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Neurons in mammalian cerebral cortex combine speci�c responses with
respect to some stimulus features with invariant responses to other stim-
ulus features. For example, in primary visual cortex, complex cells code
for orientation of a contour but ignore its position to a certain degree.
In higher areas, such as the inferotemporal cortex, translation-invariant,
rotation-invariant, and even view point-invariant responses can be ob-
served. Such properties are of obvious interest to arti�cial systems per-
forming tasks like pattern recognition. It remains to be resolved how
such response properties develop in biological systems. Here we present
an unsupervised learning rule that addresses this problem. It is based on
a neuron model with two sites of synaptic integration, allowing quali-
tatively different effects of input to basal and apical dendritic trees, re-
spectively. Without supervision, the system learns to extract invariance
properties using temporal or spatial continuity of stimuli. Furthermore,
top-down information can be smoothly integrated in the same framework.
Thus, this model lends a physiological implementation to approaches of
unsupervised learning of invariant-response properties.

1 Introduction

1.1 Invariant Response Properties in the Visual System. The textbook
view of the mammalian visual system describes a series of processing steps
(Hubel & Wiesel, 1998). Starting with light-sensitive photoreceptors in the
retina, signals are relayed by lateral geniculate nucleus and primary visual
cortex toward higher visual areas. Along this pathway, neurons acquire in-
creasingly complex response properties. Whereas an appropriately placed
dot of light on a dark background is suf�cient to strongly activate neurons
in the lateral geniculate nucleus, cells in primary visual cortex respond best
to elongated stimuli and oriented edges. At higher levels, complex arrange-
ments of features are the optimal stimuli (Kobatake & Tanaka, 1994; Wang,
Tanaka, & Tanifuji, 1996). Finally, in inferotemporal cortex of monkeys, neu-
rons are tuned to rather complex objects, like faces or toys the monkey
subject played with (Perrett et al., 1991; Rolls, 1992; Booth & Rolls, 1998).
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However, a description of the visual system as a hierarchy of more and more
complex �lters is incomplete. In parallel to the increasing sophistication of
receptive �eld properties, other aspects of the visual stimulus cease to af-
fect �ring rates (Rolls & Treves, 1997). In primary visual cortex, one major
neuron type, simple cells, is highly sensitive to the contrast of the stimulus;
if an oriented edge is effectively activating a neuron, the contrast-reversed
stimulus usually is not (Hubel & Wiesel, 1962). Other neurons, complex
cells, show a qualitatively different behavior. If an oriented edge is effec-
tively activating a neuron, the contrast-reversed or phase-changed stimulus
is usually equally ef�cient. Thus, the response of complex neurons is invari-
ant with respect to the phase polarity of contrast of the stimulus (Hubel &
Wiesel, 1962). Along similar lines, neurons in inferotemporal cortex show
some invariance with respect to translation, scaling, rotations, and changes
in contrast (Rolls, 1992). An even more extreme combination of speci�city
and invariance can be found in premotor cortex. Neurons may respond with
high speci�city to a stimulus, irrespective of its’ being heard, seen, or felt
(Graziano & Gross, 1998). Thus, a highly speci�c response to one variable,
the position, is combined with invariance with respect to another variable,
modality. The higher an area is located in the cortical hierarchy (Felleman &
Van Essen, 1991), the more complex its neurons’ receptive �eld properties
are. Simultaneously, translation, scaling, and viewpoint invariance are more
pronounced.

1.2 The Computational Role of Invariances. Asinvariant response pro-
perties are such a ubiquitous property of sensory systems, what are their
computational advantages? In many categorization tasks, the output should
be unchanged—or invariant—when the input is subject to various trans-
formations. An important example is the classi�cation of objects in two-
dimensional images. A particular object should be assigned the same clas-
si�cation even if it is rotated, translated, or scaled within the image (Bishop,
1995). Invariant-response properties are especially important because they
counteract the combinatorial explosion problem: highly speci�c neuronal
responses imply small receptive �elds in stimulus space. For a complete
coverage of stimulus space, vast numbers of units are needed. In fact, the
number of representative elements needed rises exponentially with the di-
mensionality of the problem. By obtaining invariant responses to some
variables, receptive �elds are enlarged in the respective dimensions, and
the total number of neurons needed to describe a stimulus stays manage-
able.

Systems obtain invariant representations by several means (Barnard &
Casasent, 1991). First, appropriate preprocessing can supply a neuronal net-
work with invariant input data. Another option is to design the structure of
the system so that invariances gradually increase. Finally, a system can learn
invariances from the presented stimuli following principles of supervised
or unsupervised learning.



Invariance Learning with Two Sites of Integration 2825

1.3 Invariances by Preprocessing. Due to the advantages they offer to
recognition systems, these invariances are frequently used in preprocess-
ing for neural systems (Bishop, 1995). Applying a Fourier transformation
and discarding the phase information produces data that are invariant with
respect to translations of whole image. Even transformations that generate
translation-, scaling-, and rotation-invariant representations are used (e.g.,
Bradski & Grossberg, 1995). Alternatively, the input might be scaled and
translated before being processed by a neuronal network. As the genera-
tion of invariances by preprocessing is explicit, it is guaranteed that the
network generalizes over the desired dimensions. They thus present a form
of a priori knowledge about the kind of problems encountered. With this
information, the network performs better, faster, and more reliably. How-
ever, this approach is limited to operations that can be explicitly de�ned.
For example, it seems extremely dif�cult, if not impossible, to implement
viewpoint invariance in this fashion.

1.4 Mixing Invariance Generation with Processing. In one class of net-
works, called weight-sharing systems, both processes—the generation of
invariances and the feature extraction—are done step by step in the same
network (Fukushima, 1980, 1988, 1999; Le Cun et al., 1989; Riesenhuber &
Poggio, 1999). In the well-known Neocognitron (Fukushima, 1988), neurons
at one level of the hierarchy have identical receptive �elds but are trans-
lated in the visual �eld. Combining such weight sharing with converging
connections leads to response properties at the next level that are some-
what translation invariant. The main drawback is that, similar to the case of
generation of invariances by preprocessing, the constructor of the network
needs to specify explicitly the desired invariances and thus to have speci�c
a priori knowledge about which variables the processing is supposed to be
invariant of.

1.5 Supervised Learning of Invariances. The obvious way to avoid the
need to put in such speci�c a priori knowledge is the use of learning algo-
rithms. Here, supervised and unsupervised approaches have to be differen-
tiated. The former need labeled training data, and for large networks, a lot
of these. With such data at hand, it is possible to learn invariant recognition,
for example, training the network with a variant of the backpropagation al-
gorithm (Hinton, 1987). To alleviate the problem of getting enough training
data, the training set can be enlarged by applying appropriate transforma-
tions to individual examples. However, then we are back with an a priori
speci�cation of the invariance operation.

1.6 Unsupervised Learning of Invariances. Following this observation,
several researchers started to investigate unsupervised learning of invari-
ances. At this point we have to ask, When should two different stimuli be
classi�ed as instantiations of the same “real” thing? Let us consider a vi-
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sual system for object recognition acting in the real world. A few principles
about our world seem obvious:

1. If an object is present right now, it is likely to be present the next
moment.

2. If an object covers a certain part of the retina, it is likely to cover its
vicinity.

3. Objects tend to in�uence several modalities.

Several algorithms have been put forward for learning invariances in neural
systems corresponding to these principles. Most notable are studies where
variables are extracted from the input that smoothly vary in time (prin-
ciple 1, proposed by Hinton, 1989; Földiak, 1991; Stone & Bray, 1995) or
space (principle 2, Becker & Hinton, 1992; Stone & Bray, 1995; Phillips,
Kay, & Smyth, 1995, cf. Becker, 1996). Principle 3 has been used by de
Sa and Ballard (1998), but also is often considered a special case of prin-
ciple 2, for example, auditory, visual, and somatosensory systems all al-
low a spatial localization. Still, this principle is more general and could
enhance learning further. These systems can be compared to the networks
described above in mixing invariances with processing. They share the
advantages of needing few weights and combine them with the advan-
tage of being able to learn those invariances in a way optimal to the
task.

However, these mechanisms do not seem to map straightforward on
biological principles (see section 4). In this article, we address this issue.
First, we summarize recent electrophysiological results. Based on these,
we de�ne a suitably abstracted yet realistic learning rule. And �nally,
we demonstrate that it allows unsupervised learning of invariances ex-
ploiting spatial as well as temporal continuity. Thus, this learning rule is
able to lend a physiological implementation to the algorithms described
above.

1.7 Relevant Physiological Results. The most abundant type of neuron
in cerebral cortex, the pyramidal cell, is characterized by its prominent api-
cal dendrite. Recent research on the properties of layer V pyramidal neurons
suggests that the apical dendrite acts, in addition to thesoma, as a second site
of synaptic integration (Larkum, Zhu, & Sakmann, 1999; Körding & König,
2000a). Each site integrates input from a set of synapses de�ned by their
anatomical position and is able to generate regenerative potentials (Schiller,
Schiller, Stuart, & Sakmann, 1997). The two sites exchange information in
well-characterized ways (see Figure 1A). First, signals originating at the
soma are transmitted to the apical dendrite by actively backpropagating
dendritic action potentials (see Figures 1A and 1B; Amitai, Friedman, Con-
nors, & Gutnick, 1993; Stuart & Sakmann, 1994; Buzsaki & Kandel, 1998)
or passive current �ow. Second, signals from the apical dendrite to the
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soma are sent via actively propagating slow regenerative calcium spikes
(see Figures 1D and 1E), which have been observed in vitro (Schiller et
al., 1997) and in vivo (Hirsch, Alonso, & Reid, 1995; Helmchen, Svoboda,
Denk, & Tank, 1999). These calcium spikes are initiated in the apical den-
drites and cause a strong and prolonged depolarization, typically leading
to bursts of action potentials (see Figures 1D and 1E; Stuart, Schiller, & Sak-
mann, 1997; Larkum, Zhu, & Sakmann, 1999). Experimental studies sup-
port the view that excitation to the apical dendrite is strongly attenuated
on its way to the soma unless calcium spikes are induced (see Figure 1A;
Schiller et al., 1997; Stuart & Spruston, 1998; Larkum, Zhu, & Sakmann,
1999). In conclusion, a subset of synapses on the apical dendrite is able to
induce rare discrete events of strong, prolonged depolarization combined
with bursts.

Experiments on hippocampal slices by Pike, Meredith, Olding, and Paul-
sen (1999) support the idea that postsynaptic bursting is essential for the in-
duction of long-term potentiation. Furthermore, independent experiments
support the idea that strong postsynaptic activity is necessary for induc-
tion of Hebbian learning (Artola, Bröcher, & Singer, 1990; Dudek & Bear,
1991). Integrating this with research on apical dendrites, we conclude that
whenever the apical dendrite receives strong activation, calcium spikes are
induced and synapses are modi�ed according to a Hebbian rule (Hebb,
1949).

The generation of calcium spikes is very sensitive to local inhibitory activ-
ity. Even the activity of a single inhibitory neuron can effectively block cal-
cium spikes (Larkum, Zhu, & Sakmann, 1999; Larkum, Kaiser, & Sakmann,
1999). Thus, it seems reasonable to assume that the number of neurons gen-
erating calcium spikes on presentation of a stimulus is limited on the scale
of tangential inhibitory interactions. Here we allow only one neuron per
stream and layer to feature a calcium spike in one iteration.

To complete the picture, we have to consider which afferents are targeting
the apical and basal dendritic tree. The anatomy of a cortical column is com-
plicated; nevertheless, some regular patterns can be discerned. The apical
dendrites of the layer 5 pyramidal cells receive local inhibitory projections
and long-range cortico-cortical projections (Zeki & Shipp, 1988; Cauller &
Connors, 1994). Top-down projections from areas higher in the hierarchy
of the sensory system usually terminate in layer 1, where many apical tufts
can be observed (cf. Salin & Bullier, 1995). This supports the idea that top-
down connections from higher to lower areas preferentially terminate on
the apical dendrites.

The basal dendrites of the considered neurons receive direct subcortical
afferents (e.g., the koniocellular pathway in visual cortex) in addition to
projections from layer 4 spiny stellate cells. These are the main recipients of
afferents from sensory thalamus and areas lower in the cortical hierarchy.
Therefore, we use the approximation that the bottom-up input targets the
basal dendritic tree (see Figure 1F).
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2 Methods

The whole simulation is described by this pseudocode: Every neuron is

For all iterations

Calculate stimuli.

Calculate activities A going from lower areas to higher areas.

Calculates dendritic potentials D going from higher areas to lower areas.

Determine in which neurons learning and thus calcium spikes are trig-
gered.

Update the weights of those neurons according to Hebbian learning.

described by two main variables, corresponding to the two sites of integra-
tion (see Figure 1F): A is referred to as the activity of the neuron, and D
represents the average potential at the apical dendrite. We simulate a rate
coding neural network where a unit’s output is a real number representing
the average �ring rate.

Figure 1: Facing page. The neuron model. (A) Experimental setup. A neuron is
patched simultaneously at three positions: at the soma (recordings in solid line),
0.450 mm (recordings in dashed lines), and 0.780 mm (recordings in dotted lines)
out on the apical dendrite. (B) Effect of inducing an action potential by current
injection into the soma. The action potential does not only travel anterogradely
into the axon but as well retrogradely into the apical dendrite, where it leads
to a slow and delayed depolarization. (C) Injection of small currents at the api-
cal dendrite does not trigger regenerative potentials and induces only a barely
noticeable depolarization at the soma. (D) Injection of larger currents into the
apical dendrite elicits a regenerative event with a long depolarization (dotted
line). This slow potential is less attenuated and reaches the soma with a delay
of only a few milliseconds (solid line). There, a series of action potentials is trig-
gered, riding on the slow depolarization. (E) Combining a subthreshold current
injection into the apical dendrite with a somatic action potential leads to a cal-
cium spike and a burst of action potentials. Thus, somatic activity decreases the
threshold for calcium spike induction. (F) Essential features incorporated into
the model. Action potentials interact nonlinearly with calcium spike generation
at the apical dendrite. Calcium spikes induce burst �ring, gating plasticity of
all active synapses. (In vitro data kindly supplied by M. E. Larkum (MPI für
medizinische Forschung, Heidelberg), modi�ed after a �gure in Larkum, Zhu,
& Sakmann, 1999.)
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Depending on the layer, two different transfer functions are used that
de�ne the activity A

(j)
i of the neuron i in layer j:
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where H is the Heaviside function, .¤ is the element-wise product, Apre is
the presynaptic activity vector, Npre is the number of neurons presynaptic
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to the basal dendrite, hAjij is the average activity within the layer, and hAiit
is the running average of the neuron’s activity with exponential decay and
a time constant of 1000 iterations. Depending on the layer, the activity of
a neuron results from the standard scalar product (sum case) or is deter-
mined by the most effective input only (max case). These types of activation
functions have been discussed by Riesenhuber and Poggio (1999). The hAjij
term mediates a linear inhibition. Summarizing, the neuron’s activity is a
linear threshold process with soft activity normalization and an activation
function that is speci�c for each layer.

The apical potential D is calculated according to:

Di D WiApre C aAi (2.3)

Due to the different connectivity to basal and apical dendrite, apical and
basal dendrite have different Apre and thus also different Wi; Apre of the
third-layer basal dendrite is 50-dimensional (number of second-layer neu-
rons) and Apre of the apical dendrite is 4-dimensional (number of third-layer
neurons). D has two components: the input from other neurons and an effect
of the neuron itself.

For both the apical and the basal dendrites, the weight change is calcu-
lated as:

DWi D g¤(Apre C Cpre ¡ Wi)
CQ¤(t/Ni,pre ¡ 0.5) : if Di D max(D)

DWi D 0 : otherwise,
(2.4)

where g is the learning rate, Ni,pre the number of neurons presynaptic to the
apical dendrite, t is the number of iterations since the neuron last learned,
and Q is a constant. The Q term ensures that no neuron can stop learning
and thus avoids the occurrence of so-called dead units. C D 1 for the one
presynaptic neuron with the highest D, and thus a calcium spike associated
with learning, and 0 for the others. Only the neuron with highest D learns;
neurons that do not learn for a large number of iterations increase their
probability of learning.

Initially all weights are chosen randomly in the interval [0. . . 1[. The de-
fault parameters areg D 0.002, Q D 0.00005, a D 1. The system is simulated
for 40,000 iterations unless stated differently.

All networks examined have three layers unless otherwise indicated. The
network itself is organized into streams. Each stream receives input from a
disjoined set of neurons. Only neurons of the highest layer receive contex-
tual information to their apical dendrites by self-feedback or feedback from
other areas. Otherwise the network is purely feedforward, with connections
targeting the basal dendrites. Coupled layers are fully connected; there are
no connections of any layer onto itself.
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To explore different properties of the system, two sets of simulations were
performed. In the �rst set (three-layer simulations), stimuli are rectangular
similar to those used in physiological experiments. The second set (two-
layer simulations) uses sparse, preprocessed input.

In the three-layer simulations, the �rst layer (input) consists of 10 by 10
neurons; the second layer of 50 neurons uses the SUM activation function;
and the third layer of 4 neurons uses MAX. Stimuli resemble “bars” as
used in physiological experiments. Their luminance has a gaussian pro�le
orthogonal to the long axis with a length constant of 1. They are described by
two parameters: the orientation of the bar and the position when projected
on a line that is perpendicular to the bar’s main axis. The stimuli presented
to each stream are correlated in orientation and position, as described in
section 3.

We quantify the results of these simulations using different measures.
For each stimulus, characterized by its orientation (#) and position (r), the
average response is calculated during the second half of the simulation
(iteration 20,000 to 40,000). Stimulus parameters # and r, which are drawn
from a continuous distribution, are binned onto a 20 £ 20 grid covering the
complete stimulus space. The responses to all stimuli that fall into the same
bin are averaged and plotted in the #-r diagram. Orientation- and position-
speci�c receptive �elds have a single peak in stimulus space, which drops
along both dimensions. Neurons with translation-invariant responses are
characterized by anisotropic #-r diagrams.

A layer’s responses to orientation and position can be quanti�ed by a
bar speci�city index calculated as follows. The #-r diagrams are summed
along the position axis, and the result is divided by its mean. Its standard
deviation (over orientation) is averaged over all cells of the layer, yielding
the orientation speci�city s(orientation). Position speci�city s(position) is
calculated analogously, summing along the orientation axis and calculating
the standard deviation along the orientation axis.

To compare representations on the highest level in both streams, a cross-
correlation coef�cient CC of the activity patterns of both third layers is
calculated:

CC D Sij(hA(1)
i A(2)

j i2
t )/

q
(Sij(hA

(1)
i A(1)

j i2
t )Sij(hA

(2)
i A(2)

j i2
t ), (2.5)

where superscripts denote the number of the stream and i, j in the sum run
over all combinations, from 1 through 4, and hit denotes the average over
the considered iterations. This is a measure of the coherence of variables
extracted by the two streams. If neurons in both streams have extracted
identical variables, CC is 1.

For the control in Figure 3D, a special type of simulation is performed.
The set of neurons with two sites of synaptic integration of the third layer
is exchanged by a set of neurons with just one site of synaptic integration.
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Both the second layer of the same stream and the third layer of the other
stream are presynaptic to the same cell. We thus calculate the activities in
the following iterative way:

I(i)
input(0) D max(Apre,same.¤Wi) (2.6)

Ai(0) D H(I(i)
input(0) ¡ hI(j)

input(0)ij )/ (NprehAii2
t ) (2.7)

I(i)
input(n C 1) D Ai(0) C m¤Apre,other

¤W (2.8)

Ai(n C 1) D H (I(i)
input(n C 1) ¡ hI(j)

input(n C 1)ij), (2.9)

where n is the number of the iteration, Apre,same is the cell’s input from the
second layer, Apre,other the input from the other stream’s third layer, and m
is a scaling factor. Since A changes depending on the other stream’s A and
vice versa, the activities change over subsequent updates. We use Ai(20) as
an approximation of the convergence value. Twenty iterations are suf�cient
for the process to converge to values very near the �nal value (data not
shown) unless the process diverges to in�nite activities (at m of about 1).
After this process, the neuron with the highest activity learns with the same
DW described above.

In the two-layer simulations, the �rst layer consists of 12 neurons and
the second layer of 4 neurons. The main difference from the three-layer sim-
ulations is that the inputs are already preprocessed; the input layer for the
two-layer simulations can be compared to the second layer of the three-layer
simulation. The stimuli are 2D maps of size 4 £ 3. One axis is labeled class
(4 neurons) and the other instantiation (3 neurons). To generate a stimulus,
we �rst select a number of active classes, which are identical for all streams.
The probability for n classes active at the same iteration is proportional to a
parameter pc to the power of n. Then for each class, we set an instantiation,
which is chosen independently in all streams and thus can also be different.
All of the chosen elements of the input map are set to 1, and the rest are
set to 0. These stimuli have the following property: at low pc, the stimuli
are very similar to the ones of the three-layer simulations, class is perfectly
correlated, and instantiation is not correlated. The higher pc, the larger the
spurious correlation in the class. It thus is a measure that makes the task
dif�cult. We used this more abstract simulation to be able to do extensive
explorations in larger systems with several streams.

To quantify properties of a whole layer of neurons, a class speci�city
index is calculated. If a class is assigned to a neuron, we can quantify how
speci�c it is to that class by calculating its average activity for that class
minus the average activity for all other classes: S D hAiclass ¡ hAinonclass,
where hix is the average over a number of interations under the condition
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that the stimulus is chosen from x. The class speci�city is de�ned as the
maximum of that speci�city measure over all neuron class assignments,
where every class is assigned to exactly one neuron. If the class speci�city
is large, neurons are speci�c to one class and ignore the rest. It is small if
several neurons code for the same class.

3 Results

Several simulations are performed to characterize the system (see equa-
tions 2.1–2.4) and effects of different inputs on the basal and apical dendrite.
We start with a system that implements an approximation to the spatial
smoothness criterion. Next, we move on to a system that approximates the
temporal smoothness criterion and explore the interaction with top-down
signals. Finally, we show how lateral connectivity improves learning in the
system.

3.1 Spatial Continuity. We explore a system with two input streams
(see Figure 2A), which are treated as analyzing spatially neighboring but
nonoverlapping parts of the visual scene. In this simulation, we �rst address
principle 1 from above: the spatial continuity of stimuli. The input to each
stream consists of rectangular stimuli characterized by their orientation and
position. The orientations of the stimuli presented to each stream are per-
fectly correlated, whereas stimulus position is not correlated. As a control,
these assumptions are relaxed in additional simulations, and the results are
reported further down. The activity of neurons in the �rst layer is directly
set by the luminance of the stimulus. At the third level, the output of each
stream projects to the apical dendrites in the other stream.

Receptive �elds of three neurons randomly chosen from the second layer
are shown in Figure 2B and closely resemble individual input stimuli. They
are position and orientation speci�c and thus localized in stimulus space
(see Figure 2C). This can be understood from the absence of speci�c exci-
tatory projections to the apical dendritic tree. As a consequence, calcium
spikes are triggered by the depolarization induced by backpropagating
action potentials only, and the learning rule applied is effectively equiv-
alent to competitive Hebbian learning. The calcium spike dynamics here
has the effect of ensuring a mechanism for competition. Inhibitory interac-
tions in the network enforce that different neurons learn different stimuli
(Körding & König, 2000b). Thus, these neurons tend to cover the input space
uniformly.

Third-layer neurons show qualitatively different responseproperties (see
Figure 2D). Each neuron responds selectively to stimuli of a single orien-
tation, regardless of the position. Reciprocal projections between the two
streams targeting the apical dendrites favor correlated stimuli to trigger cal-
cium spikes. As stimulus orientation is correlated across streams, neurons
extract this variable and discard information on the precise position. Thus,
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the “supervision” of each stream by the other leads to invariant-response
properties and approximates criterion 2.

3.2 Controls. To analyze the properties of the proposed system further,
we investigated coverage of stimulus space by neurons in layers 2 and 3.
Figure 3A demonstrates that the standard deviations of total activity in
layers 2 and 3 are small compared to the mean (5.3% and 6.5% in layers
2 and 3, respectively). Thus, competition implemented by the inhibitory
action on calcium bursts is suf�cient in the second as well as in the third
layer to guarantee an even coverage of stimulus space.
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As a next step, we compare the effects of different learning rates (see
Figure 3B). To quantify convergence, the coherence CC (see equation 2.5)
of responses between streams is determined as described in section 2. A
low learning rate (g D 0.0005) leads to a slow convergence (»13,500 stim-
ulus presentations until reaching CC = 0.75), but CC reaches high levels,
saturating at 0.96 (mean for the last fourth of the simulation) very close to
the theoretical maximum of 1. When 4 and 16 times higher learning rates
(the 4 times larger learning rate is used in the other simulations) are used,
convergence is faster by a factor of 2 and 4 (»7000 and »4000 stimulus pre-
sentations, respectively). However, CC is lower than before (0.94 and 0.88
for 4 times and 16 times learning rates respectively). We want to state ex-
plicitely that the system converges rather slowly and theoretically it should
be possible to learn invariances more quickly. Nevertheless, the system is
robust enough to support extraction of coherent variables and development
of invariant responses in a reasonable time.

An important question is how sensitive the model is with respect to
mixing the bottom-up input into the lateral learning signal. To investigate
this question, we systematically changed the ratio (a) of the learning signal
determined by the stimulus to the part de�ned by the contextual input. In
Figure 3C, it can be seen that at an a of about 1, implying that the effect
of the cell’s own activity on learning is of the order of the effect of the
context cells, invariance generation breaks down. This furthermore leads to
an experimentally testable hypothesis. The lateral and the somatic effect on
calcium spike generation can experimentally be distinguished.

It is necessary to control that the same results could not be obtained us-
ing a neuron model with just one site of synaptic integration. To test this,
we constructed a simulation where the third-layer cells were exchanged by
cells with just one site of synaptic integration (see equations 2.6–2.9). The
relative contribution of the input from the other stream can be gauged by
a scaling parameter m. At a scaling parameter m of about 1, the activities

Figure 2: Facing page. Basic mode of processing. (A) The network consists of two
separate streams. Only neurons on the highest layer have cross-stream connec-
tions. An example stimulus as given to the input layer is shown in gray scale.
(B) The resulting receptive �elds (columns of the weight matrix from the input
layer) of three neurons in the second layer are shown gray scale coded. Light
shades indicate sensitive regions; dark areas indicate insensitive spots. (C) Re-
sponse strength (�ring rate A) as a function of stimulus position and orientation
of layer 2 neurons. For stimuli with orientation given by the ordinate and po-
sition given by the abscissa, the activity of the corresponding neuron is shown
on a gray scale (see section 2). The same gray scale is used for all three units.
The neurons analyzed in C are identical to those in B. (D) The corresponding
diagram as in C is shown for neurons in layer 3. Note the homogeneity of recep-
tive �elds along the horizontal axis, indicating translation-invariant response
properties.
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start to diverge, and no valid values can be obtained. Figure 3D shows that
in the one-cell model for small m, the cells do not properly get invariant.
For higher m of 0.6, the cells get more invariant, albeit still far less invari-
ant than in the two-site model. But at m D 0.6, the cells are no longer
really local detectors. Sixty percent of their activity is determined by the
other stream. Then, however, neurons are no longer local feature detectors.
In learning networks of the architecture investigated here, where neurons
perform only one synaptic integration, a trade-off seems to exist: either neu-
rons act as local detectors and do not properly learn invariant responses,
or neurons are no longer local detectors but learn correctly. This is the rea-
son that we argue that two sites of synaptic integration indeed improve
processing.

In the simulations described above, we assumed a perfect correlation
of the orientation of stimuli presented to the two streams and a complete
lack of correlation of position. Indeed, in natural occurring stimuli, orienta-
tion is correlated much stronger than position (Betsch, Einhäuser, Körding,
& König, 2001). Nevertheless, the assumptions made in the above simu-
lation might be too strong. Therefore, we investigated performance of the
learning rule while varying correlation of orientation and position. The
orientation of the stimulus presented to the �rst stream (#1) is randomly
selected in the interval [0 . . . p [ as before. The orientation of the other stim-
ulus is chosen equally distributed in the interval [#1 ¡ p (1 ¡ r )/2 . . . #1 C
p (1 ¡ r )/2]. The parameter r allows the correlation of stimulus orientation

Figure 3: Facing page. Controls: (A) The diagram shows total activity in layer 2
(left) and layer 3 (right) as a function of stimulus orientation and position. The
small variations in shading indicate that the network activity is comparable for
all stimuli. (B) The cross-stream correlation is shown (see section 2) for different
learning rates. (C) The coupling of the two integration sites (a) is varied; mea-
sures for the bar speci�city (see section 2) for position s(position) (solid line)
and for orientation s(orientation) (dotted line) are plotted. (D) As a control, a
simulation where the neurons of the third layer exhibit just one site of synaptic
integration was performed (see section 2). The in�uence of lateral inputs to the
cell is gauged by a parameter m (low m means low lateral effects). The orientation
s(orientation) and position s(position) speci�city is plotted against the in�u-
ence parameter m. (E) As in C, the bar speci�cities s(position) and s(orientation)
are plotted, changing the position of stimuli between both streams (left column)
or changing orientation of stimuli between both streams (right column). The
correlation of stimulus properties across the two streams (r) is varied for two
values of a (a D 1, strong coupling of integration sites and a D 0.1 medium
coupling of integration sites). The solid and dotted lines show data of simula-
tion runs where the correlation of stimulus position or orientation was varied
respectively. In either case r D 0 corresponds to the parameters used in the
other simulations. (F) Response properties of layer 3 neurons are shown when
identical stimuli presented to both streams.
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a

to change smoothly, with r D 1 resulting in perfect correlation as used in
most simulations presented here and r D 0 resulting in zero correlation. In
Figure 3D, the dotted lines show that depending on the strength of coupling
between the two sites a, that is, when learning is determined to a large extent
from the context, even big stimulus intervals (r D 0.25) corresponding to a
small correlation still allow learning of invariances.
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Along similar lines, we analyzed the in�uence of varying degrees of
correlations in the position on learning of invariances. Again we observe
a robust behavior of the learning rule, tolerating signi�cant variations of
the parameter r , here describing the correlation of position. In fact, it turns
out that at least for a strong coupling of the two integration sites (a D 1),
a �nite correlation of stimulus position is helpful in learning invariances.
This can be understood by investigating dynamics of learning. Weak cor-
relation of position leads to a symmetry breaking, and the system leaves
metastable states more quickly (data not shown). Obviously if both vari-
ables are perfectly correlated, learning of invariances is no longer possible.
Then neurons develop receptive �elds speci�c in both space and orientation
(see Figure 3E). Receptive �elds are large, as they have to be, in order for
the set of neurons to cover stimulus space. But more important, response
properties of all neurons are selective for orientation as well as for posi-
tion. Variables, which are correlated across streams, are considered relevant
according to criterion 2. Uncorrelated variables induce invariant responses
and, thus, any information pertaining to these feature dimensions is dis-
carded.

3.3 Temporal Continuity. In the simulation above, we used a pseudo-
random sequence of stimuli with the time constants of the relevant variables
set to zero. Thus, no interaction between subsequent stimuli occurred. On
the other hand, temporal continuity of objects in the real world allows gen-
erating invariant responses. Here we analyze a system operating on this
principle consisting of one stream only (see Figure 4A). The time constant
of the potential at the apical dendrite (D(t) D S (A(t ¡ n)¤(1 ¡ 1/tD)n where
n starts from 0) is set to a �nite value (tD D 10 iterations) and stimulus ori-
entation changes with the same time constant (#new D (#old C 0.1¤p ¤(rand¡
0.5))modp , where rand is uniformly drawn from [0. . . 1[ ). Figure 4B shows
that neurons in the third layer obtain orientation-selective but position-
invariant receptive �elds. Thus, the effect of a �nite-time constant is com-
parable to the “supervising” input by a second stream, and the simulation
using two streams could equally be interpreted as the slow temporal dy-
namics unfolded in space.

3.4 Top-Down Contextual Effects. The simulations described exploit
temporal or spatial regularities of stimuli. Thus, they represent a bottom-up
approach of generation of invariances. As a next step, we explore whether
top-down signals can exploit the same mechanism. Similar to the simulation
above, a single processing stream is used (see Figure 5A). A set of 10 units is
added, representing an independent source of information. Their response
properties are speci�ed to be position selective and orientation invariant,
and the union of their receptive �elds evenly covers stimulus space. Training
the network with a pseudo-random sequence of stimuli as before leads to
an interesting result. Receptive �elds of neurons in layer 3 are speci�c with
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Figure 4: Learning from temporally smoothly varying patterns. (A) The net-
work consists of one stream only. The apical dendrites have a �nite time con-
stant, and the orientation of the stimulus changes slowly. Note the similarities
of the delayed interaction with the two-stream setup in Figure 3. (B) Response
strength of layer 3 neurons shown as a function of stimulus orientation and
position.

respect to position but invariant with respect to orientation (see Figure 5B).
This demonstrates that the type of invariance is not solely de�ned by the
stimulus set; the neurons learn to transmit the part of the information that
is correlated with the activity of the other set of neurons. Thus, this repre-
sents a special case of the “maximization of relevant information” principle
proposed in Körding and König (2000a).

As a next step a combination of top-down and bottom-up invariance
extraction is investigated. The network consists of two coupled streams,
one of these receiving an additional projection from one position-selective
neuron (see Figure 5C). This neuron can be activated by stimuli of any ori-
entation, but from just one-quarter of the positions. The network is trained
with stimuli correlated in orientation but not in position. One neuron in the
left module of the third layer learned to extract the information relevant for
the position-selective neuron. The other neurons picked up the information
correlated across streams (see Figure 5D). However, these two types of input
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to the apical dendrite show some undesired interaction. Due to the strong
competition implemented by the local inhibitory interaction on the calcium
spikes, each stimulus is learned by one neuron only. As the top-down input
induces one orientation-invariant, position-selective receptive �eld, this po-
sition is cut out of the receptive �elds of the remaining orientation-selective,
position-invariant neurons. Thus, they are actually only partly position in-
variant. It remains a major issue for future research how to extract several
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variables from several such principles simultaneously (Phillips et al., 1995).
Nevertheless, given that we deliberately have chosen con�icting demands
of top-down and bottom-up information, the network behaves reasonably
well and shows that learning of invariance by spatial coherence can be com-
plemented by top-down information on the relevance of different features.
Apart from this obvious problem, this simulation demonstrates that lat-
eral connections suf�ce to learn invariances and that these processes can be
re�ned using top-down information.

3.5 Multiple Streams. In the simulations above, at most two streams
were involved. This is, of course, a gross simpli�cation; in the biological
system, each cortical patch, analyzing part of the visual �eld, has many more
neighbors. Therefore, we extend the network to include multiple streams
and vary their number and the degree of correlation of inputs to these
streams.

To allow more extensive simulations, we concentrate on the generation
of invariant-receptive �elds in the step from layer 2 to layer 3 in the previous
simulations. Thus, we do not deal with the feature extraction from layer 1
to layer 2 but set activity levels of layer 2 neurons directly. The input is a
preprocessed two-dimensional map. A stimulus consisting of a bar would
activate mainly one layer 2 neuron. It is therefore represented by a binary
pattern, with all entries set to zero but the one neuron with the correspond-
ing orientation and position set to one. Presentation of several overlapping
bars is coded accordingly. Because feature extraction is not dealt with in
this simulation, we drop the terms orientation and position and use neutral
descriptors of class and instantiation, respectively. In the simulation, in-
stantiations (positions) are not correlated between different streams, and
the correlation between classes (orientation) is regulated by the parameter
pc. pc represents the amount of spurious correlations of orientation due to
the presence of multiple oriented stimuli (see section 2). At small pc in all
streams, one unit of a class is activated. At larger pc, spurious correlations
between different classes are introduced, making the learning task harder.
In natural scenes, typically a large number of objects and features is seen at

Figure 5: Facing page. Effect of the relevant infomax. (A) The network matches a
single stream as shown in Figure 2 with another set of neurons added above the
higher layer of that stream. (B) The resulting responses of third-layer neurons as
a function of orientation and position are shown. (C) The second network is the
same as in Figure 2 except for another set of neurons added above the higher
layer of the left stream. The neurons on the third layer receive input from the
third layer of the other stream and the highest layer. (D) Results with relevant
infomax. The responses of the left stream’s third-layer neurons are shown. The
neurons on the right side develop position-selective and orientation-invariant
response properties, whereas the other neurons respond orientation speci�c and
translation invariant.
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the same time. We therefore consider these simulations an important step
on the way to being able to deal with natural images.

We use the class speci�city measure (see section 2) to characterize the
performance of the system. They converge to a rather high value and sta-
bilize there (see Figure 6B for pc D 0.2, 4 streams). Thus, typically neurons
in all streams learn to represent one class. Occasionally it happens that two
neurons in one stream do not code for a single class, but instead code for
two classes each (see Figure 6C, pc D 0.2, four streams). Such a metastable
state can last for prolonged periods before typically collapsing into the cor-
rect solution (see Figure 6D, third panel). The convergence behavior and
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receptive �elds are shown for the typical case of Figure 6C. To analyze the
behavior further, we varied pc as 0.01, 0.2, and 0.4 and determined the effect
of the number of streams (see Figure 6D). Increasing the number of streams
speeds up convergence. The number of effective streams in visual cortex
can be estimated by the ratio of extent of long-range connections to the
minimal distance of neurons with nonoverlapping receptive �elds. For the
cat we obtain a (linear) ratio of about 7 mm / 2 mm = 3.5 (Salin & Bullier,
1995), giving an estimate (p r2) of 38 for the total number of streams. This
high number places the cortical architecture in the parameter range where
lateral connectivity allows much faster and more stable learning.

4 Discussion

We have shown that a reasonable neuron model with two sites of synap-
tic integration can be used to implement learning principles of spatial and
temporal continuity. Furthermore, within the same framework, it can be
combined with principles that approximate maximization of relevant in-
formation. Finally, lateral connections, as commonly seen in mammalian
neocortex, speed up the learning process.

4.1 Approximations. In our implementation obviously several physio-
logical aspects are simpli�ed.

First, experiments on the physiological properties of dendrites of pyrami-
dal neurons reveal a high degree of complexity (Johnston, Magee, Colbert,
& Cristie, 1996; Segev & Rall, 1998; Helmchen et al., 1999). Some theoreti-
cal studies argue for a superlinear interaction of postsynaptic signals in the
dendrite (Softky, 1994). Other studies imply linear summation (Bernander,
Koch, & Douglas, 1994; Cash & Yuste, 1999), or provide evidence for sublin-
ear dendritic properties (Mel, 1993). Furthermore, the effectivity of input via

Figure 6: Facing page. Multiple streams. (A) Each stream consists of two layers:
an input layer where preprocessed sparse activity is present, projecting to the
second layer. The modules of the second layer are connected to all other mod-
ules’ second layer. The number of the streams is varied and is either 2, 4, and 6.
(B) The left panel shows the class speci�city index (see section 2) in the typical
case as a function of the iteration. The other panels show the corresponding re-
ceptive �elds for each neuron. (C) The class speci�city is shown for a case where
not every neuron was associated to exactly one class. (D) The class speci�city is
shown for each stream averaged over four runs. Each line represents one stream.
The left-hand panel shows the average class speci�city as a function of the it-
eration and the number of streams at pc D 0.01. Note that the four-stream and
the six-stream lines largely overlap. The middle panel shows that introducing
spurious correlations (pc D 0.2) slows the convergence. This effect is more pro-
nounced for a small number of streams. The right-hand panel (pc D 0.4) shows
that at very strong false correlation, the effect also holds.
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theapical dendritic tree is discussed.Obviously it is not possible to subscribe
to all these views simultaneously. In a gross simpli�cation, we assume lin-
ear summation of all inputs to the basal dendritic tree, and the function
of the apical dendrite is reduced to a threshold mechanism triggering cal-
cium spikes. This choice avoids extreme views on the unresolved matters
described above and also avoids obscuring the article with too many details
and parameters.

Second, in this article, we did not include an effect of calcium spikes on
postsynaptic activity. However, it is known that calcium spikes can induce
postsynaptic bursting activity (Larkum, Zhu, & Sakmann, 1999; Williams
& Stuart, 1999; see Figure 1C). Within the framework of lateral and top-
down projections terminating on the apical dendrite, this would result in
contextual information not only gating learning, but also in�uencing signal
processing itself (Phillips et al., 1995;Kay, Floreano, & Phillips, 1998). Indeed,
it has been shown that top-down projections can enhance processing of
sensory signals (Siegel, Körding, & König, 2000).

Third, the inhibitory neurons are reduced to a linear effect on somatic
activity and act as mediators of the winner-take-all mechanism on calcium
spikes. Larkum, Zhu, & Sakmann (1999) found a dramatic effect of inhibi-
tion on the calcium spike generation mechanism. The activity of a single
inhibitory neuron seems to be suf�cient to prevent triggering of calcium
spikes. This effectively describes a winner-take-all mechanism that we im-
plemented algorithmically. (For an alternative implementation, see Körding
& König, 2000b.)

Fourth, in our simulations, we use a normalization scheme for the net-
work activity. Actually, such a procedure is often used and may be imple-
mented by superlinear inhibition. As currents mediated by GABAB recep-
tors are observed at high presynaptic �ring rates (Kim, Sanchez-Vives, &
McCormick, 1997), this is a promising candidate mechanism.

Finally, in this work, a rate-coding system was implemented, ignoring
the precise timing of action potentials. Indeed, in several of the experiments
cited above (Markram, Lübke, Frotscher, & Sakmann, 1997; Larkum, Kaiser,
& Sakmann, 1999) synaptic plasticity has been found to depend on the rel-
ative timing of afferent and backpropagating action potentials. Evidence is
available that the mean �ring rate of cortical neurons maps directly on the
relative timing of action potentials (König et al., 1995). Thus, our approxima-
tion appears reasonable, and from existing knowledge, we can be optimistic
that the effects observed here hold up in a more detailed simulation study.

4.2 Comparison with Other Unsupervised Systems That Learn Invari-
ances. As discussed in section 1, several possible criteria can be used to
learn invariances. The spatial and the temporal criteria are commonly used
(Hinton, 1989; Földiak, 1991; Becker & Hinton, 1992; Stone & Bray, 1995;
cf. Becker, 1996, 1999; Kay et al., 1998). Those studies at �rst sight do not
seem to map directly on known physiology. We do not claim to outper-
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form those studies with respect to convergence speed or the maximization
of a goal function, but investigate physiological mechanisms that may be
used by the brain to implement algorithms like these. Nevertheless, we do
hope that investigating mechanisms used by the brain will �nally help us
conceive algorithms that outperform today’s algorithms.

The main virtue of the learning rule proposed here is that it explicitly
addresses the existence of a trade-off between correctly representing local
stimulus features and correctly learning invariant representations. Further-
more, it allows smooth integration of top-down information with contextu-
ally guided feature extraction to result in extraction of relevant information.
To learn invariant representations from natural stimuli is an important line
ofresearch,which is currently becoming feasible (Hyvarinen & Hoyer, 2000).
O’Reilly and Johnson (1994) indicate that at least the temporal smoothness
criterion could be implemented in one site of the synaptic integration model
where delayed recurrent excitatory activity takes the role of supplying the
signal necessary for learning. In their approach, the same trade-off is likely
to hold; with weak delayed excitation, the learning rule effectively is Heb-
bian, and with strong excitation, neurons are not local feature detectors but
have temporal low-pass characteristics. Eisele (1997) presents an interesting
approach enhancing the temporal smoothness criterion to cases in which
transitions are not symmetric. Two types of dendrites represent states a sys-
tem can go to or can come from. These different kinds of properties are then
mapped on apical and basal dendrites. Rao and Sejnowski (2000) propose
a system where temporally predictive coding in a recurrent neural network
leads to the generation of invariant-response properties. This model from
our point of view uses a variant of the temporal smoothness criterion, and
we assume it to be subject to the trade-off described above as well. Mel, Ru-
derman, & Archie (1998) investigate the development of complex receptive
�elds. Modeling cortical pyramidal neurons, bars of identical orientation
are presented at different positions and Hebbian learning applied. Their
approach thus needs a mechanism ensuring that neurons learn only when
thesameorientation is shown.Thus, a mechanism to gate learning is needed;
our approach may be considered a physiological implementation. We must
note, though, that due to its derivation from physiological results, it is not
directly amenable to mathematical analysis, and thus it is not possible to
write down its goal function explicitly. By virtue of the physiological imple-
mentation, we nevertheless obtain a uni�ed framework allowing us to use
temporal continuity and spatial continuity for the developmentof invariant-
response properties and combine this with a bias to relevant information
by top-down signals.

4.3 Cortical Building Block. Analyzing the mammalian neocortex
shows an astonishing degree of similarity across areas as well across animal
species. It is a shared feeling of many neuroscientists that with this anatomi-
cal similarity should go a common system for computing and learning. “The
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typical wiring of the cortex,which is invariant irrespective of local functional
specialization, must be the substrate of a special kind of operation which is
typical for the cortical level” (Braitenberg, 1978). The principles proposed
for supporting unsupervised learning of invariances should be part of such
a common cortical building block; these principles in turn may shed some
light on the signi�cance of a prominent property of the architecture of cor-
tical columns, the apical dendrite of pyramidal neurons.
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