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Abstract—Detailed processing of sensory information is a
computationally demanding task. This is especially true for
vision, where the amount of information provided by the sensors
typically exceeds the processing capacity of the system. Rather
than attempting to process all the sensory data simultaneously,
an effective strategy is to focus on subregions of the input space,
shifting from one subregion to the other, in a serial fashion.
This strategy is commonly referred to asselective attention.We
present a neuromorphic active-vision system, that implements a
saliency-based model of selective attention. Visual data is sensed
and preprocessed in parallel by a transient imager chip and trans-
mitted to a selective-attention chip. This chip sequentially selects
the spatial locations of salient regions in the vision sensor’s field
of view. A host computer uses the output of the selective-attention
chip to drive the motors on which the imager is mounted, and to
orient it toward the selected regions. The system’s design frame-
work is modular and allows the integration of multiple sensors
and multiple selective-attention chips. We present experimental
results showing the performance of a two-chip system in response
to well–controlled test stimuli and to natural stimuli.

Index Terms—Address-event representation, neuromorphic, se-
lective attention, winner-take-all.

I. INTRODUCTION

REAL-TIME processing of detailed sensory information
is a computationally demanding task for both biological

and artificial systems. Rather than attempting to simultaneously
process all the information provided by the input sensors, an ef-
fective strategy is to select subregions of the input, and process
them, shifting from one subregion to another in a serial fashion.
In biology, this strategy is commonly referred to asselective at-
tention [1]–[3]. The selection of the subregions appears to be
driven by a competitive mechanism that facilitates the emer-
gence of a winner from several potential targets, allowing the
system to process information relevant to current goals, while
suppressing the irrelevant information that the system cannot
analyze simultaneously [1]. In the mammalian visual system,
selective attention plays a major role in determining where to
center the fovea (the region of the retina with the highest den-
sity of receptors) with respect to the subregion of interest in the
visual field [4].

Recent theories suggest that the selection mechanism can be
modulated by stimulus-driven and goal-driven factors [5]. Stim-
ulus-driven attention appears to act as a rapid, bottom-up, task-
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independent mechanism, while goal-driven selective-attention
appears to act in a slower top-down volition-controlled manner.
In this paper, we present a real-time active-vision system that
uses a stimulus-driven selective-attention mechanism to sequen-
tially analyze subregions of the input space, by choosing a loca-
tion for the focus of attention and changing its imaging sensor’s
direction of gaze accordingly. To respond to visual stimuli and
select the location for the focus of attention in real time, we used
two fully custom analog very large scale integration (VLSI) neu-
romorphic chips: an irradiance transient sensor array [6], and a
selective-attention signal processing array [7]. As the character-
istics of the individual chips are described in detail elsewhere
[6]–[8], in this paper we focus on the description of the overall
architecture, and on system-level issues such as interchip com-
munication, motor-control strategies, and system behavior. The
active-vision system that we present demonstrates how multi-
chip networks can be interfaced effectively, and carry out com-
putation in parallel; using an event-based asynchronous commu-
nication infrastructure which employs anaddress-event repre-
sentation(AER) [9]–[11]. Multichip systems that exchange in-
formation using the AER have already been proposed [12], [13],
but the one presented in this article is one of the first to use an
AER transceiver (the selective-attention chip) that both receives
address events, and transmits them to further processing stages.
Several VLSI systems for implementingvisualselective-atten-
tion mechanisms have also been presented [14]–[17], [8]. These
systems contain photosensing elements and signal–processing
elements on the same focal plane, and apply a competitive selec-
tion process to visual stimuli sensed and processed by the focal
plane processor itself. Unlike these systems, the one proposed
here uses a selective-attention chip able to receive input signals
from any type of AER device. Therefore, input signals need not
arrive only from visual sensors, but could represent a wide va-
riety of sensory stimuli obtained from different sources; such
as silicon retinas [11], silicon cochleas [18], or additional AER
signal processing chips. In this paper, we show how the ability of
the selective-attention chip to receive and transmit signals, using
the same representation as AER neuromorphic sensors, allows
us to design multichip hierarchical selective-attention systems
able to interact with the real world in real time.

II. SALIENCY-BASED MODEL OFSELECTIVE ATTENTION

Several computational models of selective attention have
been proposed [19], [20], [5], [2], [3]. Some of these models
are based on the concept of “dynamic routing” [19], by which
salient regions are selected by dynamic modification of network
parameters (such as neural connection patterns), under both
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Fig. 1. Schematic diagram of a saliency–based model of selective-attention.

top-down and bottom-up influences. Some other models, based
on similar ideas, promote the concept of “selective tuning” [20].
In these models, attention optimizes the selection procedure
by selectively tuning the properties of a top-down hierarchy of
winner-take-all (WTA) processes embedded within the visual
processing pyramid.

The model we seek to implement in hardware is the one based
on the concept of the “saliency map,” originally put forth by
Koch and Ullman [21]. This biologically plausible model ac-
counts for many of the observed behaviors in neurophysiolog-
ical and psychophysical experiments, and has led to several soft-
ware implementations applied to machine vision and robotic
tasks [22]–[25]. This model is especially appealing to us be-
cause it lends itself nicely to hardware implementation; due to
its modularity and ease of expandability.

A diagram describing the main processing stages of the model
is shown in Fig. 1. A set of topographic feature maps is extracted
from the visual input. All feature maps are normalized and com-
bined into a mastersaliency map,which topographically codes
for local saliency over the entire visual scene. Different spa-
tial locations then compete for largest saliency, based on how
much they stand out from their surroundings. A WTA circuit
selects this most salient location as the focus of attention. The
WTA circuit is endowed with internal dynamics, which generate
the shifts in attention based on a mechanism namedinhibition
of return (IOR) (a key feature of many selective-attention sys-
tems) [26]. As explained in Section III, the hardware system
proposed in this paper only implements a subset of the model
of Fig. 1. However, thanks to the modularity of the original
model and to the flexibility offered by the AER communication
protocol, this hardware system can scale up to arbitrarily com-
plex selective-attention systems. We will argue in Section V that
this is achievable by combining multiple instances of the pre-
sented chips, computing multiple sets of feature maps, merging

(a)

(b)

Fig. 2. (a) Block diagram of the sensory-motor selective-attention model. The
figure shows the basic computational blocks used, as well as the corresponding
biological analogs and their function. (b) Schematic diagram of the active-vision
setup. The neuromorphic imager, mounted on a pan-tilt unit, transmits its output
to the selective-attention chip. The latter sends the results of its computations to
a host computer which uses this data to drive the pan-tilt unit’s motors.

and normalizing feature maps into a saliency map, and imple-
menting both the WTA and IOR mechanisms.

III. SYSTEM DESCRIPTION

A. Overview

A block diagram of the selective-attention sensory-motor
system and the correspondence between the system’s compu-
tational blocks and their biological counterparts is shown in
Fig. 2(a). A schematic diagram illustrating how the individual
components are connected together is shown in Fig. 2(b). At the
input stage, we use a neuromorphic imager that is sensitive to
temporal changes in illumination (transients), and extracts mo-
tion or flicker as features. Since our system, in its current state,
only extracts one feature map, the saliency map is identical to



494 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 5, MAY 2001

Fig. 3. Schematic diagram of an AER chip–to– chip communication example:
“slow” action potentials generated by the “many” (N ) neurons of the source chip
are transmitted as “fast “ address events, on the “few” (logN ) wires of the AE
bus, to the synapses of the destination chip neurons.

the extracted feature map. In this case, no feature combination
stage is necessary; the transient imager chip transmits its output
data directly to the selective-attention chip.

Based on its inputs, the selective-attention chip computes
the location of the focus of attention, and sends address events
encoding this location to the host computer. In addition to
managing the communication with the selective-attention chip,
using the AER communication protocol, the host computer is
used for data logging and, more importantly, for driving the
motors of a commercial pan-tilt unit (Directed Perception, Inc.,
PTU 46–17.5) on which the transient imager is mounted [see
Fig. 2(b)]. The pan-tilt unit is used to orient the imager chip
such that the location of the focus of attention lies in its central
region.

B. AER

The proposed multichip system can process signals in par-
allel, in real time, while exchanging data according to the asyn-
chronous AER communication protocol. In this protocol, input
and output signals are transmitted as asynchronous binary data
streams which carry the analog information in their temporal
structure, very much like natural spike trains do in biological
systems (see Fig. 3). The time intervals between events are con-
tinuous in nature. Each event is represented by a binary word
encoding the address of the sending node. In the case of single-
sender/single-receiver point-to-point communication, a simple
handshaking mechanism ensures that all events generated at the
sender side arrive on the receiver side [9], [11]. The address
of the sending element is conveyed in parallel, along with two
handshaking control signals. Systems containing more than two
AER chips can be constructed by implementing additional spe-
cial purpose off-chip arbitration schemes [13], or using a frame-
work such as thesilicon cortex(SCX) [10], [12], which is a gen-
eral, fully arbitered, address event communication infrastruc-
ture.

The system proposed here uses single-sender/single-receiver
point-to-point communication. The sender chip contains a
two-dimensional pixel array, with an arbiter that serially
processes the requests from the different pixels in the order of
their activation, latches their addresses onto the AER commu-

Fig. 4. Block diagram of irradiance transient detector with event-based
communication interface.

nication bus in the same order, and sends acknowledge pulses
to the corresponding pixels [27]. As soon as a new address is
ready on the bus, the handshaking cycle with the receiver chip
is initiated, in the course of which the address of the sending
pixel is transmitted.

The transient imager transmits its address events to the selec-
tive-attention chip using a topographic mapping. As the sender
has 16 16 pixels and the receiver only 88 we map the ad-
dresses of 22 neighboring pixels on the sender to the same
pixel on the receiver. This mapping was accomplished by simply
discarding the least significant bit of the sender address, for each
dimension.

C. Transient Imager Chip

The transient imager is a 1616 pixel array of irradiance tran-
sient detectors that is used to generate the events that drive the
system. Each pixel responds with binary pulses in real time to a
local change of a brightness distribution projected through a lens
onto its surface. These pulses are used as the request signals to
the AER communication interface. Fig. 4 shows a block diagram
of the pixel circuitry. The transient detector comprises an adap-
tive photoreceptor [28] with a rectifying temporal differentiator
[29] in the feedback loop. Positive irradiance transients, corre-
sponding to dark-to-bright orON transitions, and negative irra-
diance transients, corresponding to bright-to-dark orOFFtransi-
tions, appear at different output terminals. TheON andOFF re-
sponses are separately amplified with tunable gains, each gener-
ating a request pulse to the on-chip arbiter if it exceeds a chosen
threshold. By appropriately setting the threshold and the respec-
tive gain factors, the circuit can be made to respond only toON

transients or only toOFFtransients or to both types of transients.
Each acknowledge pulse from the arbiter triggers a reset pulse
at the requesting terminal, whose duration determines a refrac-
tory period for the succeeding request from the same terminal.
Depending on the chosen refractory period and the magnitude
and duration of the irradiance transient, the pixel responds with
a single spike or a burst of spikes. In the present application,
a short refractory period of 140s was chosen to obtain bursts,
and only theOFFresponse was used to stimulate the selective-at-
tention chip.

The pixels are arranged on a square grid. The position of a
pixel along a row is encoded with a 4-bit column address and
its position along a column with a 4-bit row address. An addi-
tional address bit is used to distinguish between ON and OFF
transients. The details of this circuit are described in [6].
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Fig. 5. Block diagram of a basic cell of the 8� 8 selective-attention
architecture.

D. The Selective-Attention Chip

The selective-attention chip contains an array of 88 cells
laid out on a square grid. Fig. 5 shows a block diagram of the
cell circuitry. Each cell comprises an excitatory synapse, an in-
hibitory synapse, a hysteretic WTA cell [30], a local inhibitory
output neuron [7], and two position-to-voltage (P2V) circuits
[31]. The P2V circuits produce two analog output voltages en-
coding the coordinate and thecoordinate of the winning cell.
The excitatory synapse is a current-mirror integrator [27] inter-
faced to the input AER circuitry. It receives off-chip address
events, and integrates them into an excitatory current. The
inhibitory synapse is a similar circuit that integrates the on-chip
spikes of the same cell’s output neuron into an inhibitory cur-
rent . The synaptic currents, and , are subtracted and
sourced into the input node of the WTA cell (see Fig. 5). A
detailed description of these circuits, together with quantitative
analysis and a description of their response properties has been
recently presented in [7]. A comprehensive description of the
response properties of the hysteretic WTA network as a func-
tion of circuit bias parameters and input signals can be found in
[30].

In the selective-attention chip, each hysteretic WTA cell
is connected to its four nearest neighbors, both with excita-
tory connections and inhibitory connections. The strength of
the lateral inhibitory connections controls the spatial extent
over which competition takes place. If lateral inhibition is
maximally turned on, all WTA cells of the architecture are
connected together (global inhibition) and only one winner can
be selected at a time. If, on the other hand, the lateral inhibitory
connections are weakened (local inhibition), the WTA cells are
partially decoupled from each other and the network can select
multiple (spatially distant) winners simultaneously. Similarly,
the lateral excitatory connections control the amount of lateral
facilitatory coupling between cells. If lateral excitation is en-
abled, the system tends to select new winners in the immediate
neighborhood of the currently selected cell.

The winning cell supplies a current to the position-to-voltage
row and column circuits. It also sources a dc current into a
neuron connected to it. Each action potential generated by this
neuron produces an address event. The amplitude of the injec-
tion current (and hence the frequency of the address events) is
independent of the WTA’s cell input.

In addition to transmitting the pixel’s address off-chip, the
output neuron is instrumental for implementing the inhibition

Fig. 6. Image captured from the CCD camera mounted next to the transient
imager. The outer frame shown in the image corresponds to the field of view
of the transient imager, whereas the inner frame is drawn to evidence the
transient imager’s central region. The cross to the bottom right of the image
center represents the location of the focus of attention currently computed by
the selective-attention chip.

of return (IOR) mechanism. The spikes generated by the win-
ning cell’s output neuron are integrated by the cell’s inhibitory
synapse. As the integrated inhibitory postsynaptic current
increases, the cell’s net input current decreases. As
soon as this net input current decreases below the value of a
net input current exciting a different cell, the WTA network
switches state and selects the new cell as the winner. When
the old winning cell is deselected, its corresponding local
output neuron stops firing, and its inhibitory synapse recovers,
decreasing the inhibitory current back to zero. Depending
on the time constants and strength of the excitatory and
inhibitory synapses, on the input stimuli and on the frequency
of the output neuron, the WTA network can exhibit different
dynamic properties. The selection of the winner can switch
between the largest input and the next-largest, or between the
largest and more inputs of successively decreasing strength,
generating focus of attentionscanpaths[32]. Quantitative
measures characterizing these scanpaths and comparisons to
other selective-attention circuits/IOR mechanisms have been
described in [7] and [8].

E. Motor Control Algorithm

The control algorithm that the host computer executes, is re-
sponsible for driving the motors of the pan-tilt unit in such a
way as to center the location picked by the selective-attention
chip within the central region of the transient imager chip. This
algorithm represents a first attempt at modeling the bottom-up
stimulus driven neural mechanism that generates saccadic eye
movements which center the fovea with respect to the location
of the focus of attention.

To evaluate, quantitatively, the response properties of the
system, and test the motor control algorithm, we mounted a
standard charge-coupled device (CCD) camera next to the
transient imager chip and captured images on the host computer
[see also Fig. 2(b)]. This allowed us to see in real-time the
images projected onto the focal plane of the transient imager
chip, as shown in Fig. 6. We calibrated the system so that the
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Fig. 7. (a) Histogram of events generated by the transient imager pixels in
response to two diffused flashing LEDs. The LED stimulating the region around
pixel (5,9) has higher contrast than the other LED. (b) Histogram of events
generated by the selective-attention chip in response to the events generated by
the transient imager chip.

image projected onto the transient imager array, corresponds
to the central part of the image captured by the CCD camera,
shown as the outer square in the center of Fig. 6. The inner
square drawn in the center of Fig. 6 represents the part of the
scene being projected on the central 44 region of the transient
imager array. The location selected by the selective-attention
chip is represented by a small cross, superimposed onto the
CCD image.

The control algorithm produces motor commands that de-
pend on the current position of the selected location, and its
recent history; if the cross lies within the inner square of the
image, no camera movements are triggered (the camera is al-
ready “foveating” the salient feature). If the cross shifts to a lo-

Fig. 8. Raster plot of the activity of the neurons of both transient imager chip
(dots) and selective-attention chip (circles) in response to the flashing LEDs. To
plot the data from both chips using an address space with the same resolution,
we subsampled the addresses of the transient imager chip. The LEDs flashed
approximately at 0.25, 1.25, and 2.25 s.

cation outside the inner frame, the algorithm records the address
of the location and increases a counter associated with that ad-
dress. As soon as the counter for a particular address reaches
a threshold (i.e., when the cross revisits the same location
times), the algorithm generates a camera movement that centers
the selected location within the central region of the transient
imager array (the camera “saccades” to the persistent salient
stimulus). In this method, camera movements are generated only
if a salient location is visited more than once. The revisiting con-
straint ensures that the system does not saccade to all locations
picked by the selective-attention chip, but orients its gaze only
toward persistent salient stimuli. In the examples shown in Sec-
tion IV, was set to 5. The value ofwas chosen to reproduce
the characteristics of biological selective-attention systems, as
reported in the neuroscience literature [3]; while the focus of at-
tention shifts 15–20 times per second, saccadic eye movements
are only made 3–5 times per second [3].

Another important function implemented by the motor con-
trol algorithm is that ofsaccadic suppression.During a camera
movement the images projected on the focal plane of the tran-
sient imager array generate a large amount of address events.
These events are not relevant for the analysis of the scene once
the camera stops moving. In biology, this problem is solved by
suppressing all inputs arriving from the retinas during saccadic
eye movements (indeed, we are effectively blind during a sac-
cade). In the current version of our system, the addresses gen-
erated by the transient imager chip are hardwired into the se-
lective-attention chip [see Fig. 2(b)]. There is no way of sup-
pressing these events at the source. During a camera movement,
the selective-attention chip receives and processes all spurious
events from the imager, and the addresses generated by the se-
lective-attention chip are transmitted to the host computer. The
control algorithm ignores the effect of these events, by resetting
all address counters to zero after each camera movement. In this
way, the recent history of all selected positions is canceled, and
normal operation of the control algorithm can be resumed.

IV. EXPERIMENTAL RESULTS

A. System Response in Absence of Camera Movements

Initially, we tested the system with the motors of the pan-tilt
unit turned off. The input images consisted of a laboratory scene
with two flashing LEDs in the foreground. The two LEDs were
blinking in phase, with a frequency of 1 Hz and a duty cycle
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Fig. 9. Sequence of images showing the selection of a salient stimulus prior to and after a saccadic eye movement. (a) The system is attending the top LED,
already centered on the central part of the imaging array. (b) The system selects the bottom LED, outside the central region of the imager. (c) The system performed
a saccade toward the bottom LED, and is currently attending it.

of 50%. As the transient imager responds only to local changes
in illumination, the blinking LEDs proved to be a reliable and
well–controlled stimulus. The static background did not con-
tribute to the generation of address events. We placed a diffusion
glass in front of the transient imager’s lens, to diffuse the pro-
jection of the two LEDs on the imager’s focal plane. In this way
we were able to stimulate several pixels of the imaging array
with each LED. Fig. 7(a) shows the histogram of the address
events generated by the transient imager array in response to
the flashing LEDs, captured over a period of 2 s. The two re-
gions with the highest occurrence of events [around pixels (5,9)
and (11,11)] correspond to the locations of the LEDs. Fig. 7(b)
shows the histogram of address events generated by the selec-
tive-attention chip. On average, the selective-attention chip vis-
ited pixels (3,5), (3,4) and (6,6), (6,5) most often.

While the event histogram shows that the selective-attention
chip actson averagelike a threshold filter, picking only inputs
with a high mean frequency, it does not show the more inter-
esting aspect of the computation carried out by the chip—its
dynamics. To show the dynamical aspect of the selective-atten-
tion chip’s response, we plotted in Fig. 8 araster plot.This plot
shows the activity of the transient imager and of the selective-at-
tention chip neurons over time, in response to the flashing LEDs.
The 8 8 neurons of the selective-attention chip are labeled suc-
cessively, row by row (1–64), and the events that they generated
are plotted with circles. To show the events of the transient im-
ager pixels on the same scale, we subsampled their addresses,
taking into consideration only their three most significant bits
(in the same way we implemented the mapping of addresses
from the transient imager pixels to the selective-attention ones,
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Fig. 10. Raster plot of the activity of the neurons of the transient imager chip
(dots) and of the selective-attention chip (circles) in response to two flashing
LEDs. The focus of attention shifts from a central region of the imaging array to
a peripheral one (see circles at 2 s� t < 6 s). Consequently, the system makes
a camera movement, at the time indicated by the vertical arrow, and re-centers
the attended location.

as described in Section III-B). The high density of events around
time instants 0.5, 1.5, and 2.5 s is due to the flashing of the
LEDs. Within a single flash, the focus of attention shifts approx-
imately four times, moving from one region of high saliency to
another. The proportion between events generated by the two
chips is consistent with the data of Fig. 7. By looking at the se-
lective-attention chip data of Fig. 8 one can extrapolate the focus
of attention’s scanpaths. Note how these scanpaths tend to re-
peat themselves over time. This characteristic will be even more
evident in Section IV-C, when we analyze the response of the
system to natural stimuli.

B. System Response in Presence of Camera Movements

To allow the system to make camera movements, we acti-
vated the motors of the pan-tilt unit on which the imager was
mounted. The input stimulus consisted again of two flashing
LEDs, but this time not in phase. Furthermore we removed the
diffusion filter from the transient imager’s lens, so that the two
LEDs stimulated only a few pixels of the imaging array. As de-
scribed in Section III-E, the selective-attention chip was driving
the pan-tilt unit to orient the imager toward the attended loca-
tion. Fig. 9 shows a sequence of images captured by the CCD
camera mounted on the pan-tilt unit, while the system was en-
gaged in selecting and tracking the LEDs. Initially, only the top
LED was flashing, and the system selected it and oriented the
central region of the imager to that location [see Fig. 9(a)]. As
we turned on the bottom LED, the system changed the focus of
attention location [see Fig. 9(b)] and made a camera movement
centering the attended stimulus on the central region of the im-
ager [see Fig. 9(c)].

The raster plot of Fig. 10 shows in detail the sequence of
events that lead to the camera movement. The arrangement of
the neuron addresses on the figure axis is the same as in Fig. 8.
Initially, the selective-attention chip was attending the region
of transient imager pixels that project to its 35th pixel. As the
second LED flashed, the imager pixels excited also the 20th
selective-attention chip pixel. After approximately 1 s, the WTA
network of the selective-attention chip switched and selected
the second LED as the winner. After having attended to that
location for approximately 2.5 s, the system made an abrupt
camera movement (saccade), and centered the attended stimulus
on the imaging array.

Fig. 11. Output of the P2V circuits of the selective-attention chip (see
Section III-D, Fig. 5), representing the scanpath of the focus of attention,
switching back and forth between the fluttering fingers of both of the
experimenter’s hands. The scanpath data is superimposed onto a snapshot
taken from the CCD camera during the experiment.

C. System Response to Natural Stimuli

In this section, we show how the system is able to select and
attend natural stimuli that were not explicitly engineered to op-
timally drive the imaging array. As we did in Section IV-A and
-B, we initially tested the system in the absence of camera move-
ments and subsequently tested it with the motor output activated.

Fig. 11 shows the location of the focus of attention, as mea-
sured by the P2V circuits of the selective-attention chip (see
Section III-D), in response to the fluttering fingers of the experi-
menter, over a period of 500 ms. Thecomponent and compo-
nent of the focus of attention are plotted against each other, and
superimposed onto an image taken by the CCD camera during
the experiment. Although the resolution of the selective-atten-
tion chip is 8 8 pixels, the data of Fig. 11 seems to belong to a
much higher resolution architecture. This is due to the fact that
the output of the P2V circuits is analog and is affected by noise
[7]. These analog output signals might not be appropriate for
precise quantitative measurements, but could be used to drive,
via buffers or power amplifiers, motors and actuators to imple-
ment (negative feedback) sensory-motor loops [7].

Fig. 12 shows the response of the system to the same stim-
ulus as Fig. 11, with the motors engaged. Fig. 12(a) shows the
beginning of the experiment; the motors had just been activated,
the imager was still in its initial position, and the selective-at-
tention chip chose a pixel in the top left region of the transient
imager array as the focus of attention. After the selective-atten-
tion chip transmitted the same pixel address to the host com-
puter for a set number of times, specified by the motor control
algorithm (see Section III-E), the control algorithm generated a
camera movement and centered the focus of attention with re-
spect to the transient imager array [see Fig. 12(b)]. If the salient
stimuli were persistent (e.g., if the fingers kept on moving) and
remained in the field of view of the imager, the system continu-
ously shifted its gaze from one salient stimulus to the other.
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Fig. 12. Saccadic eye movements in response to moving fingers. (a) CCD
camera snapshot taken before the saccadic eye movement (the focus of attention
has just switched from one hand to the other). (b) CCD camera snapshot taken
just after the saccadic eye movement (the focus of attention and the salient
stimulus are now in the center of the imaging array).

This behavior has proven to be extremely reliable and robust.
The system’s response is largely invariant to illumination con-
ditions, stimulus speed and (static) background conditions.

V. CONCLUSIONS ANDOUTLOOK

We have presented a neuromorphic active-vision system com-
prising an imaging sensor, a selective-attention chip, and a mo-
torized pan-tilt unit using asynchronous address event commu-
nication. The system sequentially selects the spatial locations
of the most salient inputs present in the sensor’s field of view,
and orients the sensor toward them. It implements a simpli-
fied model of the bottom-up stimulus driven selective-atten-
tion mechanism of primates. The selective-attention chip ac-
cepts input signals in the form of address events and transmits
output signals using the same representation. We demonstrated
the behavior of the system using both “well-controlled” LED
stimuli, and more natural types of stimuli.

Although the present system has only one visual sensor, and
one selective-attention chip, its design framework allows the
integration of additional AER devices for implementing selec-
tive-attention systems of arbitrary complexity. The scheme of
Fig. 1 could be implemented using one single neuromorphic im-
ager, interfaced to multiple instances of the selective-attention
chip, via different connectivity mappings (see Section III-B).
Several AER input sensors (silicon retinas, cochleas, etc.) could
also be employed, and interfaced to additional instances of the
selective-attention chip. At the first level of the hierarchy, these
selective-attention chips would be biased to choose several win-
ners simultaneously (using the local inhibitory connections of
the WTA network), and produce normalized feature maps (as
mentioned in Section III-D, the frequency of the spikes of the
winning neuron in the selective-attention chip does not depend
of the amplitude of its input signals). The normalized outputs
would then converge into a top selective-attention chip, at the
second level of the hierarchy. This attention chip would then de-
termine the spatial location of the most salient stimulus, taking
into account all sensory modalities used in the first level, and
eventually drive the motor control components of the system.
The inherent characteristics of neuromorphic sensors and of the
AER ensure that the transduction of sensory signals, the com-
petition within single-sensory modalities, and the competition
across sensory modalities would all take place in parallel. The
(complex) dynamics present at all levels of the hierarchy would
run in continuous and inreal time.

Equivalent selective-attention systems implemented, using
conventional machine vision technology, are not able to
perform these types of computations in real-time, even using
powerful workstations [22]. The real-time nature of the compu-
tation carried out by neuromorphic multichip systems, and the
flexibility that they offer (e.g., by selecting different sets of bias
voltages for the individual chips, and by exploiting the AER to
map/remap connectivity patterns) provide obvious advantages
both for scientific investigation of selective-attention system
properties and for engineering applications.
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