trained with real world stimuli on-line. Furthermore, we
demonstrate that a global mechanism modeled after the action of the basal forebrain
couples seamlessly into the local learning rule and adds #exibility in emphasizing
important stimuli.

2. Methods

Sounds are generated either by a computer controlled synthesizer or a CD-player.
Using a microphone (ME64, Sennheiser, Wedemark, Germany) the analog signals are
sampled at 44.1 kHz and digitized with 16 bit resolution on an interface card
(Soundblaster, Creative Technology Ltd, Singapore, Singapore). On each block of
1024 sampled signals a digital FFT is computed. Input to the model is provided by the
absolute values of the "rst 128 FFT coe$cients.
The neural network is a very rough sketch of the mammalian auditory system and
includes "ve sets of integrate and "re neurons: an input population, a thalamic
population, cortical excitatory and inhibitory neurons and an additional neuron
representing the basal forebrain. All neurons are simulated in strict real time, i.e.
simulated biological time matches 1:1 spent physical compute time. The excitation of
neurons in the input population is directly determined by the absolute values of the
respective Fourier coe$cients. Projections of 3 units of this set converge on each
neuron in the thalamic population. These synapses are subject to short-term depress-
ion [15]. Our model of the cortical circuit consists of populations of excitatory
principal neurons and inhibitory interneurons where the excitatory ones project one-
to-one to the inhibitory neurons. The excitatory neurons receive inhibitory input from
the interneurons and excitatory input from all neurons of the thalamic population. To
model the context of a larger network, the population of cortical excitatory neurons
receives an additional excitatory input from a noise source "ring at 10 Hz with
a Poisson distribution. The one neuron representing basal forebrain activity injects
a hyperpolarizing current into the inhibitory neurons, e!ectively delaying their
activity relative to the excitatory neurons by a few milliseconds [4,11].
The synaptic strength of the thalamic projections to the excitatory cortical neurons
evolves according to a modi"cation of a recently proposed learning rule [8,11], which
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Fig. 1. (Left), evolution of the receptive "eld of one of the cortical excitatory cells when the CD was played.
(Right), superposition of the "nal receptive "elds of every cortical excitatory neuron.

utilizes a backpropagating action potential. First, when this backpropagating action
potential arrives at a synapse nearly simultaneously with pre-synaptic activity the
e$cacy of the synapse is increased [5,10,9,2]. Second, if the backpropagating action
potential coincides with an a!erent action potential, but is attenuated by inhibitory
input [12,14], the e$cacy of the respective excitatory synapse is decreased. Third, in
case of non-attenuated backpropagating action potentials which do not coincide with
pre-synaptic activity the synaptic e$cacy is also decreased. Thus, in this learning rule
the changes of synaptic e$cacy are crucially dependent on the temporal dynamics in
the neuronal network. Those neurons which are activated strongest and "re earliest
[7] prevent other neurons from learning the same stimuli due to the recurrent
inhibition they cause.

3. Results

In the "rst experiment we used a commercial CD (`Cabo do Mundoa by Luar na
Lubre, Warner Music Spain, 1999) for training the network. Due to the short-term
depression in the connections from the input neurons to the thalamic neurons, not the
absolute loudness but the fast dynamics of the di!erent frequency components
dominates the dynamics of the cortical neurons. The e!ects of the learning rule onto
the thalamo}cortical synapses can be described in several stages. Due to the initial
homogeneous connectivity between thalamic and excitatory cortical neurons, most
excitatory neurons are active, resulting in a high level of inhibition in the network.
This inhibition, however, leads to an attenuation of most backpropagating action
potentials within the excitatory neurons and, thus, to a depression of thalamo}cortical
synapses (Fig. 1, left, 0}200 s). With the decrease of the activity level, inhibition is
reduced as well, and some synapses are potentiated, leading to the formation of well
de"ned receptive "elds. After 30 min most neurons have stable receptive "elds, which
do not change anymore after prolonged stimulation of 2.5 h (Fig. 1, right).
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Fig. 2. Number of cortical excitatory neurons responding to the tones (each bar style corresponds to one of
the 5 di!erent tones used). (Left), no stimulus is paired with basal forebrain. (Right), stimuli paired with
basal forebrain are labeled by arrows.

Due to the competition between the excitatory neurons via the inhibitory neurons
on the level of synaptic plasticity, most of the frequency spectrum is covered. Thus the
described learning rule does not only lead to a formation of stable receptive "elds, but
also to an even coverage of the whole range of input stimuli.
In a second experiment, we investigated the e!ect of basal forebrain activation.
For this purpose we used a digital synthesizer (QS8, Alesis, Santa Monica, USA).
The stimuli were sinusoidal tones with frequencies of 0.74, 1.05, 1.48, 2.09 and
2.96 kHz. The stimulation consisted of a pseudo-random sequence of these tones,
each presented for 800 ms with a probability of occurrence of �

�
, �
�
, �
�
, �
�
, and �

�
, respec-

tively. As observed in the "rst experiment, nearly all excitatory neurons respond
initially. However, after a few presentations the number of neurons which respond to
a particular stimulus stabilizes (Fig. 2, left). Furthermore, the size of the representation
of each tone does not depend on its probability of occurrence (Fig. 2, left). Thus, the
learning rule is robust and can handle inhomogeneities in the occurrence of di!erent
stimuli.
As a next step, comparable to recent physiological experiments [6] we paired one of
the rare stimuli (2.09 kHz) with the activation of the basal forebrain unit. The basal
forebrain input hyperpolarizes the inhibitory cortical neurons, delaying their activity
with respect to the excitatory neurons by about 6 ms and, thus, e!ectively enlarging
the temporal window for the backpropagating action potential to induce the potenti-
ation of synaptic e$cacies. The representation of this stimulus is now much increased
(Fig. 2, right). This e!ect is independent of the presentation frequency of the stimulus
and does not a!ect the size of the representation of the other stimuli. If pairing is
discontinued after presentation 22, the size of the representation of the previously
paired tone is reduced and reaches a size comparable to the representation of the
other tones (Fig 2, right). Thus, the learning rule allows to dynamically modify the
`importancea of stimuli independently of their probability of occurrence.
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4. Conclusions

In this study we investigate the properties of a real-time implementation of a bi-
ophysically realistic learning rule using real world stimuli. Within the framework of
a model of the mammalian auditory system we investigate a single-integrated learning
mechanism which combines a local learning rule with a global gating mechanism. We
show that this model supports continuous and fast learning, provides an even
coverage of stimulus space, and generates stable representations combined with the
#exibility to change representations in relation to task requirements. This is in good
accord with our previous results using computer simulations of biological neural
networks [8,11].
In implementing our model we made some simpli"cations which are not critical to
the presented results, but could become important in further extensions. First, we are
using chunked sampling (23 ms), keeping stimulation of the input neurons constant
during that time. This limits the phase information available, and hence does not
allow usual approaches to localization of sound sources. This problem may be
addressed by shortening the length of data samples, or using partly overlapping
samples or a wavelet based analysis. A second simpli"cation is that we do not try to
replicate the huge dynamic range of the auditory system (about 100 dB). A possible
solution to this problem is the use of adapting gains in the neurons. Due to
limitations in hardware and/or software, simulations of learning in neural networks
are often far from real-time, and thus not suitable for real-world tasks. Here we use
`standarda hardware based on Pentium III processors (500 MHz) connected by
a TCP/IP network to demonstrate a real-time implementation of a biophysically
realistic neural network model. The computational e$ciency is provided by the
IQR421 software package [16] allowing easy parallelization of large simulations in
such a cluster of computers. Larger systems might be implemented by a coarse grained
parallel implementation on a larger number of processors, as well as reducing
computational and communication load by omitting full connectivity and imposing
a rough topology of connections between the di!erent pools of neurons. Further
optimizations can be provided by using FPGAs or aVLSI devices. Currently
we are experimenting with replacing the digital FFT with an aVLSI model of the
cochlea.
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