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Abstract. We explore the use of continuous-time analog
very-large-scale-integrated (aVLSI) neuromorphic visual
preprocessors together with a robotic platform in gener-
ating bio-inspired behaviors. Both the aVLSI motion
sensors and the robot behaviors described in this work
are inspired by the motion computation in the fly visual
system and two different fly behaviors. In most robotic
systems, the visual information comes from serially
scanned imagers. This restricts the form of computation
of the visual image and slows down the input rate to the
controller system of the robot, hence increasing the
reaction time of the robot. These aVLSI neuromorphic
sensors reduce the computational load and power con-
sumption of the robot, thus making it possible to explore
continuous-time visuomotor control systems that react in
real-time to the environment. The motion sensor pro-
vides two outputs: one for the preferred direction and the
other for the null direction. These motion outputs are
created from the aggregation of six elementary motion
detectors that implement a variant of Reichardt’s corre-
lation algorithm. The four analog continuous-time out-
puts from the motion chips go to the control system on
the robot which generates a mixture of two behaviors —
course stabilization and fixation — from the outputs of
these sensors. Since there are only four outputs, the
amount of information transmitted to the controller is
reduced (as compared to using a CCD sensor), and the
reaction time of the robot is greatly decreased. In this
work, the robot samples the motion sensors every 3.3 ms
during the behavioral experiments.

1 Introduction

Many robotic systems are bulky and slow, require
massive computing power, and expend a lot of energy.
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In addition, since silicon imagers are frequently used as
the front end, the data acquisition rate of the imagers
can compromise the response time of the sensorimotor
control loop of the robot. Recent research has centered
on sensorimotor control loop problems that use small,
low-power robots with onboard sensors and some
onboard processing (Webb 1995; Srinivasan et al.
1997; Huber 1999). This research has benefitted greatly
from both behavioral and sensory physiological studies
on data collected from animals in visual and navigation
tasks (Ronacher and Wehner 1995; Srinivasan et al.
1997). Flies and bees are prototypes for examples of
sensorimotor systems that work robustly in natural
environments. The first attempt at solving a real-time
visuomotor control problem using a robot and visual
sensors that were inspired by the fly system was
developed by Franceschini et al. (1992). The robot had
100 optical lenses and photodiodes covering an angle of
about 360°. However, this system was quite bulky and
weighed about 10 kg. With present-day technology, the
size and weight of these robots can be reduced with the
use of smaller onboard sensors, for example, a pan-
oramic camera (Srinivasan et al. 1997). The speed of the
system can be increased through the availability of fast
onboard processors.

1.1 Neuromorphic sensors

The data acquisition rate of silicon imagers used on
robotic systems is around 25-30 frames/s for a 640x480
sized image. However, the acquisition time is dominated
by the onboard computational time of the visuomotor
control loop. The speed of the robot is compromised by
the image acquistion rate and the necessity to do frame-
based computation.

One solution to this bandwidth dilemma is the use of
sensors that are based on principles of neuromorphic
engineering (Mead 1989). Electronic systems that model
the biological function and structure of neuronal pro-
cessing in invertebrates and vertebrates are developed
partly to enhance the present state of technology in the
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Fig. 1a,b. Block diagram of Hassenstein—Reichardt’s correlation
model of motion computation in insects. a Model of a single EMD.
We have arbitrarily called the direction of a stimulus moving from left

industry and partly as a form of modeling biology by
building silicon circuits and systems that have to deal
with problems of noise and mismatch. There has been
substantial work into developing neuromorphic analog
very-large-scale-integrated (aVLSI) motion sensors,
since motion information is important in many different
tasks (Benson and Delbriick 1992; Delbriick 1993;
Kramer et al. 1995; Sarpeshkar et al. 1996; Etienne-
Cummings et al. 1999), and it is natural to compute
motion with continuous-time circuits. Some of these
motion chips are based on a model of motion processing
in fly vision (Andreou and Strohbehn 1990; Sarpeshkar
et al. 1993; Moini et al. 1997; Harrison and Koch 1998).

In this work, we explore the use of two aVLSI motion
sensors that provide global motion information to a
controller system that generates two possible behaviors
on the robot. Each motion sensor models the motion
pathway (from the receptors to the wide-field, direction-
selective cells) of the fly on a single chip. The two sensor
outputs indicate whether a stimulus is moving in the
preferred direction or in the null direction. As a result,
only two outputs from each chip need to be sampled by
the microcontroller, and the speed of the sensorimotor
loop on the robot can be increased significantly. De-
pending on the motion outputs, the robot exhibits one of
two behaviors: optomotor response and fixation. These
behaviors are inspired by the behaviors of real flies.

In Sect. 2, we describe the architecture of the aVLSI
motion sensor, and in Sect. 3, we discuss some of the
circuit techniques used for computing a robust motion
output. We show measured data from a motion chip
fabricated in 1.2-um CMOS technology in Sect. 4. Fi-
nally, we describe a controller system that generates the
two behaviors using the outputs of two motion sensors
mounted on the Koala (our robotic platform), and show
the improvement in the sampling rate of the sensors.

l

Wide-field spatially-integrated
output

(b)

to right the preferred direction of the EMD. b Model of a wide-field
direction-selective cell in the fly. The output is integrated from all the
EMDs. This is also the model for the motion sensor used in this work

2 The aVLSI motion model

The aVLSI motion sensor consists of six elementary
motion detectors (EMDs) — each EMD implements a
variant of the Hassenstein—Reichardt correlation algo-
rithm (Hassenstein and Reichardt 1956; Reichardt 1961)
as shown in Fig. la. There is no motion computation
between the pairs of pixels of the six EMDs in this
aVLSI sensor due to a design oversight. This error has
been corrected in a new circuit implementation (Liu
2000). The outputs of the individual EMDs are summed
together to produce a global motion measure, as shown
in Fig. 1b. An EMD receives inputs from two neigh-
boring pixels (or photoreceptors). One of the inputs goes
through a low-pass filter. This filtered signal is multi-
plied with the input at the adjacent pixel. The output of
the left multiplier of the EMD is sensitive to stimuli
moving from left to right; the output of the right
multiplier is sensitive to stimuli moving from right to
left. The two outputs are subtracted to remove the
common-mode dependence on the input.

The architecture of the silicon EMD (shown in Fig. 2)
closely follows the anatomical layout of the fly visual
system. The first layer of the motion chip models the
retina layer; each photoreceptor transduces the incom-
ing light into a voltage. The circuit has a high transient
gain to changes in intensity and a low DC gain
(Delbriick 1994; Liu 1999). The circuit adapts over six
decades of background intensity. Because of this local
gain property, the circuit primarily codes contrast in-
formation.

The second layer models the responses of the cells in
the laminar layer of the fly retina. Recordings from the
large monopolar cells (LMC) (Laughlin 1993; Juusola
et al. 1995) in this layer show that the LMC responses
are amplified versions of the receptor outputs. The DC
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Fig. 2. Block diagram of the architecture of
the silicon EMD for computing motion. The
input goes through a photoreceptor circuit
with local gain control. The receptor output is

then band-pass filtered by the LMC circuit.
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response of the cells is approximately constant, unlike
the DC response of the receptors, which depends on the
background intensity. In our silicon LMC, the receptor
output is AC-coupled into an inverting differentiator
circuit with a fixed transient gain. Only transient changes
of the receptor output are amplified by this fixed gain.
The third layer models hypothetical cells in the
medulla area or lobula complex. Here we split the LMC
signal into two pathways. In one pathway, the signal
goes through a low-pass filter. The original LMC signal
and the filtered signal are then processed by a nonlinear
differentiator circuit (Kramer et al. 1997) that generates
both an ON transient current and an OFF transient
current from temporal changes in the two signals. The
resulting four currents (ON, delayed ON, OFF, delayed
OFF) are correlated together using a simple current
correlator (Delbriick 1991) (analogous to the multiplier
in the Reichardt model). The ON transient current at
each pixel is correlated with the delayed-ON transient
current from its neighboring pixel and the same com-
putation is performed with the OFF currents. This
splitting of ON and OFF pathways in the basic process
of motion detection was demonstrated via electrophys-
iological recordings from a wide-field, direction-selective
cell in the housefly (Franceschini et al. 1989). The out-
put currents from all four correlators are then used to
charge or discharge a capacitor on a node, Vo, with a
leak conductance to a reference voltage. The output,

pathways; in one pathway, the signal goes
through a low-pass filter. From the filtered
and unfiltered signals, we generate ON and
OFF transient currents. The ON and OFF
filtered signals in each pixel are correlated (or
multiplied) with the unfiltered signals from the
adjacent pixel. The two outputs shown in the
figure are sensitive to a stimulus moving in
one direction (from left to right). This figure
corrects an error made in similar figures that
were published in (Liu and Usseglio-Viretta
(2000) and Indiveri and Douglas (2000). In
these two papers, the output that was labeled
with a *-’ in each figure should have been
labeled with a “+’

LOBULA
COMPLEX

Vmot, corresponds to the responses of the wide-field di-
rection-selective cells in the lobula plate of the fly. The
details of the circuits in this chip are discussed in Liu
(2000).

3 Offsets

Silicon hardware — probably like biological neural
hardware — has mismatches between neighboring pixels
or cells. Offsets make robust computation difficult. The
coefficient of variation (CV) — defined as the standard
deviation divided by the mean — of the peak responses of
blowfly photoreceptors (Juusola 1993) to a signal
contrast (Michelson contrast) of 0.359 was on the order
of 5 percent. The CV measured from a silicon retina (Liu
1997) fabricated in 2 pm CMOS ORBIT technology is
about 6-10%. These data were obtained from the peak-
to-peak responses of the photoreceptor output of the
individual imager pixels in response to an LED that was
modulated by a 10-Hz square wave. The effects of offsets
between pixels need to be considered if comparisons or
correlations between pixels are part of the circuit
computation.

We have taken steps to reduce the effect of mismatches
by incorporating band-pass filtering at various stages of
processing in this system. Some of the methods we used to
increase the robustness of the computation are as follows:
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1. We band-pass filtered the signal from the photore-
ceptor going into the LMC circuit so that there is no
common-mode dependence on the LMC output.

2. The DC level of the input from the LMC circuit to the
nonlinear differentiator circuit affects the transient
dynamics of the generation of the ON and OFF
currents. Since the DC voltage of the LMC input to
the nonlinear differentiator circuit is constant, the
dynamics are not affected by the background light
intensity.

3. We have chosen to use transient current inputs instead
of voltage inputs to a correlator circuit so that we
would not have to deal with mismatches in the DC
input levels at the multiplier. A previous hardware
implementation of the correlation model where volt-
age outputs from neighboring pixels are fed into a
multiplier circuit failed to provide a robust direction-
sensitive output. The signal was not robust because
the input DC offset between the pixels creates differ-
ent outputs at the multiplier. Instead of using a
voltage-mode multiplier, we used transient currents as
inputs to a current correlator circuit. The use of
transient currents ensures that there will be no output
current (coding zero motion) if there is no input
change at the receptor output. The offsets in the
voltage multiplier could be reduced via layout and
sizing techniques or nulled using tunneling-injection
structures (Diorio et al. 1999) or UV techniques.
These solutions require additional circuitry and hence
area.

4 Responses from the aVLSI motion sensor

The motion output, Ve, of the aVLSI motion sensor
sits at a reference voltage of 2.5 V when there is no
motion. If the stimulus moves in the preferred direction,
the currents from the corresponding correlators or
multipliers in Fig. 2 charge the output node, Vo, above
2.5 V; if the stimulus moves in the null direction, the
currents from the multipliers discharge Vot below 2.5 V.
Notice that we have arbritrarily called the direction of
the moving stimulus as the preferred direction if the
motion output is above the reference voltage. The results
shown in Figs. 3-6 are obtained for a single EMD on the
aVLSI chip. The temporal responses of a photoreceptor
and an EMD to a sinusoidal grating moving in the
preferred direction are shown in Fig. 3a, and in the null
direction are shown in Fig. 3b. The asymmetry in the
responses of the motion output between the ON and
OFF pathways occurs in the circuit that generates the
transient currents from the LMC outputs.

We obtained the temporal frequency response of the
aVLSI EMD (Fig. 4a) by moving a sinusoidal grating
with a fixed spatial frequency in front of the sensor.
The shape of the response is similar to that measured in
the so called HSE cell of the fly (Fig. 4b), which is one of
the wide-field direction-selective cells (Hausen 1982b).
The dynamic range of the input frequency is in the range
1-20 Hz. The curves above the baseline of 2.5 V corre-
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Fig. 3a,b. Responses of the photoreceptor and the silicon EMD to a
sinusoidal grating of contrast 0.2 moving at a temporal frequency of
10 Hz. Notice the frequency doubling in the EMD output from the
correlation circuit. a Responses to the grating moving in the preferred
direction. The photoreceptor output has been shifted down by 0.1 V
for ease of comparison. b Responses to the grating moving in the null
direction. The photoreceptor output has been shifted down by 0.6 V

spond to the stimulus moving in the preferred direction,
and the curves below this baseline are results obtained
from using a stimulus moving in the null direction. The
three curves correspond to three different contrasts of
the stimulus. The dependence of the motion sensor on
the input contrast is dissimilar from that of the HS cell
since the output of the motion sensor increases with the
signal contrast. The output of the HS cell saturates
around a contrast of about 0.3 (Egelhaaf and Borst
1989). This discrepancy is being addressed in a new
version of the circuit.

The temporal frequency where the EMD response
peaks in Fig. 4 can be controlled by the time constant of
the low-pass filter. We can adjust this time constant by
changing the voltage of a control signal to the filter
circuit. The three curves in Fig. 5 correspond to three
different delay bias settings 0.44 V, 0.45 V, and 0.46 V.

As shown by Hausen (1982a,b), the motion responses
of the HS cells depend on the orientation of the stimulus
moving in the preferred direction. These responses ap-
proximate a cosine tuning curve. We repeated the same
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Fig. 4a,b. Frequency response of silicon EMD and a fly HSE cell.
a Frequency response of the silicon EMD circuit. The three curves
correspond to a sinusoid at three different contrasts: 0.34, 0.58, and
0.92. The contrast here is defined as the Michelson contrast,

% The curves above the baseline of 2.5 V are obtained for the

sinusoidal grating moving in the preferred direction and the curves
below the baseline are obtained for the grating moving in the null
direction. b Data from a HSE cell replotted from Fig. 5c in Hausen
(1982b)
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Fig. 5. Frequency response of the silicon EMD for three different
time constants of the low-pass filter. The time constant is set by a bias
voltage, Velay- A higher V., value means a lower filter time constant.
Average response of the EMD to a stimulus moving in the preferred
and null directions at three different delay settings: 0.44 V, 045V,
and 0.46 V
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Fig. 6. Response to a sinusoidal grating at different orientations
moving in the preferred direction. The contrast of the grating is 0.7
and the temporal frequency is 10 Hz. The response to the stimulus
moving in the preferred direction (dashed curve) and in the null
direction (solid curve) is plotted in polar coordinates. The average
response of the circuit is 0.296 V
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Fig. 7. Global motion output as computed from the spatial integra-
tion of the six EMD outputs. The photoreceptor signal has been
shifted down by 3 V

experiments with our motion chip; the polar plot of the
tuning curve from the EMD is shown in Fig. 6.
Finally, the temporal variation of an EMD in re-
sponse to a sinusoidal grating can be reduced by adding
the outputs from several EMDs, as has been shown
physiologically (Single and Borst 1998). In Fig. 7, we
show the global output of the motion sensor from the
spatial summation of the six EMDs in response to a
moving sinusoidal grating. The baseline of 2.5 V corre-
sponds to zero measured motion. At about 0.7 s, the
grating moves in the null direction and the output de-
creases below 2.5 V. At about 1.2 s, the grating moves in
the preferred direction leading to an increase in the
sensor output above 2.5 V. The temporal variation in
the output is reduced due to the addition of the currents
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from the EMDs. However, in this case the output be-
came saturated because of the high contrast of the
grating and the linear operation used in generating the
global output. A new version of this sensor (Liu 2000)
aggregates the outputs of the EMDs in a nonlinear way,
as proposed by Borst et al. (1995).

5 Sensorimotor system

The optomotor response (or course stabilization) be-
havior and the fixation behavior are two well-known
behaviors of the fly. Experiments with tethered flies
show that the optomotor behavior is triggered whenever
the background viewed by the fly moves horizontally; the
fly’s response is a yaw torque that tends to decrease the
speed of the retinal image (Reichardt and Poggio 1979).
During free flight, this kind of response proves to be
essential for correcting the flight trajectory against
disturbances caused by to air movements.

The fixation behavior is evoked under controlled
conditions by showing the tethered fly a stimulus which
consists, for example, of a random textured stripe
against a similar textured background. If the stripe os-
cillates out of phase with the background in the visual
field of one of the two compound eyes, the fly turns
towards the stimulus.

Researchers have posited the existence of two control
systems with different spatial and temporal properties in
controlling the yaw torque of a fly in flight (Wehrhahn
et al. 1982; Egelhaaf 1987; Hausen and Egelhaaf 1989;
Egelhaaf and Borst 1993). The control systems consist of
a “large-field”” system that controls behaviors that de-
pend on the measurement of global motion while the
“small-field” system controls behaviors that depend on
measurements of the properties of a small object within
the visual image (Hausen 1982a,b; Egelhaaf and Borst
1993).

We reproduced two simplified versions of these two
behaviors with our aVLSI motion sensors and the
Koala. The aVLSI motion sensor described here only
measures the global motion of the visual field. Hence,
one of the behaviors displayed by the robot (the fixation
behavior) is not as sophisticated as that of the fly. In our
fixation behavior, the robot turns towards the direction
of the sensor that measures greater motion energy. No
local information is available for the robot to perform
tracking. This information can only be supplied by a
“small-field”” system.

5.1 Experimental setup

The motion sensors equipped with a lens (focal length
3.5 mm) are mounted on two separate boards along with
a 9 V battery and some signal-shaping (peak detection,
integration, and subtraction) logic. The layout of this
motion sensor is shown in Fig. 8a. Each board provides
two output signals (preferred direction and null direction)
which swing from ground (zero motion) to 2.5 V. The
boards are mounted onto a Koala (shown in Fig. 8b), a
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Fig. 8a,b. Koala with the two motion sensors. a Layout of the motion
sensor used on the Koala. The chip is 2.2 mm x 2.2 mm and
fabricated in a 1.2-pm CMOS process. There are twelve photorecep-
tors corresponding to six EMD circuits. The photodiode area is
approximately 1170 um?. The interreceptor spacing is 77 pm; the fill
factor is 5%. b The Koala equipped with two boards; each board has
an aVLSI chip, some digital logic, and a 9 V battery

multipurpose robotic platform manufactured by the
Swiss company K-Team (http://www.k-team.com). The
robot has a number of features which make it suitable
for the testing of sensors and sensorimotor control. It
carries a 16-MHz Motorola 68331 microcontroller
which can control the wheel motors, read data from 16
infrared sensors and six 10-bit analog-to-digital con-
verters (ADCs), and write to a number of digital outputs
according to the program stored in its random-access
memory, or following commands from an external
computer through a serial link. The outputs of the
sensors are digitized by the Koala ADC and processed in
real-time by the Koala’s microcontroller. The experi-
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Fig. 9. Top view of the setup used for the optomotor response
experiment. The background consists a striped grating with an
angular wavelength of approximately 6.8°. The field of view of the
sensor with a lens of focal length 3.5 mm is 22.5°. The preferred and
null directions (L, and L,) for the left sensor and the corresponding
directions (R, and R,) for the right sensor are shown in the figure

mental setup for one of the behaviors described below is
shown in Fig. 9.

5.2 Experimental results

We obtained the two behaviors by using linear combi-
nations of rectified and smoothed versions of the four
outputs of the two aVLSI sensors: Ly, Ly, Ry, and R,
(corresponding to the preferred and null direction
outputs of the left and right chips, respectively see
Fig. 9). Signals from the chips were normalized at the
beginning of each run in order to compensate for
differences in the motion outputs over runs. The
visuomotor control system on our Koala is described
by the matrix C, see Fig. 10) given below:

LP
11 -1 —1]|R
I -1 1 —1]|Ly

R

ee}

=

In this formulation, equal weight is given to the four
motion signals: Ly, Ln, Rp, and R,. The first row of C
corresponds to the linear combination used for the
course stabilization and the second row corresponds to
the combination used for fixation. The criterion for
activating the course stabilization behavior is that we
measure similar motion in both sensors, while the
criterion for activating the fixation behavior is that we
measure different motion in each sensor.

The results of the matrix computations for both be-
haviors were digitally low-pass filtered. The output for
the stabilizing behavior was integrated with a time con-
stant of 16 ms, while the output for the fixation behavior
was integrated with a time constant that is 3.5 times
longer (56 ms). The temporal integration of the outputs
is needed for the visuomotor loop to be stable because we
do not have enough pixels on each sensor to remove the
dependence of the sensor output on the spatial structure
of the pattern. In the case of a sinusoidal grating pattern,
there is a temporal variation in the motion output in
response to the grating. Hence we cannot use the sensor
outputs directly to drive the wheel motors.
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Fig. 10a,b. Block diagram of the control system for course stabiliza-
tion a and fixation b. In a, the rectified and smoothed signals from the
chips corresponding to the null and preferred directions are
subtracted. The results of the subtractions are then summed and
integrated over time using a low-pass filter. In b, the signals
corresponding to the null and preferred directions are first summed.
The results of these additions are then subtracted and integrated over
time. The computed outputs (after they are multiplied by a gain of 4)
of the two behaviors are used to set the motor outputs

The digitally low-pass filtered outputs were multiplied
by a constant, A, and the resulting outputs were used to
drive the left motor (L) and the right motor (R). The
constant, 4, has been chosen empirically to suit the range
of velocities to which the chips are sensitive. Each be-
havior generates outputs for L, and Ry,. These outputs
are labeled as L, and R, for the course stabilisation
behavior and L,r and Ry for the fixation behavior in
Fig. 10. The final values for L, and R, are the sum of
the motor signals supplied by the two behaviors.

We show experimental data taken from the sensors
and the Koala’s motor outputs during the two behaviors
(see Fig. 11). To duplicate a similar experimental setup in
Reichardt and Poggio (1979) for tethered flies, we set the
motor signals R, = —Ly, so that the Koala only rotates.
These data were collected in the open-loop configuration;
the Koala did not physically move in response to the
stimulus. The stimulus in the optomotor response ex-
periment consists of a moving background consisting of
black and white stripes with an angular wavelength of
6.8°. The field of view of the sensor with a lens of focal
length 3.5 mm s 22.5° (shown in Fig. 9). Hence the sensor
sees about four spatial wavelengths of the background.
The fields of view of the two sensors do not overlap.
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Fig. 11. Measured values of rectified and smoothed outputs of the
chips and the speeds of the motors in an open-loop experiment. The
top four plots correspond, from top to bottom, to the signals digitized
from the left chip and right chip — that is, the preferred and null
directions (L, Ly, Rp, and R,) — in arbitrary units. The bottom two
plots are the speeds of the left motor (L,,) and right motor (R,) in
arbitrary units. The abscissa are in units of 3.3 ms. During the first
160 time units, course stabilization is performed: similar motion in
front of both sensors in the preferred (L, and R, become positive) or
null (L, and R, become positive) direction triggers a quick response
from the Koala, which rotates in the same direction as the stimulus.
From time unit 170 onwards, a stimulus is oscillated in front of one of
the two motion sensors (first the left sensor, then the right sensor, then
the left sensor, and back to the right sensor). The Koala reacts by
rotating towards the stimulus. The ordinate units of the bottom two
plots correspond to a rotation speed of approximately 1.3° s~

The outputs of the aVLSI sensors and the motor
signals for the two behaviors are shown on the left part
of the six plots in Fig. 11. The top four plots show the
rectified and smoothed outputs of the sensors L, Ly, R,
and R,. The lower two plots show the left and right
motor outputs, L, and R,. When the background
moves in one direction, both the left and the right sen-
sors measure the same motion, as shown by L, and R,
becoming positive or by L, and R, becoming positive.
The robot either rotates to the left (Ry, is positive and Ly,
is negative) or to the right (R, is negative and L, is
positive). The units used in controlling the Koala’s
motors correspond to 3 mm s~ (K-Team 1999). If the
motors move in opposite directions at a speed of 30 mm
s~! (corresponding to 10 units, see also Fig. 11), the
K(l)ala would rotate at an angular speed of about 13°
s

To elicit the fixation-like response, we oscillated a
black strip on a white background in front of one of the
sensors. In this case, one of the two motion sensors
measured a higher motion output and the robot turned
accordingly towards the direction of this sensor. From
Fig. 11, we see that the Koala samples the motion sensor
every 3.3 ms, corresponding to a sampling rate of about
300 Hz. In obtaining both the stabilization and fixation
measurements, we did not allow the Koala to physically
move.

6 Conclusion

We have described the architecture and algorithmic
details of a low-power, continuous-time, aVLSI motion
sensor that captures most of the recorded properties of
cells in the motion-processing pathway of the fly visual
system. The circuits use photoreceptors that adapt over
six decades of background intensity. To ensure that we
obtain a robust output, we reduced the effects of
background intensity, offsets, and mismatches on the
motion computation by temporal band-pass filtering of
the output of each processing stage. We split the signals
into ON and OFF channels so that only ON edges are
correlated together and OFF edges are correlated togeth-
er. We also used transient currents as inputs to the
multiplier stage of the model so that we would not be
subjected to pixel mismatches in the DC level of voltage
inputs to the multiplier. The current output of the
multiplier goes to zero when there is no motion. In the
case of voltage inputs, the output of the multiplier would
vary between different pixels because of pixel mismatches.

We have demonstrated a visuomotor controller sys-
tem that generates a mixture of two behaviors using a
lincar combination of the outputs of neuromorphic
motion sensors. Huber et al. (1999) recently described a
visuomotor controller that generates the same two be-
haviors using a video camera and a Khepera (robot)
system. The sampling rate of the camera was 12 Hz.
Harrison and Koch (1999) also described a model of the
optomotor response behavior of a fly using aVLSI mo-
tion sensors and a robot.

The Koala robot in our work has a capability of ro-
tating at about 100° s~! with no visual feedback. The
control system that we implemented samples the output
from the sensors every 3.3 ms. Hence we can improve
the time constant of the visuomotor control loop and the
performance of the robot by using small, low-power,
and cheap aVLSI preprocessors instead of silicon
imagers. Future comparisons between the speeds of
different systems will be performed when we incorporate
improved motion sensors that generate a better analog
representation of the stimulus speed.

While we have obtained a fixation-like behavior using
the outputs of the motion sensors that measure global
motion, we are not yet able to perform behaviors like
tracking and smooth pursuit. We will need to include a
sensor that measures the properties of a small-field
stimulus in the visual image, just as in the small-field
system of the fly. This type of local sensory information
along with the global motion information available from
the silicon motion sensors will be used to generate more
behaviors in the robot.

We believe that by building neuromorphic circuits
that extract different visual representations and by
mounting these circuits on a robotic platform, we can
evaluate the viability of models of biological visuo-
motor controllers in artificial systems. These circuits
give concise, analog, continuous-time information to
the robot about its external visual environment. The
interaction of these continuous-time sensors with the
motor system provides a powerful method for explor-



ing real-time interaction of the agent (robot) with its
environment.
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