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Abstract. Natural videos obtained from a camera mounted on a cat’s
head are used as stimuli for a network of subspace energy detectors. The
network is trained by gradient ascent on an objective function defined
by the squared temporal derivatives of the cells’ outputs. The resulting
receptive fields are invariant to both contrast polarity and translation
and thus resemble complex type receptive fields.
Keywords: Computational Neuroscience, Learning, Temporal Smoth-
ness

1 Introduction

A large body of research addresses the problem of obtaining selective responses
to a class of stimuli (e.g. Hebb 1949, Grossberg 1976, Oja 1982) but surprisingly
few results exist on learning representations invariant to given transformations.
But real world problems like recognition tasks do not only require the network
to be specific to the relevant stimulus dimensions but also to be insensitive to
the irrelevant dimensions (e.g. Fukushima 1988). In this paper we address the
problem of learning translation invariance from natural video sequences, pur-
suing an objective function approach. We implement the temporal smoothness
criterion as proposed by Hinton (1989) and used by Földiak (1991). A genera-
tive model containing slowly changing hidden variables is assumed. The effect
of these hidden variables on linear subspaces can be described by a mixing ma-
trix. This mixing matrix is inverted by the search for slowly varying subspace
energy detectors. Instead of mathematically deriving the objective function for
these subspaces from an explicit generative model we here explore the effect of a
given function on learning of nonlinear detectors. We analyze the obtained slow
components and compare them with properties of complex type receptive fields
of cortical cells.

2 Methods

The stimuli used to train our network consist of randomly chosen 10 by 10
patches sampled from a natural video recorded by a camera mounted on a cat’s
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head (Betsch et al. submitted). Patches from the same spatial location within
the image are taken from 2 subsequent images yielding a pair of intensity vectors
It−1 and It (images are sampled at 25 Hz). Each vector is normalized to mean
zero. The complete stimulus set, consisting of 11000 such pairs, is reduced in di-
mensionality by PCA and whitened using the procedure described in Hyvärinen
and Hoyer (2000). If not stated otherwise, the number of used principal compo-
nents is 30 (in the following termed PCA dimension).
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Fig. 1. Network layout. Two cells of the
network together with the four sub-units
are shown (top) Two images of the natu-
ral movie are shown together with patches
used as stimuli (bottom).

For the reported results the net-
work consists of 5 neurons each of
which summes the input of 4 sub-units
(Fig. 1). Each sub-unit has a weight-
vector associated and the activity of
sub-unit j of neuron i is calculated as
the product Aij = Wij ·I. The neurons
are modelled as subspace energy detec-
tors (Kohonen 1996) and their activity
is calculated as Ai =

√∑
j A2

ij . The
analyzed objective function is

Otime := −
∑
cells i

〈( d
dtAi

)2〉
t

vart(Ai)
(1)

where the mean (<>t) and the vari-
ance are taken over time. In order to
implement this in discrete time, the
derivative is approximated by the dif-
ference of the activities for two con-
secutive patches, Ai(t) − Ai(t − 1).
The variance is furthermore replaced
by the product of the standard devia-
tion taken over all the activities for the
patches It−1 times the standard devia-

tion for the patches It. The network learns by changing the sub-unit weights Wij

following the (analytically calculated) gradient of (1) to a local maximum. The
gradient ascent is controlled using adaptive stepsizes as described in Hyvärinen
and Hoyer (2000) till a stationary state is reached. All sub-units are forced to
be orthonormal in whitened space. The weights are randomly initialized with
values between 0 and 1. The network layout together with two typical stimuli is
shown Figure 1.

In order to quantify the properties of the learned cells their orientation and
position specificity is calculated and displayed in θ-r diagrams: The cells are
probed with Gaussian bars of defined orientation θ and position r as stimuli
and the resulting activities displayed. From these diagrams two parameters are
extracted: The orientation specificity index (σθ) is computed as the mean width
of the orientation tuning over all positions. The position specificity index (σr) is
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computed by first taking the standard deviation of the activity over all orienta-
tions at a fixed position and then averaging over all positions.

3 Results

In order to explore learning of invariant detectors a nonlinear network is im-
plemented (see methods). We use neurons that compute the 2 norm of the cor-
responding sub-unit activities (Fig. 1). On the activities of these neurons an
objective function characterizing their temporal smoothness, Otime, is defined
and the network is trained till a stationary state is reached (Fig. 2A).

The resulting receptive fields of the sub-units largely resemble those of simple
cells (Fig. 2B). After training every neuron receives input from a set of sub-units
which all share the same orientation preference but differ in spatial localization.
This is shown by the θ - r diagrams for the sub-units (Fig. 2C). Thus the resulting
neurons are insensitive to the position of the stimuli and are therefore translation
invariant (Fig. 2D). The system is also invariant with respect to the contrast
polarity of the stimuli: The response for a bright bar on dark background is the
same as for a dark bar on bright background. Note that this contrast polarity
invariance is not learned by the network but instead is a built in feature of the
transfer function of the neurons (since an even norm is used).

As an important control it is necessary to check that translation invariance
is indeed a consequence of the temporal smoothness of the stimuli and not also
an inherent network property. The stimulus vectors are randomly shuffled to
destroy the temporal coherence of the pairs {It−1, It}. Figure 3A shows the
resulting receptive fields of the sub-units, which no longer exhibit the systematic
properties of those obtained with the stimuli in natural order. This shows that
the correlations in the time domain of the video sequences are necessary for the
learning of the complex like receptive fields.

Since the temporal correlation between patches in natural videos decays grad-
ually over time (Betsch et al. Submitted) we pair frames of larger temporal dis-
tances ({It−∆n , It} instead of {It−1, It}). As expected, with growing time shift
∆n orientation specificity decreases and the cells become more specific to position
(Fig. 3B). In the limit of no correlation (large temporal distances or randomly
paired frames) position and orientation specificity index become identical within
error range.

In the current implementation the stimuli are whitened and all principal com-
ponents up to the given PCA dimension are amplified to amplitude one whereas
the other amplitudes are set to zero. One reason for this preprocessing is the
large decrease in computation time when using fewer dimensions. To assess the
effect of the choice of the PCA dimension the position and orientation speci-
ficity is computed for different dimensions (Fig. 3C). None of these quantities
changes significantly. Inspection of the resulting sub-unit receptive fields and θ-r
diagrams reveals that still complex like receptive fields are obtained (data not
shown). But since the dimension of the stimulus space is now much larger than
the number of feature detectors, the coverage of the stimulus space is coarse and
most complex cells have similar preferences.
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Fig. 2. Results. A) The objective function is optimized till a stationary state is reached.
B) Receptive fields of the sub-units after 175 iterations. C) θ -r diagrams for these sub-
units. The diagram shows the response strength of the unit for bars of different position
(x-axis) and different orientation (y-axis). D) θ -r diagrams for the complex cells.

4 Discussion

The presented results show that complex like receptive fields can be learned
by extracting the slowly varying subspaces of natural stimuli. The obtained
receptive fields are comparable to those of Hyvärinen and Hoyer (2000) who
use a different approach, independent subspace analysis (ISA). ISA uses the
same network layout but implements a different objective, independence of the
cells’ responses, which is comparable to sparse coding. Whereas they use natural
photographs taken from PhotoCDs we exploit the temporal domain of natural
image sequences.

Another network for learning transformation invariant filters is the adaptive-
subspace self-organizing map (ASSOM) proposed by Kohonen (1996). There also
the neurons are modelled as sub-space energy detectors but the network learns a
two dimensional map such that the activity maximum moves slowly over the net-
work. The cells are implicitely forced to extract slowly varying features resulting
in an approach comparable to the work of Foldiak and to the one presented here.
Opposed to the ASSOM, the objective function approach incorporates the tem-
poral smoothness in an explicit way and the results shown here were obtained
from more natural stimuli.

The fact that quite different objectives lead to similar receptive fields poses
the question to which degree the objectives of temporal smoothness and inde-
pendence are equivalent.
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Fig. 3. Controls. A) (Left) Receptive fields of the sub-units for a network trained with
randomly paired stimuli (no temporal coherence). (Rightmost column) θ -r diagrams
for the (no longer complex) cells. B) Increasing the time lag ∆N between two subse-
quent stimuli decreases the orientation specificity σθ (circles) and increases the position
specificity σr (diamonds). Errorbars denote the standard deviation over all cells in the
network. C) σθ (circles) and σr (diamonds) are shown as a function of the PCA Di-
mension.

It is interesting to note that the temporal smoothness function is very well
compatible with a number of physiological mechanisms found in the mammalian
cortex (Körding and König 2000). In this respect it is of importance that op-
timizing the objective function only needs information locally available to the
cell.

A number of issues remain for further research: Different PCA dimensions
require different subspace sizes and different numbers of neurons for optimal
stimulus space coverage. Incorporating a dynamic subspace size in the objective
function approach might recruit the optimal number of sub-units needed.

The presented results are obtained by using the 2-Norm of the subspace as
transfer function for the cells. In this way the network becomes very similar
to the classical energy models for complex cells which are supported by elec-
trophysiological evidence. Some research on the other hand advocates stronger
nonlinearities. Riesenhuber and Poggio (2000) for example propose the max func-
tion, which corresponds to the infinity norm. It seems likely that this network
property can also be learned using the same objective function. Learning the
norm of the sub-spaces might be worthwhile since it incorporates learning the
nonlinearity of the network. Furthermore this could also lead to an explicitly
learned contrast polarity invariance which so far is built in.
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Concluding, temporal coherence is a method for learning complex type recep-
tive fields from natural videos, and seems very well suited for learning different
network properties of biological systems in which temporal information is ubiq-
uitous.
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