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Active Vision Using an Analog VLSI
Model of Selective Attention

Giacomo Indiveri, Robin Murer, and J6rg Kram&tember, IEEE

Abstract—Detailed processing of sensory information is a independent mechanism, while goal-driven selective-attention
computationally demanding task. This is especially true for appears to actin a slower top-down volition-controlled manner.
vision, where the amount of information provided by the sensors In this paper, we present a real-time active-vision system that

typically exceeds the processing capacity of the system. Rather . - . . .
than attempting to process all the sensory data simultaneously, uses a stimulus-driven selective-attention mechanism to sequen-

an effective strategy is to focus on subregions of the input space, tially analyze subregions of the input space, by choosing a loca-
shifting from one subregion to the other, in a serial fashion. tion for the focus of attention and changing its imaging sensor’s

This strategy is commonly referred to asselective attentionWe  direction of gaze accordingly. To respond to visual stimuli and
present a neuromorphic active-vision system, that implements a gg|ect the location for the focus of attention in real time, we used

saliency-based model of selective attention. Visual data is sense full t | | leint tion (VLSI
and preprocessed in parallel by a transient imager chip and trans- WO fully custom analog very large scale integration ( ) neu-

mitted to a selective-attention chip. This chip sequentially selects fomorphic chips: an irradiance transient sensor array [6], and a
the spatial locations of salient regions in the vision sensor's field selective-attention signal processing array [7]. As the character-
of view. A host computer uses the output of the selective-attention jstics of the individual chips are described in detail elsewhere
chip to drive the motors on which the imager is mounted, and 10 15)_r8], in this paper we focus on the description of the overall
orient it toward the selected regions. The system’s design frame- ; . . .

work is modular and allows the integration of multiple sensors arCh!teC_ture' and on system-levell issues such as mtercr_np com-
and multiple selective-attention chips. We present experimental munication, motor-control strategies, and system behavior. The

results showing the performance of a two-chip system in response active-vision system that we present demonstrates how multi-

to well-controlled test stimuli and to natural stimuli. chip networks can be interfaced effectively, and carry out com-
Index Terms—Address-event representation, neuromorphic, se- D}Jtatllon |_n parallel; using a}n event-based asynchronous commu-
lective attention, winner-take-all. nication infrastructure which employs aldress-event repre-

sentation(AER) [9]-[11]. Multichip systems that exchange in-
formation using the AER have already been proposed [12], [13],
but the one presented in this article is one of the first to use an
EAL-TIME processing of detailed sensory informatiorAER transceiver (the selective-attention chip) that both receives
is a computationally demanding task for both biologicalddress events, and transmits them to further processing stages.
and artificial systems. Rather than attempting to simultaneousigveral VLSI systems for implementingsual selective-atten-
process all the information provided by the input sensors, an &bn mechanisms have also been presented [14]-[17], [8]. These
fective strategy is to select subregions of the input, and procegstems contain photosensing elements and signal—processing
them, shifting from one subregion to another in a serial fashiagslements on the same focal plane, and apply a competitive selec-
In biology, this strategy is commonly referred tosadective at- tion process to visual stimuli sensed and processed by the focal
tention[1]-[3]. The selection of the subregions appears to hgtane processor itself. Unlike these systems, the one proposed
driven by a competitive mechanism that facilitates the emeiere uses a selective-attention chip able to receive input signals
gence of a winner from several potential targets, allowing tiieom any type of AER device. Therefore, input signals need not
system to process information relevant to current goals, whierive only from visual sensors, but could represent a wide va-
suppressing the irrelevant information that the system canmigity of sensory stimuli obtained from different sources; such
analyze simultaneously [1]. In the mammalian visual systems silicon retinas [11], silicon cochleas [18], or additional AER
selective attention plays a major role in determining where #ignal processing chips. In this paper, we show how the ability of
center the fovea (the region of the retina with the highest detine selective-attention chip to receive and transmit signals, using
sity of receptors) with respect to the subregion of interest in tiige same representation as AER neuromorphic sensors, allows
visual field [4]. us to design multichip hierarchical selective-attention systems
Recent theories suggest that the selection mechanism camble to interact with the real world in real time.
modulated by stimulus-driven and goal-driven factors [5]. Stim-
ulus-driven attention appears to act as a rapid, bottom-up, task-

. INTRODUCTION

Il. SALIENCY-BASED MODEL OF SELECTIVE ATTENTION

Manuscript received December 1999; revised May 2001. This work was sup—several CompUtat|onal models of selective attention have
ported by a Swiss National Science Foundation SPP Grant and the U.S. Offigen proposed [19], [20], [5], [2], [3]. Some of these models

of Naval Research. , _ _ ersity @€ based on the concept of “dynamic routing” [19], by which
The authors are with the Institute of Neuroinformatics, University o l . | dbvd . dificati f K

Zirich/ETH Ziirich, CH 8057 Ziirich, Switzerland. salient regions are selected by ynamic mo ification of networ
Publisher Item Identifier S 1057-7130(01)06237-1. parameters (such as neural connection patterns), under both

1057-7130/01$10.00 © 2001 IEEE



INDIVERI et al: ACTIVE VISION USING AN ANALOG VLSI MODEL OF SELECTIVE ATTENTION 493

Attended location

—

Inhibition WTA network

of return

|
_EID Saliency map

[Feature combination}

Biology: Retina, LGN, V1 Eye muscles
Model: Transient imager = | Pan-tilt unit
—— > Feature _— > maps _— —
Function: | Image input and feature map Eye movements
1‘5 7 7 calculation
( Center-surround differences and normalization i
L L P Pulvinar, primary visual Superior colliculus
cortex, superior colliculus
0 |
Selective attention chip Software algorithm
\ T / Saliency map processing and Motor contro} for
Linear filtering focus of attention computat. eye movements
AT timage @

Fig. 1. Schematic diagram of a saliency—based model of selective-attention .T".'"".‘s"':"'" imager i GCO Camera
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top-down and bottom-up influences. Some other models, bast
on similar ideas, promote the concept of “selective tuning” [20].
In these models, attention optimizes the selection procedul
by selectively tuning the properties of a top-down hierarchy o
winner-take-all (WTA) processes embedded within the visua
processing pyramid.

The model we seek to implementin hardware is the one bas¢
on the concept of the “saliency map,” originally put forth by
Koch and Ullman [21]. This biologically plausible model ac-
counts for many of the observed behaviors in neurophysioloc A |
ical and psychophysical experiments, and has led to several so Pan-Tilt Linit Selective Minnticn Ghip
ware implementations applied to machine vision and robotic ®)

tasks [22]-[25]. This model is especially appealing to us be- _ _ _

cause it lends itslf nicely t0 hardware implementation; due §i 2, & Beck dagrame he sensary otr selecve ateton model. e

its modularity and ease of expandability. biological analogs and their function. (b) Schematic diagram of the active-vision
A diagram describing the main processing stages of the modetpp. The n_euromorphic imager, mounted on a pan-tilt unit, t_ransmits its c_)utput

s shown in Fig. 1. A et oftopographic feature maps is exiractf1eseecive tenion chip, e atersencehe fesuts of s conputatons

from the visual input. All feature maps are normalized and com-

bined into a mastesaliency mapwhich topographically codes

for local saliency over the entire visual scene. Different spand normalizing feature maps into a saliency map, and imple-

tial locations then compete for largest saliency, based on h&ignting both the WTA and IOR mechanisms.

much they stand out from their surroundings. A WTA circuit

selects this most salient location as the focus of attention. The IIl. SYSTEM DESCRIPTION

WTA circuit is endowed with internal dynamics, which generate )

the shifts in attention based on a mechanism naimkithition - OVErview

of return (IOR) (a key feature of many selective-attention sys- A block diagram of the selective-attention sensory-motor

tems) [26]. As explained in Section lll, the hardware systesystem and the correspondence between the system’s compu-

proposed in this paper only implements a subset of the modational blocks and their biological counterparts is shown in

of Fig. 1. However, thanks to the modularity of the originaFig. 2(a). A schematic diagram illustrating how the individual

model and to the flexibility offered by the AER communicatiotomponents are connected together is shown in Fig. 2(b). At the

protocol, this hardware system can scale up to arbitrarily coimput stage, we use a nheuromorphic imager that is sensitive to

plex selective-attention systems. We will argue in Section V thegmporal changes in illuminatiotrénsient3, and extracts mo-

this is achievable by combining multiple instances of the pr&en or flicker as features. Since our system, in its current state,

sented chips, computing multiple sets of feature maps, mergimgly extracts one feature map, the saliency map is identical to
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nication bus in the same order, and sends acknowledge pulses
Fig. 3. Schematic diagram of an AER chip—to— chip communication examplgy the corresponding pixels [27]. As soon as a new address is

“slow” action potentials generated by the “manyV' ) neurons of the source chip . . . .
are transmitted as “fast “ address events, on the “féwg (V') wires of the AE ready on the bus, the handshaking cycle with the receiver chip

bus, to the synapses of the destination chip neurons. is initiated, in the course of which the address of the sending
pixel is transmitted.

. ... The transient imager transmits its address events to the selec-
the extracted feature map. In this case, no feature combmat{on ) . : . .
. ) C T . . |vq-attent|0n chip using a topographic mapping. As the sender
stage is necessary; the transient imager chip transmits its outly.])u . 5
) : . ; as 16«16 pixels and the receiver onlyx® we map the ad-
data directly to the selective-attention chip. . . :
o . . : dresses of 2 neighboring pixels on the sender to the same
Based on its inputs, the selective-attention chip computes . . ) ; .
. : |{<el on the receiver. This mapping was accomplished by simply
the location of the focus of attention, and sends address evc% S . - .
. ) : " Iscarding the least significant bit of the sender address, for each
encoding this location to the host computer. In addition '[8 :
. o . ; . imension.
managing the communication with the selective-attention chip,
using the AER communication protocol, the host computer is
used for data logging and, more importantly, for driving the. Transient Imager Chip
motors of a commercial pan-tilt unit (Directed Perception, Inc.,
PTU 46-17.5) on which the transient imager is mounted [seeThe transientimager is a 4.6 pixel array of irradiance tran-
Fig. 2(b)]. The pan-tilt unit is used to orient the imager chipient detectors that is used to generate the events that drive the

such that the location of the focus of attention lies in its centraystem. Each pixel responds with binary pulses in real time to a

region. local change of a brightness distribution projected through alens
onto its surface. These pulses are used as the request signals to
B. AER the AER communication interface. Fig. 4 shows a block diagram

of the pixel circuitry. The transient detector comprises an adap-

The proposed multichip system can process signals in péve photoreceptor [28] with a rectifying temporal differentiator
allel, in real time, while exchanging data according to the asyj29] in the feedback loop. Positive irradiance transients, corre-
chronous AER communication protocol. In this protocol, inputponding to dark-to-bright aoN transitions, and negative irra-
and output signals are transmitted as asynchronous binary d#itace transients, corresponding to bright-to-dar&rmsttransi-
streams which carry the analog information in their temporéibns, appear at different output terminals. TheandoFF re-
structure, very much like natural spike trains do in biologicalponses are separately amplified with tunable gains, each gener-
systems (see Fig. 3). The time intervals between events are cating a request pulse to the on-chip arbiter if it exceeds a chosen
tinuous in nature. Each event is represented by a binary wakdeshold. By appropriately setting the threshold and the respec-
encoding the address of the sending node. In the case of singlee gain factors, the circuit can be made to respond ontyno
sender/single-receiver point-to-point communication, a simpi&nsients or only toFFtransients or to both types of transients.
handshaking mechanism ensures that all events generated aftsh acknowledge pulse from the arbiter triggers a reset pulse
sender side arrive on the receiver side [9], [11]. The addresisthe requesting terminal, whose duration determines a refrac-
of the sending element is conveyed in parallel, along with twory period for the succeeding request from the same terminal.
handshaking control signals. Systems containing more than tBepending on the chosen refractory period and the magnitude
AER chips can be constructed by implementing additional sp@ad duration of the irradiance transient, the pixel responds with
cial purpose off-chip arbitration schemes [13], or using a frama-single spike or a burst of spikes. In the present application,
work such as thsilicon cortexSCX) [10], [12], which is a gen- a short refractory period of 14@s was chosen to obtain bursts,
eral, fully arbitered, address event communication infrastruand only theoFFresponse was used to stimulate the selective-at-
ture. tention chip.

The system proposed here uses single-sender/single-receiv@ihe pixels are arranged on a square grid. The position of a
point-to-point communication. The sender chip contains @xel along a row is encoded with a 4-bit column address and
two-dimensional pixel array, with an arbiter that seriallyts position along a column with a 4-bit row address. An addi-
processes the requests from the different pixels in the ordertiohal address bit is used to distinguish between ON and OFF
their activation, latches their addresses onto the AER comnitansients. The details of this circuit are described in [6].
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Fig. 5. Block diagram of a basic cell of the 8 8 selective-attention
architecture.

D. The Selective-Attention Chip
. . . . Fig. 6. Image captured from the CCD camera mounted next to the transient
The selective-attention chip contains an array &B8cells  imager. The outer frame shown in the image corresponds to the field of view

laid out on a square grid. Fig. 5 shows a block diagram of tléthe transient imager, whereas the inner frame is drawn to evidence the

cell circuitry. Each cell comprises an excitatory synapse, an ilﬁqnsient imager’s central rggion. The cross to the _bottom right of the image
L. . . ... center represents the location of the focus of attention currently computed by

hibitory synapse, a hysteretic WTA cell [30], a local inhibitoryhe selective-attention chip.

output neuron [7], and two position-to-voltage (P2V) circuits

[31]. The P2V circuits produce two analog output voltages en- ) . )
coding ther coordinate and thg coordinate of the winning cell. ©f réturn (IOR) mechanism. The spikes generated by the win-

The excitatory synapse is a current-mirror integrator [27] intefiNd cell’s output neuron are integrated by the cell's inhibitory

faced to the input AER circuitry. It receives off-chip addres®YNapse. As the integrated inhibitory postsynaptic curfgpt
events, and integrates them into an excitatory curfgntThe Ncreases, the cell’s net input currelaf, — i, decreases. As
inhibitory synapse is a similar circuit that integrates the on-ch§?°" @s this net input current decreases below the value of a
spikes of the same cell's output neuron into an inhibitory cuf€t input current exciting a different cell, the WTA network
rent ;... The synaptic currentd,,. andZ;.,, are subtracted and switches s_tat_e and se_lects the new gell as the winner. When
sourced into the input node of the WTA cell (see Fig. 5). Ahe old winning cell is deselected, its corresponding local
detailed description of these circuits, together with quantitati@tPut neuron stops firing, and its inhibitory synapse recovers,
analysis and a description of their response properties has bagfreasing the inhibitory curred, back to zero. Depending
recently presented in [7]. A comprehensive description of tfff! the time constants and strength of the excitatory and
response properties of the hysteretic WTA network as a furl@hiPitory synapses, on the input stimuli and on the frequency

tion of circuit bias parameters and input signals can be found®f the output neuron, the WTA network can exhibit different
[30]. dynamic properties. The selection of the winner can switch

In the selective-attention chip, each hysteretic WTA cefjietween the largest input and the next-largest, or between the

is connected to its four nearest neighbors, both with excit@&rgest and more inputs of successively decreasing strength,

tory connections and inhibitory connections. The strength 8fnerating focus of attentioscanpaths[32]. Quantitative
the lateral inhibitory connections controls the spatial exteft€asures characterizing these scanpaths and comparisons to
over which competition takes place. If lateral inhibition ié)ther selective-attention circuits/IOR mechanisms have been

maximally turned on, all WTA cells of the architecture ardescribed in [7]and [8].

connected together (global inhibition) and only one winner can _

be selected at a time. If, on the other hand, the lateral inhibitdry Motor Control Algorithm

connections are weakened (local inhibition), the WTA cells are The control algorithm that the host computer executes, is re-

partially decoupled from each other and the network can selsponsible for driving the motors of the pan-tilt unit in such a

multiple (spatially distant) winners simultaneously. Similarlyvay as to center the location picked by the selective-attention

the lateral excitatory connections control the amount of latereip within the central region of the transient imager chip. This

facilitatory coupling between cells. If lateral excitation is enalgorithm represents a first attempt at modeling the bottom-up

abled, the system tends to select new winners in the immediatienulus driven neural mechanism that generates saccadic eye

neighborhood of the currently selected cell. movements which center the fovea with respect to the location
The winning cell supplies a current to the position-to-voltagef the focus of attention.

row and column circuits. It also sources a dc current into aTo evaluate, quantitatively, the response properties of the

neuron connected to it. Each action potential generated by thistem, and test the motor control algorithm, we mounted a

neuron produces an address event. The amplitude of the injstandard charge-coupled device (CCD) camera next to the

tion current (and hence the frequency of the address eventdyansient imager chip and captured images on the host computer

independent of the WTA's cell input. [see also Fig. 2(b)]. This allowed us to see in real-time the
In addition to transmitting the pixel's address off-chip, th@nages projected onto the focal plane of the transient imager

output neuron is instrumental for implementing the inhibition chip, as shown in Fig. 6. We calibrated the system so that the
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Fig. 8. Raster plot of the activity of the neurons of both transient imager chip
(dots) and selective-attention chip (circles) in response to the flashing LEDs. To
plot the data from both chips using an address space with the same resolution,
we subsampled the addresses of the transient imager chip. The LEDs flashed
approximately at 0.25, 1.25, and 2.25 s.

cation outside the inner frame, the algorithm records the address
of the location and increases a counter associated with that ad-
dress. As soon as the counter for a particular address reaches
a thresholdn (i.e., when the cross revisits the same location
times), the algorithm generates a camera movement that centers
the selected location within the central region of the transient
imager array (the camera “saccades” to the persistent salient
stimulus). In this method, camera movements are generated only
. if a salient location is visited more than once. The revisiting con-
straint ensures that the system does not saccade to all locations
picked by the selective-attention chip, but orients its gaze only
. toward persistent salient stimuli. In the examples shown in Sec-
1 tion 1V, n was set to 5. The value afwas chosen to reproduce
' the characteristics of biological selective-attention systems, as
reported in the neuroscience literature [3]; while the focus of at-
tention shifts 15-20 times per second, saccadic eye movements
are only made 3-5 times per second [3].

Another important function implemented by the motor con-
trol algorithm is that okaccadic suppressioburing a camera
movement the images projected on the focal plane of the tran-
sient imager array generate a large amount of address events.
These events are not relevant for the analysis of the scene once
the camera stops moving. In biology, this problem is solved by
suppressing all inputs arriving from the retinas during saccadic
B eye movements (indeed, we are effectively blind during a sac-
cade). In the current version of our system, the addresses gen-

Fig. 7. (a) Histogram of events generated by the transient imager pixels4 ; ; ; : : _
response to two diffused flashing LEDs. The LED stimulating the region arouréc?ated by the transient Imager Chlp are hardwired into the se

pixel (5,9) has higher contrast than the other LED. (b) Histogram of everl@Ctive-attention chip [see Fig. 2(b)]. There is no way of sup-
generated by the selective-attention chip in response to the events generatqgressing these events at the source. During a camera movement,

the transient imager chip. the selective-attention chip receives and processes all spurious
events from the imager, and the addresses generated by the se-

image projected onto the transient imager array, correspoﬁﬂstive-attention chip are transmitted to the host computer. The

to the central part of the image captured by the CCD cameggntrol algorithm ignores the effect of these events, by resetting

shown as the outer square in the center of Fig. 6. The inréladdress counters to zero after each camera movement. In this

square drawn in the center of Fig. 6 represents the part of iy, the recent history of all selected positions is canceled, and

scene being projected on the centraregion of the transient normal operation of the control algorithm can be resumed.

imager array. The location selected by the selective-attention

chip is represented by a small cross, superimposed onto the V. EXPERIMENTAL RESULTS

CCD image.

The control algorithm produces motor commands that d
pend on the current position of the selected location, and itsInitially, we tested the system with the motors of the pan-tilt
recent history; if the cross lies within the inner square of thanit turned off. The input images consisted of a laboratory scene
image, no camera movements are triggered (the camera isvéth two flashing LEDs in the foreground. The two LEDs were
ready “foveating” the salient feature). If the cross shifts to a ldlinking in phase, with a frequency of 1 Hz and a duty cycle

A. System Response in Absence of Camera Movements



INDIVERI et al: ACTIVE VISION USING AN ANALOG VLSI MODEL OF SELECTIVE ATTENTION 497

(@) 111}

<€)

Fig. 9. Sequence of images showing the selection of a salient stimulus prior to and after a saccadic eye movement. (a) The system is attending the top LED
already centered on the central part of the imaging array. (b) The system selects the bottom LED, outside the central region of the imager. fecpEhesy st
a saccade toward the bottom LED, and is currently attending it.

of 50%. As the transient imager responds only to local changednhile the event histogram shows that the selective-attention
in illumination, the blinking LEDs proved to be a reliable anathip actson averagdike a threshold filter, picking only inputs
well—-controlled stimulus. The static background did not comith a high mean frequency, it does not show the more inter-
tribute to the generation of address events. We placed a diffusgsiing aspect of the computation carried out by the chip—its
glass in front of the transient imager’s lens, to diffuse the proynamics. To show the dynamical aspect of the selective-atten-
jection of the two LEDs on the imager’s focal plane. In this wagion chip’s response, we plotted in Fig. 8aster plot.This plot

we were able to stimulate several pixels of the imaging arrapows the activity of the transientimager and of the selective-at-
with each LED. Fig. 7(a) shows the histogram of the addretmtion chip neurons over time, in response to the flashing LEDs.
events generated by the transient imager array in responsé e 8x<8 neurons of the selective-attention chip are labeled suc-
the flashing LEDs, captured over a period of 2 s. The two reessively, row by row (1-64), and the events that they generated
gions with the highest occurrence of events [around pixels (5& plotted with circles. To show the events of the transient im-
and (11,11)] correspond to the locations of the LEDs. Fig. 7(bper pixels on the same scale, we subsampled their addresses,
shows the histogram of address events generated by the sdigking into consideration only their three most significant bits
tive-attention chip. On average, the selective-attention chip vi& the same way we implemented the mapping of addresses
ited pixels (3,5), (3,4) and (6,6), (6,5) most often. from the transient imager pixels to the selective-attention ones,



498 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 5, MAY 2001

64 T T T T T T T T
O 4
L]
P e R R I B
[ ReXe!
% QO - m e e T e T Dlee B
B e R I SRR SRR -
S s, PPN &
. | i I A 3
23242883 e i3 Pudl B dedidiRed A o
L R I A (= B
- -
L .
0 1 2 3 4 5 5 7 8 9
Time (s) 1

Fig. 10. Raster plot of the activity of the neurons of the transient imager ch
(dots) and of the selective-attention chip (circles) in response to two flashit
LEDs. The focus of attention shifts from a central region of the imaging array 1
a peripheral one (see circles at ¢ < 6 s). Consequently, the system makes
a camera movement, at the time indicated by the vertical arrow, and re-cent
the attended location.

as described in Section IlI-B). The high density of events arour

time instants 0.5, 1.5, and 2.5 s is due to the flashing of the

!‘EDS'WIthm_a single ﬂa}Sh’the focus of a_‘ttentlor,] sh|fts_appro>|g-ig. 11. Output of the P2V circuits of the selective-attention chip (see

imately four times, moving from one region of high saliency t@ection 111-D, Fig. 5), representing the scanpath of the focus of attention,

another. The proportion between events generated by the tswiching back and forth between the fluttering fingers of both of the
PRI : : : : xperimenter's hands. The scanpath data is superimposed onto a snapshot

ch|ps is cons_lstent WIth the dqta of Fig. 7. By looking at the s % =" = ~ <1 camera during the experiment.

lective-attention chip data of Fig. 8 one can extrapolate the focus

of attention’s scanpaths. Note how these scanpaths tend to re- o

peat themselves over time. This characteristic will be even mdée System Response to Natural Stimuli

evident in Section IV-C, when we analyze the response of the
system to natural stimuli. In this section, we show how the system is able to select and

attend natural stimuli that were not explicitly engineered to op-
timally drive the imaging array. As we did in Section IV-A and
-B, we initially tested the system in the absence of camera move-

To allow the system to make camera movements, we adfients and subsequently tested it with the motor output activated.
vated the motors of the pan-tilt unit on which the imager was Fig. 11 shows the location of the focus of attention, as mea-
mounted. The input stimulus consisted again of two flashireyired by the P2V circuits of the selective-attention chip (see
LEDs, but this time not in phase. Furthermore we removed ti&ection 111-D), in response to the fluttering fingers of the experi-
diffusion filter from the transient imager’s lens, so that the twmenter, over a period of 500 ms. Theomponent and compo-
LEDs stimulated only a few pixels of the imaging array. As deient of the focus of attention are plotted against each other, and
scribed in Section IlI-E, the selective-attention chip was drivinguperimposed onto an image taken by the CCD camera during
the pan-tilt unit to orient the imager toward the attended loctiie experiment. Although the resolution of the selective-atten-
tion. Fig. 9 shows a sequence of images captured by the C@a@n chip is 8<8 pixels, the data of Fig. 11 seems to belong to a
camera mounted on the pan-tilt unit, while the system was anuch higher resolution architecture. This is due to the fact that
gaged in selecting and tracking the LEDs. Initially, only the toghe output of the P2V circuits is analog and is affected by noise
LED was flashing, and the system selected it and oriented fT¢. These analog output signals might not be appropriate for
central region of the imager to that location [see Fig. 9(a)]. Awecise quantitative measurements, but could be used to drive,
we turned on the bottom LED, the system changed the focuswid buffers or power amplifiers, motors and actuators to imple-
attention location [see Fig. 9(b)] and made a camera movemengnt (negative feedback) sensory-motor loops [7].
centering the attended stimulus on the central region of the im-Fig. 12 shows the response of the system to the same stim-
ager [see Fig. 9(c)]. ulus as Fig. 11, with the motors engaged. Fig. 12(a) shows the

The raster plot of Fig. 10 shows in detail the sequence béginning of the experiment; the motors had just been activated,
events that lead to the camera movement. The arrangementhefimager was still in its initial position, and the selective-at-
the neuron addresses on the figure axis is the same as in FigeBtion chip chose a pixel in the top left region of the transient
Initially, the selective-attention chip was attending the regiamager array as the focus of attention. After the selective-atten-
of transient imager pixels that project to its 35th pixel. As thgon chip transmitted the same pixel address to the host com-
second LED flashed, the imager pixels excited also the 2Qthter for a set number of times, specified by the motor control
selective-attention chip pixel. After approximately 1 s, the WTAlgorithm (see Section IlI-E), the control algorithm generated a
network of the selective-attention chip switched and selectedmera movement and centered the focus of attention with re-
the second LED as the winner. After having attended to thspect to the transient imager array [see Fig. 12(b)]. If the salient
location for approximately 2.5 s, the system made an abrugiimuli were persistent (e.g., if the fingers kept on moving) and
camera movement (saccade), and centered the attended stimrm@logined in the field of view of the imager, the system continu-
on the imaging array. ously shifted its gaze from one salient stimulus to the other.

B. System Response in Presence of Camera Movements
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Although the present system has only one visual sensor, and
one selective-attention chip, its design framework allows the
integration of additional AER devices for implementing selec-
tive-attention systems of arbitrary complexity. The scheme of
Fig. 1 could be implemented using one single neuromorphic im-
ager, interfaced to multiple instances of the selective-attention
chip, via different connectivity mappings (see Section I1I-B).
Several AER input sensors (silicon retinas, cochleas, etc.) could
also be employed, and interfaced to additional instances of the
selective-attention chip. At the first level of the hierarchy, these
selective-attention chips would be biased to choose several win-
ners simultaneously (using the local inhibitory connections of
the WTA network), and produce normalized feature maps (as
mentioned in Section 1lI-D, the frequency of the spikes of the
winning neuron in the selective-attention chip does not depend
of the amplitude of its input signals). The normalized outputs
would then converge into a top selective-attention chip, at the
second level of the hierarchy. This attention chip would then de-
termine the spatial location of the most salient stimulus, taking
into account all sensory modalities used in the first level, and
eventually drive the motor control components of the system.
The inherent characteristics of neuromorphic sensors and of the
AER ensure that the transduction of sensory signals, the com-
petition within single-sensory modalities, and the competition
across sensory modalities would all take place in parallel. The
(complex) dynamics present at all levels of the hierarchy would
run in continuous and ireal time.

Equivalent selective-attention systems implemented, using
conventional machine vision technology, are not able to
perform these types of computations in real-time, even using
powerful workstations [22]. The real-time nature of the compu-
tation carried out by neuromorphic multichip systems, and the
flexibility that they offer (e.g., by selecting different sets of bias
voltages for the individual chips, and by exploiting the AER to

Fig. 12. Saccadic eye movements in response to moving fingers. (a) C% i ; ;
camera snapshot taken before the saccadic eye movement (the focus of atte t|0|p /remap connectivity pattems) prowde obvious advantages

has just switched from one hand to the other). (b) CCD camera snapshot taR&$h for scientific investigation of selective-attention system
just after the saccadic eye movement (the focus of attention and the saliproperties and for engineering applications.

stimulus are now in the center of the imaging array).
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