Biol. Cybern. 84, 57-62 (2001)

Silicon synaptic depression

Christoph Rasche', Richard H. R. Hahnloser’

Biological
Cybernetics

(© Springer-Verlag 2001

! Institute of Neuroinformatics, ETHZ/UNIZH, Winterthurerstr. 190, 8057 Ziirich, Switzerland
2 Department of Brain and Cognitive Sciences, MIT E25-210, 45 Carleton Street, Cambridge, MA 02139, USA

Received: 10 February 2000 / Accepted in revised form: 16 June 2000

Abstract. The recent quantitative description of activity-
dependent depression in the synaptic transmission
between cortical neurons has lead to many interesting
suggestions of possible computational implications.
Based on a simple biological model, we have constructed
an analog circuit that emulates the properties of
short-term depressing synapses. The circuit comprises
only seven transistors and two capacitors per synapse,
and is able to reproduce computational features of
depressing synapses such as the 1/F law, the detection of
long intervals of presynaptic silence and the sensitivity to
redistribution of presynaptic firing rates. It provides a
useful basis for implementing neural networks with
dynamical synapses.

1 Introduction

Neurons are highly dynamic devices. They show adap-
tation at all functional levels — soma, dendrite and
synapse — and on different time scales, from milliseconds
to hours to days (Koch 1999). To explore the effects of
adapting neurons in a network, computer simulations
(e.g. Bower and Beeman 1994; Hines 1989) are helpful
but slow if the network is large and if the model neuron
contains many (adapting) time constants. Neuromor-
phic engineers therefore take the approach of emulating
neurons in analog complementary metal-oxide semicon-
ductor (CMOS) circuits, designed in very large scale
integrated (VLSI) technology (Mead 1989; Douglas
et al. 1995; Watson 1997; Elias and Northmore 1999).
Thereby one gains speed: silicon neuromorphic circuits
emulate the neural computations in real-time, indepen-
dent of the size of the neural network. Various adaptive
neuronal mechanisms have already been transformed
into silicon analog circuits (Mahowald and Douglas
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1991; Shin and Koch 1999; Simoni and DeWeerth 1999)
and here we report an adaptive silicon synapse.

A striking feature of synaptic transmission between
neocortical pyramidal neurons is the adaptation of
amplitudes of excitatory postsynaptic potentials
(EPSPs) to the short-term history of presynaptic activity
(Abbott et al. 1997; Markram and Tsodyks 1996).
Particularly interesting is synaptic short-term depres-
sion, which is the decrease of synaptic strength,
measured by the amplitude of EPSPs, in response to
ongoing presynaptic activity. Phenomenologically, syn-
aptic depression can be described by a dynamical EPSP
amplitude 4 that is reduced by a depressive factor d < 1
immediately after a presynaptic spike and that recovers
towards some resting value between presynaptic spikes
(Abbott et al. 1997). The larger the interval between
two consecutive presynaptic spikes, the longer is the
recovery time of the synapse, and the larger is the am-
plitude elicited by the second spike. Several suggestions
have been made about the computational use of
depressing synapses, as dynamical cortical gain control
(Abbott et al. 1997; Nelson and Turrigiano 1998) or
reading out neuronal synchrony (Senn et al. 1998) (for a
recent review, see Maass and Zador 1999). Here we
present an analog electronic circuit implementation of
short-term depressing synapses and demonstrate their
computational impact onto a postsynaptic target
neuron.

Similar to previous neuromorphic spiking neural
networks (Douglas et al. 1995; Deiss et al. 1999; Elias
and Northmore 1999), we represent spikes, that are sent
between neurons, as (digital) pulses. Our synaptic circuit
transforms a presynaptic pulse into an equivalent of an
excitatory postsynaptic current (EPSC). The synaptic
current is then dumped onto circuitry simulating the
passive RC-like behavior of a neuron generating an
EPSP (Mahowald 1992; Elias and Northmore 1999). In
previous work, synapses were modeled as static elements
(Rasche and Douglas 1999). That is, the amplitudes of
elicited EPSPs were constant and independent of the
presynaptic stimulation frequency. Here we extend this
static synapse using a simple circuit that modes the
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dynamics of synaptic depression. We call this extended
circuit the depressing synapse.

2 Methods

In Fig. 1 the static synapse is marked by the three grey
blocks ‘input’, ‘strength’ and ‘EPSC modelling’. The
presynaptic pulse, arriving in the ‘input’ block, triggers a
current pulse, Iwgr, in the ‘strength’ block, which is then
converted into an approximation of a real EPSC, Igpsc,
in the ‘EPSC modelling’ block (see Rasche and Douglas
1999, for more details).

The depressing synapse includes the block ‘dynamic
weight’, which modulates the synaptic strength by
changing the amplitude of the current pulses lwgr ac-
cording to the synaptic weight voltage J;,. This voltage is
held by a capacitor Cy, and is changed by a switch and a
diode. Every time a presynaptic pulse arrives on the
synapse, the switch removes a fixed amount of charge
from the capacitor and so decreases ¥, by a fixed voltage
drop AV,. The exact value of AV, is determined by the
parameter WD (‘weight depression’). Between presy-
naptic spikes, V;, recovers (increases) logarithmically in
time towards a resting value given by the source voltage
RW of the diode, called the ‘resting weight’. In other
words, the diode and the capacitor have a similar role as
a RC circuit with a battery set to the resting weight RW.
We thus have three parameters in our ‘dynamic weight’
block: WD, RW and C,,. The capacitance Cy, is fixed for
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Fig. 1. Circuitry for synaptic depression. A simple static synapse is
modeled by the three grey blocks labeled ‘input’, ‘strength’ and ‘EPSC
modelling’. The fourth block, ‘weight dynamics’, models the time
dependence of the synaptic strength, set by the ‘synaptic weight’
voltage V4. It consists of a switch and a diode. The switch (formed by
transistors T1 and T2) is driven by a presynaptic pulse, SPK, on the
gate of T1. The gate voltage WD (‘weight depression’) of T2 causes a
voltage drop AV, after a presynaptic pulse. Between presynaptic
pulses, a diode-connected p-type transistor increases J,, towards a
resting value determined by the diode source RW (‘resting weight’)

a given process and can only be modified by a new de-
sign. WD and RW are voltages that need adjustment.

We have constructed a spiking silicon neuron with
four such depressing synapses. In approximation to a
real neuron, the spiking silicon neuron consists of a
leakage, a sodium and a potassium conductance, each
modelled by a follower integrator. The output voltage of
the follower integrator representing the leaky membrane
corresponds to the membrane potential onto which
EPSCs are sourced (see Rasche and Douglas, 2000, for
more details). A chip of 2.2 mm? was fabricated using
standard 1.2 um CMOS technology. Our circuitry uses
only a small fraction of this area. Transistor sizes are
generally 5 pm by 5 pm, and Cy, is about 0.2 pF. All our
results are drawn from this chip.

Our mathematical results are best expressed by de-
fining the exponential function (V) = e*"/Ur, where V
is a voltage, k ~ 0.7 is the gate efficiency constant and
Ur =25 mV is the thermal voltage of a CMOS tran-
sistor. For example, the current Iwgr flowing through
the transistor T3 (in saturation) is proportional to f (V).

If the capacitance in the EPSC modelling block is
small, then /gpsc = Iwgr (the capacitance is small if for
most step currents lwgr, the gate voltage of the current
mirror reaches a steady value in much less than the
duration A7 = | ms of a presynaptic pulse). In this case,
if the follower integrator modelling the leaky membrane
is in the linear (RC) regime, then we find proportionality
between the EPSP amplitude 4 and f(V%,):

Ao f(W) - (1)

If the follower integrator does not operate in the linear
but in the saturated regime, which is often the case for
our circuit, then proportionality holds as well in the
approximation that the bias current of the follower
integrator modelling the leaky membrane is small
compared to Igpsc.

Notice that if the capacitance in the EPSC modelling
block is not small in the above sense, then proportion-
ality between A and f(¥,) does not hold. Calculations
show that in this case the relationship between 4 and
f (V) is approximatively exponential. However, for the
following, we assume that (1) holds true for our circuit.

The resting or initial amplitude 4, of the depressing
synapse is determined by RW. Initially, the synapse is
fully recovered and so ¥, ~ RW, which leads to
A; < f(RW). From (1) we also get that the amplitude
after a presynaptic spike is reduced by a constant factor:
A1 :f(VW) —>f(VW—AVW) :f(—AVw)Al :dAl The
depressive factor d is thus given by

d=f(-AVy) <1 . (2)

Assuming that the transistor T2 is always in saturation,
which is the case for large values of RW and not too
high presynaptic frequencies F', we find that the voltage
drop AV, induced by a presynaptic pulse is approxima-
tively given by:

AV, ~

I At At
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where I, denotes the current flowing through transistor
T2. From (2) and (3) we see that the parameter WD
determines the factor d in a very sensitive manner (by a
double exponential). In conclusion, similar to the simple
model described in Sect. 1, because AV, is independent
of V,,, we get that d is independent of the momentary
EPSP amplitude.

3 Results

In Fig. 2 we show the responses of the membrane
potential /4, and the synaptic weight V5, to two periodic
presynaptic trains of pulses at different frequencies. The
amplitudes A; of the initial EPSPs are equal for both
trains. Subsequent amplitudes are depressed, due to a
decrease of ¥, following each spike. Depression contin-
ues until a steady amplitude A4, is reached, which occurs
when the voltage drop AV, after a pulse equals the
recovery between pulses. The steady amplitude 4 for the
train of higher frequency (Fig. 2a) is smaller than that of
the train of lower frequency (Fig. 2b).

We have measured the steady amplitudes 4 for a
range of stimulation frequencies (Fig. 3a). We have also
calculated 45 by considering that the weight voltage V5,
and f(Vy) are both periodic in time with period
T = 1/F. Between spikes, f (V) recovers linearly in time
from its lower value f(¥;):

T
o= .

f(Vw)*f(Vs) Cw

4)
For this calculation we have assumed that the diode
remains saturated, which turns out to be a good
approximation for the parameters in the caption of
Fig. 3a if the frequency of the presynaptic train is larger
than 10 Hz. Evaluating (4) at time ¢= 17, using
f (V) = f (V) + f(AV,,), we obtain:
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Fig. 2. Depressing EPSPs. This and the following figures show
recordings from a fabricated chip. The dynamics of membrane
potential 7, and synaptic weight ¥, are shown at two different
stimulation frequencies: a 200 Hz, b 20 Hz. In both cases, the initial
EPSP amplitude, 4;, is about 500 mV. The steady amplitude, A,
depends on the presynaptic frequency and is smaller in case b. The
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t
Co(f(AVy) — 1)

This equation expresses the steady EPSP amplitude 4; as
a function of the fixed capacitance Cy, and the weight
depression WD (via Eq. 3). Most importantly, we see
that A is inversely proportional to the presynaptic
frequency F, which faithfully models the experimental
finding (see Sect. 4).

Figure 3b shows the effect that the weight depression
has on the initial depression. When WD is large, a large
voltage drop AV, results (a small &), which in turn
causes a fast depression of the first few amplitudes.

Only rarely do real neurons fire with a regular train of
action potentials such as in Fig. 2. Very often, the spike
trains of neurons can be described by Poisson distribu-
tions (Softky and Koch 1993) — the interspike intervals
are exponentially distributed. Next we used a stimulus of
a Poisson-distributed train of pulses of mean frequency
A. Figure 4 compares the integrating properties of a
depressing synapse to that of a static synapse. In order
to establish a reference for the comparison, the ampli-
tude of EPSPs elicited by the static synapse was adjusted
to be equal to the steady amplitude 4 of the depressing
synapse that was elicited by a regular spike train of
frequency A. The firing threshold of the postsynaptic
neuron was set to a level such that stimulation of a
recovered depressing synapse was able to trigger
postsynaptic spikes. Therefore, the depressing synapse
triggered a spike in the postsynaptic neuron when the
interval to the previous presynaptic pulse was large. On
the other hand, the static synapse triggered spikes when
the interval to the previous pulse was small, as consec-
utive EPSPs added up and so allowed the membrane
potential to cross firing threshold.

Figure 5 shows the effect of redistributing presy-
naptic firing rates. Four synapses are stimulated with

As x f(Vy) x 1/F . (5)

real depressing synapse

40 Hz

Vm

5 Hz 2mV

Vm

small ‘spikes’ on the ¥, trace are due to crosstalk from the presynaptic
pulse applied to the synapse. Parameter values: RW = 0.757 V,
WD = 0.2 V. Resting membrane potential = 2.0 V. On the right
hand side, real V7, recordings of a cortical neuron are shown for a high
and a low stimulation frequency, taken with permission from
(Markram and Tsodyks 1996)
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Fig. 3. Frequency and interspike-interval (ISI) dependence of EPSPs.
a Steady amplitude 4 as a function of presynaptic frequency F: A
was measured for frequencies from 1 to 500 Hz and for three different
initial amplitudes 4; set by RW (4; = 476 mV, RW = 0.81 V;
Ay = 254mV, RW = 0.79 V; 4, = 140 mV, RW = 0.77 V). The
larger A4, is, the larger is 4. WD = 0.2 V. b The effect of different

Poisson-distributed pulses, two at a high frequency and
two at a low frequency. At time zero the high and low
frequencies are interchanged so that the sum of all
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weight depressions WD on the amplitudes of consecutive pulses
(WD = 0.13V,0.20 V, 0.27 V). 4> /A4 is the ratio of the second and
the initial EPSP amplitudes, shown as a function of their time interval.
For large ISIs (i.e. >500 ms) the curves converge to a ratio of unity
(hardly any depression). The larger the weight depression WD, the
smaller is the amplitude ratio (the faster is the depression)

presynaptic firing rates remains constant. Before this
rate redistribution, the less stimulated synapses have
recovered. Shortly after the rate redistribution, these
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Fig. 4. Integrating properties of
. the depressing synapse. Re-
sponse to a Poisson-distributed
train of pulses (50 Hz, ‘presy-
naptic stimulus’) by a depressing
synapse (WD = 0.2V,

RW = 0.773 V) and a static
synapse (¥ is fixed by using a
follower). The depressing syn-
apse triggers spikes when there is
a sufficiently large interval
between pulses (e.g. pulses 1, 2, 7
and 10). The static synapse
triggers a spike only when two
consecutive pulses are close to
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each other (e.g. pulses 2, 3 and
11, 12). Parameters: spiking
threshold = 2.230 V
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Fig. 5. Effect of presynaptic rate redistribution. Lower panel (presy-
naptic stimulation): four synapses are stimulated with Poisson-
distributed pulse trains, synapses 1 and 2 at 200 Hz and synapses 3
and 4 at 20 Hz. At time zero, the frequencies of the pulses are
interchanged. The middle panel (single trial) shows 74, in response to
the stimulation shown in the bottom panel. Approximately 10 ms after
the rate change, synapses 3 and 4 elicit EPSPs almost simultaneously.

synapses cause large additive EPSPs because of the
switching from low to high frequency stimulation.
Hence, a transient increase in the membrance potential
Vo, can be seen. Some time after the rate redistribution,
the synapses reach an average state of depression and ¥,
decreases back to its level before the redistribution. In
contrast, a neuron with static synapses would not be
able to sense this reshuffling of presynaptic firing, be-
cause all that a neuron with static synapses is capable of
sensing is the sum of presynaptic firing rates.

4 Discussion

Analogous to biology (Markram and Tsodyks 1996;
Abbott et al. 1997), EPSP amplitudes of our silicon
synapse have a depressing characteristic, and in the
stationary case they are inversely proportional on the
presynaptic stimulation frequency (Fig. 3a). This law
implies that the impact of synaptic currents on the
membrane potential tends to be independent of the
presynaptic frequency of action potentials, e.g. synaps-
es transmitting high frequencies do not necessarily lead
to a stronger depolarization than synapses transmitting
low frequencies. Furthermore, if a presynaptic neuron
changes its firing from 10 Hz to 20 Hz, this has a

100 200

Because both synapses were quiet for tens of milliseconds (recovered),
the corresponding EPSPs are large. The top panel (100 trials) shows
the average membrane potential ((¥;,)) over 100 trials. Immediately
after the rate change, there is a transient increase in (V;,) that peaks
after 10 ms. The mean levels of (V;,) before and long after the rate
change are slightly different due to mismatch between the synaptic
circuits. Parameters: WR = 0.753 V, WD = 02V

similar impact on the postsynaptic membrane potential
as a change from 50 Hz to 100 Hz, reminiscent of the
Weber-Fechner relation (Abbott et al. 1997). We have
not tested this relationship in our silicon circuits,
because it relies on a proper RC circuit emulating the
leaky membrane of the neuron. The follower integrator
we used is merely an approximation to such a RC
circuit and is therefore not suitable for demonstrating
this law. There exist more realistic RC circuit imple-
mentations that might be more appropriate to show
this relationship (Elias and Northmore 1999; Rasche
1999).

We have demonstrated several computational func-
tions of our depressing synapse. After a long presynaptic
interspike interval, a new spike elicits a large EPSP at a
recovered synapse. If the spiking threshold of our silicon
neuron is set to a level where only large EPSPs lead to an
action potential, then the postsynaptic neuron reports
the end of such a silent period, as shown in Fig. 4. Senn
et al. (1998) have used this ability to read out the syn-
chrony of spikes between spike trains. A neuron, whose
depressing synapses are fed with correlated spike trains,
reports synchrony of silent intervals by firing at the end
of the synchronous silence.

Silicon depressing synapses are sensitive to the
redistribution of presynaptic firing rates (Fig. 5). A
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redistribution of presynaptic rates occurs when the input
rates assigned to synapses change suddenly, while leav-
ing the overall stimulation to the neuron constant. This
computational ability can be beneficial when it comes to
reliably detecting a sudden change in sensory input. For
example, this might happen during saccadic eye move-
ments in an environment where the luminosity is con-
stant across different directions of the visual field.
During a saccadic eye movement, a redistribution of
visual inputs takes place, in the form of a retinal trans-
lation. In this way, synaptic depression could speed up
visual processing immediately after saccades by trigger-
ing neurons to respond vigorously to the new input.

Our synaptic circuit can easily be generalized. For
example, by replacing the n-type transistor (T3) of the
strength block with a p-type transistor (Fig. 1), the cir-
cuit works as a facilitating synapse: a decreasing syn-
aptic weight ¥, would then increase the synaptic current.
A similar model is already implemented (Rasche 1999).
As an application, by combining facilitation and de-
pression of different time scales on a single synapse, it
might be possible to construct feedforward networks of
dynamical synapses that realize arbitrary nonlinear
temporal filters, as it has been shown theoretically
(Maass and Zador 1999).

A critical feature of synaptic analog VLSI circuits is
their size. Because a synapse is the most common circuit
in a neuromorphic network, it has to be small to con-
serve chip area. Our depressing synapse consists of only
seven transistors and two capacitors, and is designed to
be compact. Another desirable feature of a synaptic
circuit is a small number of synaptic parameters, because
this reduces the on-chip wiring. Our synapse has only
two parameters, RW and WD, and is thus highly suit-
able for neuromorphic networks (Deiss et al. 1999).

Our adaptive synapse regulates the synaptic input to a
neuron. But neuronal adaptation can also occur at sites
other than synapses. For example, a pyramidal soma
can adapt its spiking frequency on a short-term and a
long-term basis (Koch 1999). These forms of adaptation
represent a regulation of the output of a neuron; they
have already been implemented in silicon by various
groups (Shin and Koch 1999; Simoni and DeWeerth
1999; Rasche and Douglas 2000). But adaptation could
also occur in dendrites (Verschure and Ko&nig 1999),
which is a possibility that silicon models are only start-
ing to imitate (Rasche 1999). It is an open question as to
whether it is possible to derive an integrative computa-
tional model comprising these various adaptive mecha-
nisms and to test it in a neuromorphic silicon network.
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