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Forward- and Backpropagation in a Silicon Dendrite
C. Rasche and R. J. Douglas

Abstract—We have developed an analog very-large-scale inte-
grated (aVLSI) electronic circuit that emulates a compartmental
model of a neuronal dendrite. The horizontal conductances of the
compartmental model are implemented as a switched capacitor
network. The transmembrane conductances are implemented as
transconductance amplifiers. The electrotonic properties of our sil-
icon cable are qualitatively similar to those of the ideal passive
cable that is commonly used to model mathematically the electro-
tonic behavior of neurons. In particular the propagation of excita-
tory postsynaptic potentials is realistic, and we are easily able to
emulate such classical synaptic integration models as direction se-
lectivity. We are also able to emulate the backpropagation into the
dendrite of single somatic spikes and bursts of spikes. Thus, this
silicon dendrite is suitable for incorporation in detailed silicon neu-
rons operating in real-time; in particular for the emulation of for-
ward- and backpropagating electrical activities found in real neu-
rons.

Index Terms—Analog very-large-scale integrated (aVLSI),
backpropagation, dendrite, neuromorphic engineering.

I. INTRODUCTION

T HE DENDRITES of neurons have a rich repertoire of
electrical properties that support signal processing [1].

Because experimental studies can demonstrate so different
and sometimes contradicting signal processing, computational
models of dendrites are diverse as well. We classify the models
into four groups that are convenient for the discussion of den-
dritic processing. These groups are: passive, active, adaptive,
and models accounting for backpropagation1 of spikes.

Traditional computational models for dendritic processing
model the dendrite as apassive, branched cable structure. This
view wasoriginatedbyRall in the 1960s (see [2] for a review)and
is still popular [1], [3]. However, in recent years it has become
clear that dendrites have many, highly nonlinear properties that
arise from the many voltage-dependentactive conductances
that are found in the membranes of the dendritic tree [1], [4].
Computational models that account for these nonlinearities are
as diverse in their functionality as the experimental findings
[5]–[7]. Common to all these passive and active computa-
tional approaches is the idea that synaptic input is somehow
combined and conveyed—or what we now term “forward-prop-
agated”—toward the soma in an essentially analog process.
Recently, another crucial feature of dendritic processing has
been attracting attention: thebackpropagationof somatic spike
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1In this context, backpropagation means propagation of somatic spike activity
back into the dendrite. Many neural-network modelers interpret this phenom-
enon as an evidence for a possible mechanism of the backpropagation learning
used in artificial multilayer networks.

events into the more distal dendrites [8]. Backpropagation is
an active process, but of course, passive electronic spread of
the spike signal into the dendrite also occurs [9]. Theoreticians,
who study the computations performed by neurons, are now
incorporating backpropagation in their neuronal and network
simulations and electronic emulations [10]–[13]. Finally, there
is evidence foradaptivedendritic properties. Ionic conductances
in the dendrite can change in response to cellular biochemical
signals; and these conductance changes consequently cause
changes in electrotonic spread [14]–[16]. Although adaptive
processes have so far been less popular with theoreticians, they
are now also being recruited to models of dendritic computation
[5], [17]. However, the relative importance of these dendritic
modes of signal processing in the various dendrite models is still
unclear.

What is clear, is that the study of highly distributed active
processes is computationally expensive when simulated on con-
ventional computers. On the other hand, analog very-large-scale
integrated (aVLSI) circuits offer the possibility of emulating
these processes physically, in real time. Such emulations open
the route for high-speed qualitative modeling investigations, and
for the possible construction of hardware neuronal networks
that can perform useful signal processing [18]. We have pre-
viously described our methods and results in the construction
of active and passive conductances suitable for the fabrication
of simple silicon neurons, which emphasized the electrophysi-
ology of the somata [19], [20]. More recently, we have focused
on developing neuromorphic dendrites and synapses [21]–[23]
that could be used as the basis for exploring the above mentioned
modes of dendritic computation. Elias’ group has already suc-
cessfully built silicon dendrites with integrate-and-fire somas
[24] that account well for the passive mode of dendritic opera-
tion. In contrast, we report here a passive dendrite with good per-
formance, that incorporates also voltage-dependent ionic con-
ductances of the kind observed in the somata and dendrites of
real neurons. Our silicon dendrite can therefore be used to ex-
plore both passive and active synaptic forward- and backpropa-
gation phenomena.

II. M ETHODS

The common approach to modeling dendrites is to transform
the dendrite into an approximation to a cable [25]. The dendrite
is discretized into connected segments of dendritic cylinder,
so-called compartments [Fig. 1(a)]. A minimal compartment
comprises anRC circuit representing the electrical passive
behavior of that cylinder of membrane; and axial resistors rep-
resenting the axial resistance (or internal resistance) between
the centers of the successive dendritic cylinders. The translation
of these simple circuits into aVLSI circuits, meet an imme-
diate problem: the implementation of resistors. The aVLSI
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Fig. 1. Compartmental modeling in theory and silicon. (a) Electrical diagram of a compartmental model of a piece of dendrite:RCcircuits (leakage conductance
and membrane current) are connected by axial conductances. The capacitanceC represents the membrane capacitance across which the membrane current,I
flows. The resistorR simulates the membrane resistance, through which current (I ) leaks away. The batteryV represents the resting potential of
the entire neuron. The node,V (V ), represents the membrane potential in compartmentx (x+1).R simulates the axial resistance, through which the axial
current,I flows. In the rightRCelement, a synaptic circuit is shown in gray. (b) Silicon implementation of (a). TheRCcircuit is approximated by a follower
circuit, the axial resistor by the switched capacitor method (�1 and�2 are the two nonoverlapping clocks feeding transistor T1 and T2, respectively). The gray
“synaptic circuit” schemes indicate where a current from a synaptic aVLSI circuit is dumped onto. In our circuits we use (neurophysiolgical) conductance notation:
GLEAK corresponds to1=R , GAX to 1=R (later given as frequency). ELEAK= V .

technology lends itself to the fabrication of active elements
(transistors), capacitors, and connecting wire; but not to the
simple construction of fixed resistors. Various approximations
to resistors andRCcircuits are possible in aVLSI circuits; each
with advantages and disadvantages [26].

In our silicon dendrite, we approximate the membraneRCcir-
cuit by a follower integrator [Fig. 1(b)], which we have already
successfully used in our silicon neuron [20]. The dependence of
the leakage current on the membrane voltage is given
by the current–voltage relationship of the transconductance am-
plifier of the following:

(1)

where
bias current of the amplifier, whose magnitude is
determined by the voltage ;
gate efficiency constant ( );
thermal voltage ( V at room tempera-
ture).

The amplifier is linear over a differential input voltage range
of about 100mV. In this (small) linear region, the follower inte-
grator acts as an idealRCcircuit, outside the linear region, the
amplifier provides a fixed current. We emulate the axial resis-
tance by the switched-capacitor method, which was applied by
Eliaset al.for their artificial dendritic trees [24], [27], [28]: Two
nonoverlapping clocks ( , ) drive two transistors (T1, T2).
The actual conductance value of the resistor is given by multi-
plying the clock frequency by the capacitance ( ). We call it

in accordance to our general neurophysiological notation
of conductances [19] and give values of in Hertz as this
is the value we set to this conductance.

We chose the transconductance amplifier asRC circuit, be-
cause it gives us the opportunity to further extend the dendrite
with self-adapting circuits. That this is possible has already been
shown on the silicon neuron [29] (see also discussion “adap-
tive”). As horizontal resistor we preferred the efficient switched-
capacitor method over other approaches (e.g., HRES by Mead
[26]) to compensate for the small linear region of the transcon-
ductance amplifier. Because the clocks consume a lot of power,
the circuit loses the neuromorphic appeal of low-power. Yet,
we need to set only one value of because the axial re-
sistance of a dendritic cable is supposed to be the same for dif-
ferent neuron types. To avoid capacitive coupling of the clock
signals with the analog voltages, we have designed our layout
as in Elias work [28].

We have constructed various dendrite models. To test the
effect of cable termination (also called boundary condition) on
passive electrotonic spread we have implemented dendrites of
different length (four to ten compartments). To test synaptic
propagation and integration, four- and five-compartment
models were developed, in which compartments include also
synaptic conductances. The construction and performance of
the synaptic conductances has been described previously [22].
We stimulate our synaptic circuits with pulses of 1ms width,
which represent action potentials. The synaptic current of the
synapse has the following approximate dynamics: During the
first ms, the current increases, then it decays as 1/time with a
duration of about 1 to 2 ms. The pulse trains are generated by a
general purpose electronic interface card (National Instrument
LabPC ) controlled by a computer.

We explored the active propagating properties of the dendrites
using a set of ionic conductances developed for a silicon pyra-
midal cell [20]. These conductances include the typical spiking
conductances (sodium and potassium conductance), a model of
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Fig. 2. Space and time constants in the silicon cable. (a) Voltage gradient along the compartments for different steady-state voltages (V ss = 100 mV, 200 mV,
400 mV). Dashed vertical lines: space constants. (b) Decay ofV from different initial voltages (V 0 = 100 mV, 200 mV, 400 mV). Dashed vertical lines: time
constants. Parameter values:GLEAK = 0:26 V, GAX = 10 kHz,ELEAK = 2:0 V.

the somatic intracellular calcium concentration and a calcium
dependent after-hyperpolarizing conductance. With these ionic
conductances an aVLSI soma is able to fire in three different
spiking modes: fast spiking, regular spiking, and bursting. Fast
spiking requires only the sodium and potassium conductances
for generating spikes. Regular spiking is spiking with spike fre-
quency adaptation (with increasing interspike intervals) based
on a model of the intracellular calcium concentration and the
after-hyperpolarizing conductance forming a negative feedback
loop [20]. Bursting is high-frequency spiking with long periods
of silence between bursts and is based on the same ionic conduc-
tancesas for regular spikingbutoperatingunderslightlydifferent
dynamics. These ionic conductances are placed in one end of a
compartmental dendrite, representing the somatic compartment.

Our results are drawn from a number of test chips (2.2 mm),
that were fabricated using standard 1.2m CMOS technology.
Our circuitry uses only a small fraction of this area. Transistor
sizes are generally 6m by 6 m. The membrane capacitance

per compartment is about 1 nF. For reasons of testing, we
usedtwosignificantlydifferentsizesof . Inonetypeofcable,

is only the parasitic capacitance (1 pF) between the two
switching transistors. In the other type of cable, consists ofa
poly–poly2capacitorof thesizeofapproximately10pF.Because
of thesetwosignificantlydifferentsizesof ,wealsohave two
significantly different ranges of values. The transconduc-
tanceamplifier isdesignedasinMead’scircuits[26], theswitched
capacitors are designed as in Elias’ layouts [28].

III. RESULTS

As a first step in our analysis we adjust and determine the
space and time constant of our silicon cable (also called length

and membrane time constant, respectively) by using a simple
exponential measure. While in computer simulations the param-
eter values of the cable (axial and leakage conductance, mem-
brane capacitance and diameter) are given directly by experi-
mental and anatomical studies, we cannot directly translate such
experimental values into the parameter voltages of the silicon
dendrite. Instead, the parameter voltages must be adjusted to
yield the same electrotonic qualities observed in the real den-
drites. The decay of voltage from different steady-state voltages
(elicited by a step current in one end of the cable) is shown in
Fig. 2. Because our silicon cable model does not contain any in-
formation about the morphology (geometry) of a neuron, we can
not calculate a space constant in absolute distance. We therefore
measure the space constant in units of compartments by deter-
mining the dendritic location after the voltage has decayed to
37% (1/e) [Fig. 2(a), dashed lines]. The measured space con-
stants range between one and two compartments. We determine
the time constant by a similar method to the space constant: we
measured the time taken for the voltage to decay to 37% of its
initial value [Fig. 2(b), dashed line]. The range of the time con-
stants is about 2 ms to 3.5 ms. The differences are due to the
small linear region of the amplifier that represents the membrane
RCcircuit. For large amplitudes the amplifier merely provides a
constant current, which causes the slower decrease of the mem-
brane voltage at high depolarizations. Therefore, both space and
time constant are greater for high amplitudes (large depolariza-
tions) than for small amplitudes (small depolarizations).

In a next step, we examined the effect of the cable parameter
values, such as axial conductance, the leakage conductance and
the length of the dendritic cable, on electronic spread (Fig. 3).
A high value for the axial conductance causes the elec-
trical signal to propagate further, yielding a larger space con-
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Fig. 3. Electrotonic spread for different cable parameters and cable lengths. (a) Spread for different values ofGAX (20 kHz, 10 kHz, 5 kHz).GLEAK = 0:26

V. (b) Spread for different values ofGLEAK (0.24 V, 0.26 V, 0.28 V).GAX = 10 kHz. (c) Comparing spread in a four- and a ten-compartment model, sealed
end and “semi-infinite,” respectively.GLEAK = 0:26 V, GAX = 20 kHz. (a)–(c)V ss = 400 mV.

Fig. 4. Spread of an excitatory postsynaptic potential (EPSP) along the cable for different conductance values. A synaptic conductance at one end of the cable
is stimulated. The amplitude of the resulting EPSP is adjusted to about 600 mV. The membrane potentials of the stimulated compartment (1) and the following
compartments (2, 3, 4) are shown. ELEAK= 2:0 V. In (a) and (b),GLEAK (= 0:25 V) is fixed andGAX is varied: (a)GAX = 15 kHz. (b)GAX = 50

kHz. In (c) and (d),GAX(= 20 kHz) is fixed andGLEAK is varied: (c)GLEAK = 0:22 V. (d)GLEAK = 0:28 V. The “noise” on some of the membrane
voltages derives from the low clock frequencies forGAX .

stant than for a lower value of [Fig. 3(a)]. A high value
for the leakage conductance causes to leak the elec-
trical signal away faster and so to propagate shorter, yielding
a smaller space constant than for a lower value of
[Fig. 3(b)]. Fig. 3(c) compares the electrotonic spread in two
different cable lengths, a four- and a ten-compartment model.

The space constant for the short cable is larger than for the long
cable. The spread in the four-compartment model is analogous
to the sealed end termination, or simply a short cable in which
the charge accumulates at one end. The ten-compartment model
is an approximation to a semi-infinite cable, a cable of infinite
length in one direction. In this case, charge in the fourth com-
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partment is more attenuated in comparison with the four-com-
partment model, because the charge is propagated further down
the cable, which thus results in a smaller space constant. These
measurements agree qualitatively well with the calculations of
cable theory (see [30] for a comparison).

The previous two figures illustrated the response of the cable
to artificial current signals (step currents) used to explore basic
properties of the silicon cable. We turn now to a more realistic
input, the synaptic input. Fig. 4 shows the propagation of an
excitatory postsynaptic potential (EPSP) along the dendrite for
different axial and leakage conductances of the dendrite. In each
experiment, the amplitude of the EPSP is adjusted to the same
value for comparison. Fig. 4(a) and (b) show the time course
of EPSP propagation for two extreme values of . For a
low , the space constant is small and hardly any depolar-
ization occurs in the third and fourth compartment. For a high

the space constant is large and depolarizations in the third
and fourth compartment are still noticeable. In Fig. 4(c) and (d),
we varied the value of . For a low , the time
constant is large and the EPSP propagation looks similar to the
one in Fig. 4(b). For a high , the time constant is de-
creased. The duration of the EPSPs is between approximately 6
ms and 13 ms [Fig. 4(c) and (d), respectively]. The shape, dura-
tion, and spread of our silicon EPSPs (Fig. 4) compare favorably
with real EPSP’s (see, for example, [31, p. 416] and [32, p. 99]).

Next, we investigated the passive propagation of somatic
spike signal into the dendrite. We test a four-compartment
model, in which one compartment contains the ionic con-
ductances of a pyramidal soma (Fig. 5). We stimulated the
somatic compartment with a step current in each of the three
different spiking modes. A spike elicited in the soma prop-
agates passively backward into the dendritic compartments
while decaying in amplitude and broadening in width due to
the low-pass filter properties of the dendritic cable: Spikes in
the soma are of 1 ms duration and of full amplitude, in the
distal compartment of 3ms duration and almost flattened in
amplitude [Fig. 5(a) and (b)]. The effect of a burst is much
more significant [Fig. 5(c)]. A burst in the soma can be seen as
a very wide spike invading the dendritic compartments.

Now we test the ability of the silicon dendrite to realize a
simple model of dendritic function. The retina, thalamus and
visual cortices contain neurons whose response is sensitive to
the direction of motion of a visual stimulus across their re-
ceptive field [33]. The biophysical mechanism causing this di-
rection selectivity is not yet fully explained. However, there
are a number of models that try to explain this mechanism by
synaptic interactions within dendrites [1, p. 130]. One popular
model, originally suggested by Rall [34], is that direction se-
lectivity is due to the asymmetrical summation of EPSPs that
occurs in dendrites when synapses distributed along the den-
drite are activated sequentially; either toward, or away from the
soma (see [35]and [36] for a recent contribution to that debate).
Fig. 6 shows the ability of a five-compartment model to achieve
this kind of direction selectivity. The somatic compartment con-
tains the spiking mechanism, each of the four dendritic compart-
ments contains a simple excitatory synapse. The synaptic con-
ductances are stimulated sequentially, first from the distal end
of the dendrite toward the soma (the preferred direction), and

Fig. 5. Influence of somatic spikes on the silicon dendrite. The same
step current [120 ms, indicated below (c)] has been applied to the somatic
compartment (“S”) of the silicon dendrite (see iconized form on the left)
for different somatic spiking modes. (a) Fast spiking. (b) Regular spiking
(with adaptation). (c) Bursting. Parameter values:GLEAK = 0:22 V,
GAX = 200 kHz, ELEAK = 2:0 V. Relevant soma parameter values:
sodium reversal potential= 5:0 V, spiking threshold= 2:5 V, potassium
reversal potential= 1:5 V.

then from the soma toward the distal end (the null direction). In
the preferred direction, the EPSPs sum up toward the soma and
yield a large depolarization that exceeds the spiking threshold
[Fig. 6(a)]. Stimulation in the null direction causes the EPSPs
to sum up into the distal part of the dendrite, where the large
depolarization has no effect on the spike output of the neuron
[Fig. 6(b)].
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Fig. 6. Direction selectivity of the silicon dendrite. (a) Each synapse (one per compartment) is stimulated once (vertical black bars), beginning from the distal
compartment (membrane potential not shown). The EPSPs sum up in the preferred direction toward the soma and elicit a spike there. (b) Stimulation in the null
direction does not elicit a spike because the EPSPs sum up toward the distal compartment of the dendritic cable. Parameter values: as in Fig. 5. EPSP amplitude:
ca. 1 V. Presynaptic interspike intervals: 3 ms.

IV. DISCUSSION

We see the circuits as a basis for constructing more elaborate
dendrites of the four classes of dendrite models mentioned in
the introduction. We discuss this in the following sections.

A. Passive

In Figs. 2 and 3 we have tested the passive cable properties.
The cable parameters can be easily adjusted to provide time con-
stants that are in the same order—a couple of ms—as the ones
of real dendrites. The absolute space constant of the silicon den-
drite cannot be directly compared with a space constant of real
dendrites because there is no real geometry (length and diam-
eter) in our electronic circuit. We determined the space and time
constant by a simple exponential measure, which is not entirely
appropriate for two reasons. First, neither the decay in space
nor the decay in time is exponential in a dendritic cable of fi-
nite length. Second, our silicon dendrite is nonlinear because
of the limited linear region of the amplifier. Nevertheless, we
chose the commonly used exponential measure to approximate

the time and space constants and the passive behavior of our
silicon cable. The decay of , in space and time, is slower
for large amplitudes than for small amplitudes (Fig. 2) due to
the nonlinear leakage conductance. When the analog electronic
circuits were operated in the very small linear voltage region of
the amplifier ( 100 mV) we could obtain better approximations
to the real leakage conductance. However, in this small linear
region device mismatch and crosstalk from the clocks can be-
come a problem. Despite the deviation from an ideal cable be-
havior due to the nonlinear leakage conductance, the behavior of
the silicon dendritic is in good qualitative agreement with gen-
eral cable properties (Fig. 3). EPSPs in Fig. 4 are comparable to
EPSPs in Elias’ work (e.g., [28, Fig. 1a]). Direction selectivity
in silicon dendrites was already shown in Elias dendrites (sum-
marized in [24]). Our goal was to tune the membrane voltage
dynamics to more realistic values.

Furthermore, we think that a reduced compartmental model
of a pyramidal neuron, e.g., with only five to six compartments
as modeled by Bushet al. in computer simulations [37], [38],
can be realized in our analog electronic circuits. Such a model
had to be developed with comparative simulations in one of the
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neuron simulation packages, as for example NEURON [39] or
GENESIS [40].

B. Active

In contrast to the above discussed passive mode of dendritic
operation, active means that there are also voltage-dependent
conductances in the dendritic tree that could cause highly non-
linear integration. For example, dendritic spikes seems to exist
and it has even been hypothesized that action potentials are initi-
ated there [41], [42]. Another example, is the voltage-dependent
synaptic conductance NMDA that could give rise to multiplica-
tive interactions between synaptic inputs [43], [44]. We have not
demonstrated any such active dendritic processing in this paper.
However, because our circuits are modularly designed, it is easy
to rearrange circuits to model active forms of dendritic pro-
cessing. The successful operation of voltage-dependent conduc-
tances is shown by the implementation of the somatic conduc-
tances operating (Fig. 5). Another possibility would be to pursue
Mel’s work on NMDA interactions by the silicon voltage-de-
pendent synaptic conductance [22]. A preliminary model has
been worked out by Rasche [21].

C. Backpropagating

In most neural network simulations the backpropagating
wave of somatic activity is often ignored. However, recent
experimental studies on pyramidal cells reemphasize the
crucial role for this kind of backpropagation [45]. Fig. 5 shows
clearly the profound influence of a somatic spike on the silicon
dendritic cable. Although it is a passive backpropagation, the
depolarization is still significant in the dendritic compartments,
in particular in the case of bursting. Such a depolarization
could be the necessary voltage level to amplify the effect of
a voltage-dependent ionic conductance as they occur in real
dendrites. Such a coincidence of the backpropagating somatic
wave and dendritic input to voltage-dependent synaptic con-
ductances has already been exploited in computational models
[12].

D. Adaptive

We already mentioned in the method section that we use
a transconductance amplifier for the leakage conductance to
possibly extend the dendrite with self-adapting circuits. The
bias voltage can be easily modified on-chip according to an
adaptive mechanism as various other implemented neuronal
adaptation circuits have shown [21], [29]. The adaptation of
the leakage conductance has consequences for the electrotonic
spread [Fig. 4(c) and (d)] and so on the synaptic integration.
We have already implemented a model of such an adapting
dendrite, but full results from which will be presented on a
future work [46].
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