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Abstract. The classical view of cortical information processing is that of a bottom-up process in a feedforward
hierarchy. However, psychophysical, anatomical, and physiological evidence suggests that top-down effects play a
crucial role in the processing of input stimuli. Not much is known about the neural mechanisms underlying these
effects. Here we investigate a physiologically inspired model of two reciprocally connected cortical areas. Each area
receives bottom-up as well as top-down information. This information is integrated by a mechanism that exploits
recent findings on somato-dendritic interactions. (1) This results in a burst signal that is robust in the context of
noise in bottom-up signals. (2) Investigating the influence of additional top-down information, priming-like effects
on the processing of bottom-up input can be demonstrated. (3) In accordance with recent physiological findings,
interareal coupling in low-frequency ranges is characteristically enhanced by top-down mechanisms. The proposed
scheme combines a qualitative influence of top-down directed signals on the temporal dynamics of neuronal activity
with a limited effect on the mean firing rate of the targeted neurons. As it gives an account of the system properties
on the cellular level, it is possible to derive several experimentally testable predictions.
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1. Introduction

The cortical processing of sensory information is tra-
ditionally thought of as being performed in a feed-
forward manner. The information about actual stimuli
propagates through a bottom-up pathway from lower to
higher cortical areas (e.g., Oram and Perret, 1994). Al-
though this paradigm has been remarkably successful
as an approach to understanding sensory processing in
the cortex, it neglects key features in cortical processing
(König and Luksch, 1998). Indeed, anatomical and psy-
chophysical studies indicate that top-down effects play
a crucial role in the processing of sensory information.

Anatomical investigations have shown that the in-
terareal connectivity is highly reciprocal and that
the proportions of synapses formed by feedforward

versus feedback projections on the respective tar-
get neurons are of the same order of magnitude
(Rockland and Virga, 1989; Felleman and van Essen,
1991; Salin et al., 1993; Salin and Bullier, 1995;
Johnson and Burkhalter, 1997; Budd, 1998). Numer-
ous psychophysical studies have demonstrated top-
down effects on the processing of sensory informa-
tion. Firmly demonstrated are, for example, effects
of priming (Stins and van Leeuwen, 1993), stimu-
lus context (Adelson, 1993; Bar and Ullman, 1996),
expectancy (Downing, 1988) and object-centered at-
tention (Lavie and Driver, 1996; Driver and Spence,
1998). These findings suggest that the processing
and subjective perception of external stimuli are
not merely a passive bottom-up process depending
on the actual stimulus but are also determined by
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internal brain states like expectation, attention, or past
experiences.

While detailed physiological and anatomical inves-
tigations revealed important insights into the function
of bottom-up processes, understanding of the neural
mechanisms underlying top-down effects is still poor.
Several studies addressed the physiology of top-down
mechanisms in the visual system considering the ef-
fects of attention (Moran and Desimone, 1985; Posner
and Petersen, 1990; Desimone and Duncan, 1995; Luck
et al., 1997), stimulus context (Lamme, 1995; Lamme
et al., 1998; Roelfsema et al., 1998), mental imagery
(Le Bihan et al., 1993; Kosslyn et al., 1995; Goebel
et al., 1998; Watanabe et al., 1998), and lesioning or
cooling of higher cortical areas (Sandell and Schiller,
1982; Mignard and Malpeli, 1991; Hupe et al., 1998).
In general, these studies revealed rather subtle effects
of higher cortical areas on receptive field properties
and firing rates of neurons in the primary visual cor-
tex. Thus, it has been suggested that feedback projec-
tions have modulatory effects while activity is mainly
driven by the bottom-up pathway. In spite of these data,
however, the underlying mechanisms and the origin of
the remarkable difference between effects of bottom-
up and top-down signals are unresolved.

Taking a particular approach to investigate top-down
interactions in the temporal domain, recent experi-
ments in awake behaving cats show that coupling be-
tween cortical areas at different hierarchical levels de-
pends on the behavioral context of the animal (von Stein
et al., 1998). The prominent effect is an enhancement
of coupling in low-frequency ranges (θ/α-band 4 to
12 Hz) depending on the behavioral context, and it has
been suggested that this enhancement of coupling is
due to top-down processing. These results suggest that
the effects of top-down signals on the temporal struc-
ture of neuronal activity need to be further explored.

Here we investigate the interaction of top-down and
bottom-up pathways in a model capturing temporal dy-
namics on a millisecond time scale.1 Important aspects
of the model are inspired by recent physiological ex-
periments demonstrating the backpropagation of action
potentials into the apical dendrite, regenerative den-
dritic calcium currents and the impact of these effects
on somato-dendritic interactions (Stuart and Sakmann,
1994; Stuart et al., 1997a, 1997b; Schiller et al., 1997;
Buzsaki and Kandel, 1998; Larkum et al., 1999). These
phenomena lead to interesting computational proper-
ties. We investigate how they support the integration
of bottom-up and top-down signals in a cooperative

process, allow the influence of prior knowledge on the
processing, and effect the temporal pattern of neuronal
activity.

2. The Simulated Network

A hierarchical network of reciprocally connected ar-
eas consisting of different parallel pathways is shown
in Fig. 1A. Each pair of functionally adjacent areas
is connected by reciprocal bottom-up and top-down
projections. We picked out two neighboring areas at
different hierarchical levels (area A and B in Fig. 1A)
and implemented them in a simplified model (Fig. 1B).
Each of the two simulated areas is composed of an array
of excitatory and inhibitory neurons. Each inhibitory
neuron receives input from a related excitatory neu-
ron. Inhibitory neurons in one area divergently project
to excitatory neurons within the same area. Excitatory
neurons in area A project to excitatory neurons in area
B in a convergent way leading to larger and overlapping
receptive fields of area B excitatory neurons. These pro-
jections establish the bottom-up pathway between the
two investigated areas. The top-down pathway is imple-
mented as projections from area B excitatory neurons
to area A excitatory neurons. The connectivity of these
projections is divergent and reciprocal to the bottom-
up projections. However, the postsynaptic effects of
these connections differ from those of the bottom-up
pathway (see below and Appendix for a detailed de-
scription).

The investigated system receives two external inputs.
Bottom-up signals to area A provide information about
the actual stimulus from lower areas. External signals
to area B represent top-down information from higher
cortical areas mediating hypotheses or attentional sig-
nals. These two external inputs are provided as Poisson
spike trains via excitatory synapses to excitatory neu-
rons in area A and B.

Each neuron is simulated as a conductance-based
model. Active sodium and potassium conductances are
implemented for spike generation. Synaptic conduc-
tances are implemented for glutamatergic and gabaer-
gic transmission. Two kinds of inhibitory conductances
with different thresholding behavior and time constants
are implemented to discriminate the effects of colocal-
ized GABA-A and GABA-B receptors.

The neuronal model captures recently discovered
physiological properties in a simplified implementa-
tion. On the one hand, it has been shown that somatic
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Figure 1. The investigated model.A: A network of functionally specialized areas that are ordered in multiple hierarchical pathways. Areas at
different hierarchical levels are reciprocally connected by feedforward and feedback projections leading to two opposite directions of information
flow. B: Two areas simulated at different hierarchical levels. Each area consists of excitatory and inhibitory neurons. Inhibitory neurons project
to all excitatory neurons within one area. Excitatory neurons between both areas are connected reciprocally forming the bottom-up and top-down
pathway. Two external inputs are provided: bottom-up information to area A and top-down information to area B. The full connectivity is not
shown in this picture.

action potentials can actively propagate back into the
apical dendrite, where most feedback projections ter-
minate (Felleman and van Essen, 1991; Stuart and
Sakmann, 1994; Stuart et al., 1997a, 1997b; Buzsaki
and Kandel, 1998). On the other, it has been demon-
strated that voltage-dependent calcium conductances
can initiate slow dendritic calcium spikes inducing
bursting behavior of the cell (Schiller et al., 1997; Stuart
et al., 1997b). Recently it has been shown that these two
effects interact leading to a drastically lowered thresh-
old for generation of a burst if the excitatory input at
the apical dendrite is paired with an action potential of

the postsynaptic neuron (Larkum et al., 1999). These
results suggest that the apical dendrite receiving input
of feedback projections serves as a relatively indepen-
dent site of synaptic integration. Its contribution to the
axonal spiking activity of the neuron is highly depen-
dent on the presence of somatic sodium spikes back-
propagating into the apical dendrite. In the presence of
a backpropagating action potential, the subthreshold
synaptic input at the apical dendrite can trigger a den-
dritic calcium spike leading to a burst of axonal action
potentials (see Fig. 2). As the present study focuses on
the functional implications of these somato-dendritic
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Figure 2. Somato-dendritic interaction and burst generation. If the
excitatory input of top-down projections (1) is strong enough and
bottom-up input (2) initiates an action potential that propagates back
into the apical dendrite (3), a dendritic calcium spike is triggered (4).
This calcium spike in turn initiates a burst of action potentials (5).
A functionally equivalent mechanism is implemented in the model
(see text and Appendix for details).

interactions on the network level rather than on the
level of the underlying cellular mechanisms, a corre-
sponding mechanism is implemented in the model in a
simplified form. The excitatory synaptic input of top-
down projections from area B to area A is integrated
separately from bottom-up input, following the notion
of the apical dendrite as a relatively independent site of
synaptic integration. If the excitatory input at this “vir-
tual” apical dendrite exceeds a certain threshold and a
postsynaptic action potential occurs, a slow depolariz-
ing conductance is opened leading to a stereotype burst
of action potentials. This implementation captures the
characteristic features of the physiological results in a
computationally efficient form.

3. Results

To characterize the properties of the introduced model
we applied various combinations of input stimuli to
area A and top-down signals to area B. Three differ-
ent interesting features of the network can be demon-
strated: a cooperative computation, the effects of ad-

ditional top-down signals, and a specific effect on the
temporal dynamics.

3.1. Cooperative Computation

First we compared the network behavior for enabled
versus disabled top-down projections between the two
areas. An input stimulus with varying amount of noise
was presented to area A whereas area B received no
external signals. We considered total spike numbers
as well as burst numbers to analyze the signal/noise-
behavior under the two described conditions.

When the network is operated with disabled feed-
back projections between the two areas, noise in the
bottom-up input is somewhat reduced due to the thresh-
old process of action potential initiation. However, this
reduction is local to each neuron and unspecific. There-
fore, the amount of noise in the activity of neurons in
area A under this condition of disabled top-down pro-
jections was taken as a baseline for the further experi-
ments.

Enabling of top-down projections leads to a slight
decrease of noise in the signals conveyed by the total
number of action potentials of neurons in both areas
(spike signal, Fig. 3). This effect is mediated by the
reciprocal top-down connections and thus exploits re-
ceptive field properties of neurons in area B. In that
sense, it is more specific than the local threshold ef-
fect described above. Physiological experiments found
rather subtle effects of higher cortical areas on the mean
firing rate of neurons in lower areas. This implies that
the noise reduction in the spike signal has to be limited,
which is captured by the simulation results.

In contrast, if bursts are considered as a signal, this
effect is much more pronounced (burst signal, Fig. 3).
Even with a high proportion of noise in the input, the
burst signal of neurons in area A is virtually noise free.
The burst signal does not only reflect the properties
of the bottom-up input to area A but also depends on
the processing of this input performed by the higher
area B. It can be seen as a qualitative signal confirming
the match of bottom-up and top-down information by
computation of an AND-like logical operation (Koch
and Poggio, 1992). Furthermore, the properties of the
burst signal are in accordance with recent physiological
studies (Livingstone et al., 1996; Victor et al., 1998). In-
vestigating stimulus-related activity in primary visual
cortex, they show that bursts are a distinct signal and
more reliable than the total number of spikes (Lisman,
1997).
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Figure 3. Cooperative computation and burst signal. An input stimulus with varying amount of noise is presented to area A and no external
input is provided to area B. The abscissa refers to the noise in the spike signal of area A for disabled top-down projections.A: Noise in spike
signals of area A for enabled and disabled top-down projections. For enabled top-down projections bursts are considered to be a unique signal.
B: Noise in spike signals of area B for enabled and disabled top-down projections.

It is important to notice that the information from
area B propagates back to area A and is available there
as the burst signal. Thus, it can influence any other
area (e.g., area C in Fig. 1) that is also driven by area A.
The cooperative computation between two areas (areas
A and B) in one pathway can therefore also enhance
processing in a parallel pathway (areas A and C).

3.2. Additional Top-Down Signals

So far the top-down signals to area A do not convey
any external top-down information provided to the sys-
tem but are solely based on the stimulus interpretation
performed by area B. To investigate the influence of
additional top-down information, we also provided ex-
ternal signals to area B. They might convey hypotheses
about the actual stimulus or attentional signals. As one
might expect, these additional top-down signals lead
to effects that are in psychological terms described as
priming. Priming an interpretation of the actual stim-
ulus by additional input to area B leads to faster and
more reliable recognition and biasies the processing if
multiple stimuli are presented.

A stimulus with a constant amount of noise was pre-
sented as bottom-up input to area A, while this stimulus

was primed by providing corresponding top-down sig-
nals to area B with varying strength. Figure 4 shows that
with increasing strength of additional top-down signals
the processing becomes faster (Fig. 4A) as well as more
reliable (Fig. 4B). The latter effect is most prominent
for the burst signal of area A and rather limited for
the spike signal of area A. These results are in line
with physiological findings demonstrating rather mod-
ulatory effects of top-down signals on spiking activity
(e.g., in the primary visual cortex).

If multiple stimuli are presented, additional external
top-down signals bias processing toward one stimulus
(Fig. 4C). A bottom-up input to area A is provided
that is composed equally of two stimuli. One of these
stimuli is primed by corresponding top-down input to
area B with varying strength. The processing is biased
toward the primed stimulus—what can be seen in the
relative strength of the signals of the primed versus un-
primed stimulus. While this effect is relatively weak
considering the spike signal in area A, it is much more
pronounced for the burst signal. We also varied the
ratio of the two presented stimuli in the bottom-up in-
put and analyzed the network response as a function of
both: actual stimulus composition and strength of addi-
tional top-down signals (Fig. 4D). The network behav-
ior depends on bottom-up information about the actual
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Figure 4. Additional top-down signals. If additional top-down input to area B is provided, priming-like effects can be demonstrated.A: A
stimulus containing 70% noise is presented to area A. Top-down signals to corresponding neurons in area B are provided with varying strength
leading to faster processing (time to first burst).B: The external inputs are the same as in Fig. 4A. Stronger top-down signals lead to more
reliable processing (noise in burst-signal as well as in absolute spike signals for area A and B). The relation of the relative reliability of the three
kinds of signals is, however, maintained over the full range of additional top-down signals.C: If multiple stimuli are presented, top-down signals
bias processing toward one stimulus. An input stimulus composed equally of two distinct stimuli is presented. One of these is primed (PS) by
corresponding top-down signals to area B, whereas the other stimulus is not (US). Strengthening the top-down signal of primed stimulus biases
the processing toward primed stimulus in relation to unprimed stimulus.D: The relative strength of primed stimulus in the burst signal is plotted
as a function of the strength of primed stimulus top-down signals and of the percentage of primed stimulus in the input stimulus. Isocontour
lines for 0.25, 0.5, and 0.75 are plotted as white lines.

stimulus as well as on top-down signals. While the top-
down signal has a rather modulatory effect on the spike
signal in area A (data not shown), the effect of addi-
tional top-down information is prominent for the burst

signal. The demonstrated effects of additional top-
down signals are not solely due to facilitating neurons
in area B but are a result of integrating the two streams
of information directed bottom-up and top-down.
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3.3. Temporal Dynamics

Recent experiments in awake behaving cats focused
on top-down effects on the correlation of oscillatory
activity in different cortical areas (von Stein et al.,
1998). Therefore, we studied the temporal dynamics
of network activity in the context of top-down directed
signals. Analogous to the analysis of the experimental
data, we computed the power spectra of the popula-
tion activity of each area (Fig. 5). Without additional
top-down signals the activity evolves prominently in a
low- (0 to 20 Hz) and high- (20 to 80 Hz) frequency
range. These two oscillatory phenomena are due to the
inhibitory conductances implemented in the model. A
fast GABA-A inhibition is already activated at low lev-
els of excitatory activity and tends to synchronize os-
cillatory activity in the high-frequency range. A slower
inhibition mediated by GABA-B receptors is induced
if excitatory activity is getting high due to bursting and

Figure 5. Intraareal coupling. Power spectra of the excitatory spiking activity for both simulated areas were computed under conditions with
and without additional top-down signals. The two peaks in the low- (0 to 20 Hz) and high- (20 to 80 Hz) frequency range are due to the two
types of inhibitory conductances implemented to differentiate between GABA-A and GABA-B receptors.A: Power spectra for spiking activity
of area A excitatory neurons.B: Power spectra for spiking activity of area B excitatory neurons.C: Integral of the power spectra for the high-
and low-frequency range of area A. Additional top-down signals prominently enhance power in the 0 to 20 Hz range while reducing power in
the 20 to 80 Hz range.D:Corresponding values for area B.

positive feedback between areas A and B (Connors,
1992; Kim et al., 1997). Without this slow GABA-B
inhibition the network could lock in a loop of positive
feedback between the two areas. The GABA-B inhibi-
tion prevents this locking by resetting the network to a
lower level of activity. Thus the slow GABA-B inhibi-
tion leads to oscillations of the network activity in the
low-frequency range.

If additional top-down signals are provided, these
oscillations are characteristically modulated. The peak
in the high-frequency range is reduced, and power is
distributed over a broader range of high frequencies. On
the other hand, the peak in the low-frequency range is
increased. This is accompanied by an overall increase
of power in the low-frequency domain. To quantify
these effects integrals of the power spectra for the low-
(0 to 20 Hz) and high- (20 to 80 Hz) frequency range
were computed (Fig. 5C,D). Additional top-down sig-
nals enhance the signal in the low-frequency range by
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∼80% (area A) and∼40% (area B). The effect is due to
lower variation in the period length and a steeper rise
of activity at the beginning of low-frequency cycles.
In contrast, the signal in the high-frequency range is
reduced by∼25% (area A) and∼8% (area B). Thus,
additional top-down signals lead to a shift of oscillatory
activity toward the low-frequency range.

These effects of additional top-down signals on the
temporal dynamics are reflected in the interareal cou-
pling as well (Fig. 6). The interareal coupling was
computed by calculating the cross-correlation between
excitatory neurons spiking activity of areas A and B.
Without additional top-down signals strong oscillatory
correlation in the high-frequency range and weaker
in the low-frequency range is observed. The corre-
lation in the low-frequency range is prominently en-
hanced if additional top-down signals to area B are
provided. To quantify these effects data were filtered
in the low- (0 to 20 Hz) and high- (20 to 80 Hz) fre-
quency range, and the heights of central peaks in the
cross-correlograms of these filtered data were mea-

Figure 6. Interareal coupling. To depict the interareal coupling cross-correlations between the excitatory activity of both areas were computed.
In the absence of additional top-down signals, strong coupling is found in theγ -range and weaker in theθ/α-range. This interareal coupling
in the low-frequency range is prominently enhanced if top-down influence is increased while coupling in the high-frequency range is relatively
reduced.A: Interareal cross-correlation of excitatory activity in the absence of additional top-down signals.B: Interareal cross-correlation of
excitatory activity if additional top-down signals are provided.C:To quantify the effect cross-correlograms were filtered for the low- (0 to 20
Hz) and high- (20 to 80 Hz) frequency range and the height of the central peak in the cross-correlation of filtered data was measured.

sured (Fig. 6C). Additional top-down signals enhance
interareal coupling in low-frequency ranges by∼60%
while coupling in high-frequency ranges is reduced by
∼25%.

These effects may be compared to recent physiolog-
ical experiments, which investigated the neuronal ac-
tivity and interactions of several visual areas (von Stein
et al., 1998). On presentation of trained stimuli an in-
crease of the activity and the interareal coupling in the
θ andα frequency ranges (4–12 Hz) was found. In con-
trast, a novel, surprising stimulus led to a strong decline
of the low-frequency coupling and a slight increase in
the high-frequency interactions. The internal state of
the animal expecting a trained stimulus might be com-
pared to the situation in the simulations with additional
top-down signals. The surprising stimulus might cor-
respond to the processing of bottom-up input without
a matching top-down signal. Under these assumptions
the presented model reproduces well the differential ef-
fect of top-down signals on interareal coupling in low-
and high-frequency ranges.
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4. Discussion

The anatomical connectivity of cortical areas reveals
two conspicuous features. On one hand, most areas
are reciprocally connected, while on the other, feedfor-
ward and feedback projections terminate in different
laminae within each area. Combining these anatomical
findings and recent experimental results on the com-
putational properties of active dendrites and somato-
dendritic interactions, the model presented here ac-
counts for the functional asymmetry of bottom-up and
top-down pathways. In accordance with physiological
results, the bottom-up input mainly drives activity in a
cortical area, whereas feedback projections have rather
modulatory effects on total spike counts. Nevertheless,
the integration of top-down and bottom-up information
leads to a robust burst signal.

4.1. What Are Top-Down Interactions Good For?

In the hierarchy of areas in the visual system, neurons
have increasingly complex receptive fields. These re-
flect interpretations of activity patterns at lower levels
that are “known” to the system. In that sense, recep-
tive field properties establish an elementary form of
“knowledge.” During the cooperative computation of
hierarchically coupled areas, this information is propa-
gated from higher to lower areas. Here this information
is integrated with the bottom-up information and rep-
resented by bursting of neurons. Thus even if the sys-
tem receives no additional external top-down signals,
the reciprocal connectivity leads to top-down signals
based on the “knowledge” of higher areas.

Furthermore, in the process of feature extraction
and creation of invariance properties, some informa-
tion about the stimulus is lost. Most notably, the gen-
eration of translational invariant responses implies that
the precise spatial location of a stimulus is represented
at lower but not at higher levels. To act on a stimulus,
however, the system is required to fall back on informa-
tion absent at higher cortical levels. Therefore, it seems
to be an efficient solution to integrate high- and low-
level information in bursting pattern of neurons, where
it is available to any other area receiving projections
from these neurons.

4.2. Assumptions and Simplifications
of the Present Model

The present study assumes that action potentials prop-
agate retrogadely into the dendritic tree and lead to the

described interactions with synaptic input at the apical
dendrite. Such processes have been observed in slice
preparations, where they are sensitive to inhibitory or
modulatory activity. Furthermore, recent experiments
show that action potentials do backpropagate in the so-
matosensory cortex of adult and awake rats (Buzsaki
and Kandel, 1998). Whether the described somato-
dendritic interactions leading to bursting behavior oc-
cur in the adult cortex under physiological conditions
is, however, presently unresolved.

In the present implementation the model obviously
simplifies several physiological aspects. The complex
nonlinear dendritic properties have been reduced to a
threshold mechanism triggering bursting behavior of
the neuron. Unless bursts are triggered, the current flow
from the apical dendrite to the soma is neglected. In-
cluding such a current could result in a new class of in-
teresting phenomena. Top-down signals could not only
make a spiking cell burst but directly induce activity.
Thus priming could be passed down the hierarchy over
several stages independent of bottom-up activity. Be-
cause of this effect the system would be able to generate
activity at lower levels without bottom-up input. Such
a phenomenon might be callednetwork hallucination
and deserves to be analyzed in a more detailed inves-
tigation.

For the sake of clarity several anatomical assump-
tions had to be made. First, tangential projections be-
tween excitatory neurons within an area were omitted.
These connections could be used for signal enhance-
ment as well. Second, inhibitory projections were
chosen to be global and uniform. More localized con-
nections would lead to shorter spatial range of syn-
chronization within an area. However, this would not
qualitatively affect the network performance. Third, the
interareal connectivity is chosen to be reciprocal. Al-
though this is not shown directly by available anatomi-
cal data, there is also no direct evidence to the contrary.
In summary, exploring the implications of more elab-
orated models seems to raise interesting questions that
are beyond the scope of the present study.

4.3. Relation to Other Studies

The notion of bidirectional processing of sensory infor-
mation has been previously addressed by several other
authors.

Finkel and Edelman (1989) investigate a system
of multiple, functionally segregated areas interacting
by feedforward, tangential, and feedback connections.
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Visual stimuli including illusory contours, defined in
different feature domains, are processed in a coopera-
tive way. Neurons in the network have specialized re-
sponse properties (sensitivity to oriented lines, line ter-
minators, occlusions, direction of motion, etc.) based
on a specific wiring diagram. The top-down connec-
tions act mainly in an inhibitory manner and are of
particular importance to resolve conflicts between dif-
ferent interpretations. When the feedback connections
are disabled, aberrant activity appears in the network
due to the loss of inhibition. In this system, the inter-
action of parallel pathways leads to a coherent inter-
pretation of visual stimuli. In contrast to this work, in
the model presented here the top-down interactions are
excitatory. Furthermore, we made a deliberate attempt
to avoid specialized circuitry and investigate a generic
scheme of top-down interactions.

The adaptive resonance theory (ART) of Grossberg
(Grossberg, 1980; Carpenter and Grossberg, 1987) pro-
poses how interactions among areas at different hier-
archical levels can lead to efficient representations of
sensory information. A sophisticated pattern-matching
algorithm leads to stable and efficient pattern classi-
fication. A mismatch signal at the lower level defines
whether a new template has to be learned.

Mumford (1992) gives a comprehensive discussion
of the problems raised by the integration of information
on different levels of abstraction. A scheme is proposed
where top-down and bottom-up pathways carry infor-
mation regarding parts of the stimulus “explained” by
the activity at the higher level and the residual still to
be interpreted. This approach has been extended in the
statistical theory of Kalman filtering and is applied to
the problem of receptive field development (Rao and
Ballard, 1997; Rao, 1999). Thus, the functional effect
of top-down interactions is inhibitory and complemen-
tary to the interactions proposed here.

Ullman (1995) proposes a model of bidirectional in-
formation flow in which top-down and bottom-up path-
ways explore in parallel multiple interpretations of the
sensory information and internal models. This leads
to fast and flexible processing of input stimuli. The
interaction between bottom-up and top-down signals
rests on a priming influence among the two pathways.
The two pathways are structurally separated and iden-
tified with neurons in different cortical laminae. Thus,
the two types of signals used in the present model are
mapped on separate but interacting neuronal popula-
tions.

A common feature of the above investigations is the
use of an abstract level of analysis. Either the unit of the
model network has continuous output, representing the
mean firing rate of a group of neurons, or the dynamic of
the model is implemented algorithmically. In the work
presented here, we investigate properties of top-down
interactions in a physiologically more detailed model.
In particular, the temporal structure of neuronal activity
is represented adequately using a spiking model neu-
ron. This allows investigating the generation of bursting
activity and synchronization phenomena. Furthermore,
it facilitates the comparison with experimental results
and the generation of experimentally approachable pre-
dictions (see below).

4.4. Experimental Predictions

The proposed model describes the interaction of
bottom-up and top-down signals on a cellular level,
leading to several experimental predictions. First, cool-
ing or lesions of higher areas significantly reduce the
frequency of bursting activity in lower areas by decreas-
ing the amount of top-down mediated signals available.
As these top-down mediated signals act on a spatial
scale given by the receptive field size of the neurons in a
higher area, the loss of top-down signals should appear
as a reduction of nonclassical receptive field effects.
In particular, this effect should be most pronounced
for stimuli matching receptive field properties of neu-
rons in the higher cortical areas. Second, direct inter-
ference with the burst-generating mechanism should
have a particularly by strong effect on top-down medi-
ated signals and also affect receptive field properties in
the described way. Slice recordings show that the back-
propagation of action potentials into the apical dendrite
depends on muscarinic input, inhibitory input, and the
firing rate (Buzsaki et al., 1996; Tsubokawa and Ross,
1997). Furthermore, it has been demonstrated that the
triggering of bursts by correlated synaptic input at the
apical dendrite and backpropagating action potentials
is highly sensitive to inhibitory input (Larkum et al.,
1999). These findings suggest that altering the activity
of inhibitory or modulatory systems could be a suitable
way to interfere with the burst-generating mechanism.
These experiments seem to be demanding but within
the reach of state of the art techniques.

Concluding, the model takes into account present
physiological evidences on cortical top-down process-
ing and demonstrates how computational properties of
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somato-dendritic interactions could play an important
role in the integration of bottom-up and top-down pro-
cessing.

Appendix

The network was implemented in GENESIS and all
simulations were performed with the same set of pa-
rameters. Area A consisted of 51 pairs of excitatory
and inhibitory neurons in three rows of 17 pairs. Area
B consists of 45 pairs in three rows of 15 pairs. Neu-
rons at corresponding positions in different rows have
same properties and receptive fields except excita-
tory weights at excitatory neurons. These weights are
graded over rows to allow effects of population coding.
To discriminate between GABA-A and GABA-B re-
ceptor kinetics, two different populations of inhibitory
neurons were simulated with different afferent weights
and kinetics of conductances at target neurons. Alto-
gether 288 neurons were simulated. Three excitatory
neurons of area A project to one excitatory neuron in
area B. The projections from area B to area A are re-
ciprocal. Corresponding to the receptive field structure
of area B, bottom-up stimuli to area A consist of three-
neuron-wide patches of excitatory input.

The membrane potential of a neuron is calculated
according to Eq. (1):

Cm
dVm

dt
= (Em − Vm)

Rm
+
∑

k

[(Ek − Vm)Gk]. (1)

Em is the resting potential,Vm the membrane po-
tential, Cm the membrane capacitance, andRm the
resistance of the membrane. The sum overk repre-
sents a sum over the different types of ionic chan-
nels in the compartment with reversal potentialsEk

and conductancesGk. Parameters for all neurons are
Em=−70 mV, Cm≈ 1.0 µF/cm2, Rm≈ 4.0 kÄcm2,
Amembrane= 0.12566µm2. Synaptic conductances are
described by a generalized form of a classicalalpha
functionaccording to Eq. (2):

gsyn(t) = W
Agmax

τ1− τ2
(e−t/τ1 − e−t/τ2), for τ1 > τ2,

(2)

where W is the weight of the synapse,A is a nor-
malization constant,gmax the peak conductance, and
τ1 andτ2 are the time constants of the synaptic con-
ductance. Parameters for excitatory synaptic conduc-

tances aregmax≈ 0.3096 nS,Ek= 55 mV,τ1= 10 ms,
τ2= 2 ms.

Parameters for GABA-A like inhibitory conduc-
tances aregmax≈ 0516 nS,Ek=−90 mV, τ1= 2 ms,
τ2= 2 ms. Parameters for GABA-B like inhibitory
conductances aregmax≈ 0.0516 nS,Ek=−90 mV,
τ1= 20 ms,τ2= 20 ms. Top-down input from area B
to area A is integrated with the following conductance:
gmax≈ 0.3096 nS,Ek= 55 mV,τ1= 50 ms,τ2= 2 ms.
This conductance does not affect the membrane poten-
tial of the postsynaptic neuron and is used to integrate
the top-down input at a “virtual” apical dendrite sepa-
rately. Ifgsyn is above a certain threshold (8 nS) and the
postsynaptic neuron spikes, a slow depolarizing con-
ductance is opened that triggers the generation of a
stereotype burst. In its simplified form this implemen-
tation neglects the complex properties and morphol-
ogy of dendrites. However, it is qualitatively sufficient
to capture the computational feature of the apical den-
drite as an independent site of synaptic integration and
the impact of regenerative dendritic calcium spikes on
the bursting behavior of the neuron.

Parameters for the burst triggering conductance are
gmax≈ 0.3096 nS,Ek= 55 mV, τ1= 5 ms,τ2= 5 ms.
Detailed dynamics of the spike generating mecha-
nism were neglected for reasons of computational
efficiency. Simple voltage-dependent non-Hodgkin-
Huxley-like sodium and potassium conductances are
implemented for stereotype action potential initia-
tion (threshold=−40 mV). Parameters for depolar-
izing conductance aregmax= 6 mS, Ek= 55 mV,
τ1= 0.4 ms,τ2= 0.4 ms. Parameters for hyperpolar-
izing conductance aregmax= 0.7 mS, Ek=−90 mV,
τ1= 4 ms,τ2= 0.2 ms.

Weights and delays of synaptic conductances:Area
A excitatory neurons to area A inhibitory neurons
(GABA-A population): W= 10, 1t = 2 ms. Area
A excitatory neurons to area A inhibitory neurons
(GABA-B population): W= 2, 1t = 2 ms. Area A
inhibitory neurons to area A excitatory neurons
(GABA-A population): W= 8, 1t = 2 ms. Area A
inhibitory neurons to area A excitatory neurons
(GABA-B population): W= 14, 1t = 2 ms. Area
A excitatory neurons to area B excitatory neurons
(graded for different rows):W1= 2.3, W2= 1.415,
W3= 0.53, 1t = 5 ms. Area B excitatory neurons
to area B inhibitory neurons (GABA-A population):
W= 10, 1t = 2 ms. Area B excitatory neurons to
area B inhibitory neurons (GABA-B population):
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W= 2,1t = 2 ms. Area B inhibitory neurons to area
B excitatory neurons (GABA-A population):W= 5,
1t = 2 ms. Area B inhibitory neurons to area B
excitatory neurons (GABA-B population):W= 14,
1t = 2 ms. Area B excitatory neurons to area A ex-
citatory neurons (graded for different rows):W1= 2.8,
W2= 1.723,W3= 0.646,1t = 5 ms. External inputs to
area A and area B are provided as Poisson spike trains
at excitatory synapses of excitatory neurons.
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Note

1. The termstop-down and botton-up commonly refer to the di-
rection of a process, such as differentiating the interpretation of
a stimulus starting from simple features versus actively using
high-level concepts for guiding or narrowing down the range of
possible interpretations. In contrast, the termsfeedforwardand
feedbackare often used to describe anatomical projections in a
hierarchy of cortical areas. Given the level of abstraction of the
model presented here, we denote the pathways as well as signals
and projections astop-downor bottom-up for clarity.

References

Adelson EH (1993) Perceptual organization and the judgment of
brightness.Science262:2042–2044.

Bar M, Ullman S (1996) Spatial context in recognition.Perception
25:343–352.

Budd JM (1998) Extrastriate feedback to primary visual cortex in
primates: A quantitative analysis of connectivity.Proc. R. Soc.
Lond. B. Biol. Sci. 265:1037– 1044.

Buzsaki G, Kandel A (1998) Somadendritic backpropagation of ac-
tion potentials in cortical pyramidal cells of the awake rat.J. Neu-
rophysiol. 79:1587–1591.

Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and
inhibition-dependent invasion of pyramidal cell dendrites by fast
spikes in the hippocampus in vivo.Proc. Natl. Acad. Sci. USA
93:9921–9925.

Carpenter G, Grossberg S (1987) A massively parallel architecture
for a self-organizing neural pattern recognition machine.Comp.
Vision Graphics Image Proc. 37:54–115.

Connors BW (1992) GABAA- and GABAB-mediated processes in
visual cortex.Prog. Brain Res. 90:335–348.

Desimone R, Duncan J (1995) Neural mechanisms of selective visual
attention.Ann. Rev. Neurosci. 18:193–222.

Downing CJ (1988) Expectancy and visual-spatial attention: Effects
on perceptual quality.J. Exp. Psychol. Hum. Percept. Perform.
14:188–202.

Driver J, Spence C (1998) Cross-modal links in spatial attention.
Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353:1319–1331.

Felleman DJ, Van Essen DC (1991) Distributed hierarchical process-
ing in the primate cerebral cortex.Cereb. Cortex1:1–47.

Finkel LH, Edelman GM (1989) Integration of distributed cortical
systems by reentry: A computer simulation of interactive func-
tionally segregated visual areas.J. Neurosci. 9:3188–3208.

Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998)
The constructive nature of vision: Direct evidence from functional
magnetic resonance imaging studies of apparent motion and mo-
tion imagery.Eur. J. Neurosci.10:1563–1573.

Grossberg S (1980) How does a brain build a cognitive code?Psychol.
Rev.87:1–51.

Hupe JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J
(1998) Cortical feedback improves discrimination between figure
and background by V1, V2 and V3 neurons.Nature394:784–787.

Johnson RR, Burkhalter A (1997) A polysynaptic feedback circuit
in rat visual cortex.J. Neurosci.17:7129–7140.

Kim U, Sanchez-Vives MV, McCormick DA (1997) Functional
dynamics of GABAergic inhibition in the thalamus.Science
278:130–134.

Koch C, Poggio T (1992) Multiplying with Synapses and Neurons.
In: McKenna T, Davis J, Zornetzer SF, eds. Single Neuron Com-
putation. Academic Press, San Diego. pp. 315–345.

König P, Luksch H (1998) Active sensing: Closing multiple loops.
Z. Naturforsch. [C.]53:542–549.

Kosslyn SM, Thompson WL, Kim IJ, Alpert NM (1995) Topograph-
ical representations of mental images in primary visual cortex.
Nature378:496– 498.

Lamme VA (1995) The neurophysiology of figure-ground segrega-
tion in primary visual cortex.J. Neurosci.15:1605–1615.

Lamme VA, Super H, Spekreijse H (1998) Feedforward, horizontal,
and feedback processing in the visual cortex.Curr. Opin. Neuro-
biol. 8:529–535.

Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism
for coupling inputs arriving at different cortical layers.Nature
398:338–341.

Lavie N, Driver J (1996) On the spatial extent of attention in object-
based visual selection.Percept. Psychophys.58:1238–1251.

Le Bihan D, Turner R, Zeffiro TA, Cuenod CA, Jezzard P, Bonnerot
V (1993) Activation of human primary visual cortex during visual
recall: A magnetic resonance imaging study.Proc. Natl. Acad. Sci.
USA90:11802–11805.

Lisman JE (1997) Bursts as a unit of neural information: Making
unreliable synapses reliable.Trends. Neurosci.20:38–43.

Livingstone MS, Freeman DC, Hubel DH (1996) Visual responses in
V1 of freely viewing monkeys.Cold Spring Harb. Symp. Quant.
Biol. 61:27–37.

Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mech-
anisms of spatial selective attention in areas V1, V2, and V4 of
macaque visual cortex.J. Neurophysiol. 77:24–42.

Mignard M, Malpeli JG (1991) Paths of information flow through
visual cortex.Science251:1249–1251.

Moran J, Desimone R (1985) Selective attention gates visual pro-
cessing in the extrastriate cortex.Science229:782–784.

Mumford D (1992) On the computational architecture of the neocor-
tex. II. The role of cortico-cortical loops.Biol. Cybern.66:241–
251.

Oram MW, Perrett DI (1994) Modeling visual recognition from neu-
robiological constraints.Neural Networks7: 945–972.



Top-Down and Bottom-Up Sensory Processing 173

Posner MI, Petersen SE (1990) The attention system of the human
brain.Ann. Rev. Neurosci.13:25–42.

Rao RPM (1999) An optimal estimation approach to visual percep-
tion and learning.Vision Res.39:1963–1989.

Rao RPN, Ballard DH (1997) Dynamic model of visual recognition
predicts neural response properties in the visual cortex.Neural
Comp.9:721–763.

Rockland KS, Virga A (1989) Terminal arbors of individual “feed-
back” axons projecting from area V2 to V1 in the macaque
monkey: A study using immunohistochemistry of anterogradely
transported Phaseolus vulgaris- leucoagglutinin.J. Comp. Neurol.
285:54–72.

Roelfsema PR, Lamme VA, Spekreijse H (1998) Object-based atten-
tion in the primary visual cortex of the macaque monkey.Nature
395:376–381.

Salin PA, Bullier J (1995) Corticocortical connections in the visual
system: Structure and function.Physiol. Rev.75:107–154.

Salin PA, Girard P, Bullier J (1993) Visuotopic organization of cor-
ticocortical connections in the visual system.Prog. Brain Res.
95:169–178.

Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate
cortex cells in the squirrel monkey.J. Neurophysiol.48:38–48.

Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action
potentials restricted to distal apical dendrites of rat neocortical
pyramidal neurons.J. Physiol. (Lond.)505:605–616.

Stins JF, van Leeuwen C (1993) Context influence on the perception
of figures as conditional upon perceptual organization strategies.

Percept. Psychophys.53:34–42.
Stuart G, Schiller J, Sakmann B (1997a) Action potential initiation

and propagation in rat neocortical pyramidal neurons.J. Physiol.
(Lond.)505:617–632.

Stuart G, Spruston N, Sakmann B, Hausser M (1997b) Action poten-
tial initiation and backpropagation in neurons of the mammalian
CNS.Trends Neurosci.20:125– 131.

Stuart G, Sakmann B (1994) Active propagation of somatic action po-
tentials into neocortical pyramidal cell dendrites.Nature367:69–
72.

Tsubokawa H, Ross WN (1997) Muscarinic modulation of spike
backpropagation in the apical dendrites of hippocampal CA1 pyra-
midal neurons.J. Neurosci.17:5782–5791.

Ullman S (1995) Sequence seeking and counter streams: A com-
putational model for bidirectional information flow in the visual
cortex.Cereb. Cortex.5:1–11.

Victor JD, Mehler F, Reich D, Purpura K (1998) Spatiotemporal
origin of bursts and “reliable” spikes generated by neurons in V1.
Soc. Neurosci.(Abstract) 24:497.5.

von Stein A, Chiang C, K¨onig P (1998) Synchronization of activity
between parietal cortex and primary visual cortex indicating the
top-down processing of behaviorally significant stimuli. (submit-
ted)

Watanabe T, Harner AM, Miyauchi S, Sasaki Y, Nielsen M, Palomo
D, Mukai I (1998) Task-dependent influences of attention on the
activation of human primary visual cortex.Proc. Natl. Acad. Sci.
USA95:11489–11492.


