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Abstract. We investigate how eÆcient signal transmission and recon-

struction can be achieved within the olfactory system. We consider a

theoretical model of signal integration within the olfactory pathway that

derives from its convergent architecture and results in increased sen-

sitivity to chemical stimuli between the �rst and second stages of the

system. This phenomenon of signal integration in the olfactory system

is formalised as an instance of hyperacuity. By exploiting a large pop-

ulation of chemically sensitive microbeads, we demonstrate how such a

signal integration technique can lead to real gains in sensitivity in ma-

chine olfaction. In a separate computational model of the early olfactory

pathway that is driven by real-world chemosensor input, we investigate

how spike-based signal and graded-potential signalling compares for sup-

porting the accuracy of reconstruction of the chemical stimulus at later

stages of neuronal processing.

1 Introduction

The olfactory system provides an ideal model to consider the issues of robust

sensory signal transmission and eÆcient encoding/decoding within neural sys-

tems. It must overcome large shifts in operating conditions occurring over time,

that together add up to a continual state of ux at its periphery, the olfactory

epithelium. A key constraint is that the main sites for chemical transduction,

Olfactory Receptor Neurons (ORNs), are in a rapid and continuous state of

development and programmed apoptosis (at least in mammals) which di�eren-

tiates them from all other sensory neurons within the nervous system[1]. This

neurogenesis means that the total number of receptors innervating the �rst point

of signal processing, the olfactory bulb, uctuates over time as signals from de-

generating ORNs cease and axons from large numbers of newly formed ORNs

make their way to integration sites called glomeruli. How this is achieved is a

fascinating and recently uncovered story of axonal guidance [2] but in the con-

text of robust stimulus encoding we are primarily interested in the e�ect of this



turnover of receptors on signal transmission. The key issue here is how the ol-

factory system manages to cope with changing numbers of receptors, yet still

generate a consistent signal to support odour perception over time.

Another factor of crucial importance when considering robust signal process-

ing in the olfactory system is evidence suggests that not only do the numbers

of receptors change as a result of neurogenesis, but also shifts in the response

characteristics of ORNs occur during the act of perception. Receptor adaptation

or fatigue is a key factor here and is known to occur in ORNs as their response

adapts strongly during exposure to high levels of speci�c chemicals or repeated

exposure[3]. Since the olfactory system relies on an entire population of broadly-

tuned chemosensors (of which there now appears to be around a thousand in

mice, fewer in �sh [4]) these shifts in tunings may play a fundamental role in

determining the stability of the system as a whole, and so this provides another

perspective from which to consider robust signal transmission and processing

within the olfactory pathway.

Signals from ORNs must be transmitted over relatively large distances from

the olfactory epithelium at the top of the nasal passages, through the cribiform

plate, and into the olfactory bulb where they are integrated at the glomeruli.

In general, action potentials are used within the nervous system to encode and

represent the stimulus between the transducer and �rst site of processing. This

encoding strategy possesses robust noise-resistant properties that result from its

intermittent discretised nature [5] that will be considered later in this chapter.

Astonishingly the system solves this transmission problem as well as improving

sensitivity at the �rst stage of processing over and above that obtained at the

receptor level. We will formalise this phenomenon as an instance of hyperacuity.

These shifts in operating conditions have a direct impact on the reliable pro-

cessing of sensory information within the olfactory pathway since it must over-

come constant change and external noise sources in order to maintain a robust

capability for characterising and discriminating complex mixtures of molecu-

lar stimuli. Despite changes in both receptor numbers and their characteristics,

odour perceptions are remarkably stable with time (subject to respiratory infec-

tion of course). The ability of the olfactory system to achieve robust performance

in the face of such a high degree of change appears to derive principally from

its neuronal architecture in combination with the signal encoding strategies em-

ployed, as we will discuss here.

We will consider two models of the early stages of the olfactory pathway that

speak to the issue of how a robust signal representing the stimulus is transmitted

to the �rst stages of processing and how the quality of the signal is maintained

during this process. Speci�cally, the �rst model will provide a probabilistic in-

terpretation of signal integration of receptor signals at glomeruli, which predicts

a lowering of detection limits at the system level compared with individual re-

ceptors. This signal integration model will be tested experimentally by applying

it to data obtained from real-world chemosensor microbeads that mimic key

properties of olfactory receptors. In the second model, the issue of signal trans-

mission within the early stages of the olfactory pathway will be addressed, by



comparing an action-potential based model with one mediated by graded-voltage

signals. This allows us to investigate under which operating conditions the signal

integrity is maintained at each glomerulus.

A number of questions will be addressed using these models. For example,

can signal integration at the glomerulus account for sensitivity enhancement

observed in the biology? Is it reasonable to consider sensitivity enhancement

within the olfactory system as an instance of hyperacuity, and if so then how

should this be quanti�ed? Also, how does spiking and graded signal encoding

a�ect signal integrity within the early stages of olfactory processing?

Our models are simple, yet capture what we believe to be the key features

of the early olfactory pathway; they are population-based, probabilistic, and

spiking. This enables us to better understand the biology by making predictions

about the performance of alternative coding and processing schemes that can be

reasonably hypothesised, such as comparing spiking and graded-voltage signal

transmission.

The models we consider are implemented as part of a biologically plausi-

ble arti�cial nose, which is driven by real-world optical microbead chemosensor

input. The sensors have a number of properties similar to biological olfactory

receptors and prove ideal for implementing functional models of the biological

olfactory pathway. It is possible to operate the signal processing models and

these sensing elements in combination and in real-time to comprise an arti�cial

olfactory system[6]. Consequently, research in this area can inform us not only

about neuronal information processing within biological systems but also on how

to achieve better design in the �eld of machine olfaction.

After discussing the implications of our models for robust signal processing we

will conclude this chapter with a discussion of how signal encoding and processing

strategies within the olfactory system may inform more general architectures for

computation that are based upon emerging results in neuroscience.

2 Receptor Convergence and Olfactory Hyperacuity

A marked feature of the mammalian olfactory system is the massive convergence

of spiking receptor input from thousands of olfactory receptor neurons onto

glomeruli, the �rst stage of processing in the olfactory bulb[4]. This convergence

appears to be fundamental to the operation of the olfactory system since it is

conserved across many species. This arrangement raises the question of how

reliable odour encoding can be achieved in view of large numbers of discretised

receptor inputs that converge onto the olfactory bulb?

We contend that one consequence of the massive convergence of sensory in-

put [7] within the olfactory bulb is sensitivity enhancement. This arrangement is

schematised in Fig. 1 where n receptors (n being in the order of 2-10 thousand in

mammals) expressing the same receptor protein(s) generally converge onto two

glomerular regions[8]. In the simplest scheme, we can consider the spike-trains

generated by individual receptors as statistically independent Poisson processes
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Fig. 1. A schematic of receptor convergence at the early stages of the mammalian olfac-

tory pathway. Odour molecules are thought to interact with putative 7-transmembrane

domain receptor proteins within the hair-like cilia of Olfactory Receptor Neurons

(ORNs) leading ultimately to the generation of an action potential. The vigour of

the cell response depends on both the suitability of the ligand to activate the second-

messenger cascade signalling pathways and also the number of ligand-receptor inter-

actions occurring at a speci�c cell. Action potentials produced by ORNs propagate

over relatively large distances to reach the glomeruli of the olfactory bulb, which act

as common sites for integration.
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Fig. 2. A simpli�ed representation of odour space in which each axis corresponds to

a separate chemical component { the distance along each axis corresponds to its con-

centration. Since many simple odour compounds exist, this state space will be of high

dimensionality and contain signi�cant redundancy, since many permutations of odour

concentration will never occur in the natural world. Any given point in odour space

represents a complex mixture of volatile compounds with a unique �ngerprint of rela-

tive concentrations, that elicits a speci�c perceived odour quality. The vectors demon-

strates the just noticeable di�erence (jnd) in the stimulus that is required to either

detect a di�erence from a single chemoreceptor, sacuity, within the olfactory system or

psychophysically as reported perceptually, sh�acuity.



(after Van Drongelen et al. [9]), where the probability of observing (N = X) ac-

tion potentials within a time-window, Æt, is governed by the Poisson distribution

Pr(N = X) =
�
X
r

X !
e�r (1)

where �r = ksÆt and ks is the mean �ring rate expected for each stimulus, s. Since

olfactory receptors probably have di�erent ranges of tuning to particular stimuli,

we would expect ks to vary for a particular receptor over a given test-set of

odorants. However, one e�ect of convergence of receptor input at the glomerulus

might be to aggregate multiple spike-trains over a period of time. So while the

statistics of spike generation at the receptor level may be governed by �r, at the

glomerulus, n�r, spikes are expected on-average in time-window, Æt. The spiking

input to each glomerulus is considered as another Poisson process, but now with

time-constant �g = n�r. The signal-to-noise ratio (SNR) enhancement of this

convergent architecture is derived from the dispersion of the aggregated signal at

the glomerulus, �g , compared with that of the individual receptor spike-trains,

�r, so

SNR =
�g

�r

=

�
�g

�r

�1=2

=

�
n�r

�r

�1=2

=
p
n (2)

and we expect an enhancement in sensitivity to follow
p
n, with increasing recep-

tor numbers, n. This is a form of hyperacuity where the biology takes advantage

of the statistics at the receptor level in order to generate overall system sensi-

tivity that is greater than that of the underlying detectors.

There can be many forms of hyperacuity within a single sensory modality. For

example, within the visual system three forms are commonly discussed; colour

perception, vernier-style hyperacuity, and stereo-optic depth perception[10]. In

each case the overall perceptual performance has been measured empirically

using psychophysical experiments and then compared with theoretical physical

limits imposed on the sensory system, such as receptor spacing or di�raction

limits imposed by the optics of the eye. The point at which acuity becomes hy-

peracuity can be measured empirically when the overall psychophysical detection

limits exceed those calculated from physical constraints placed on the sensory

system or as measured electrophysiologically at the receptor level.

Probably the most widely studied example of hyperacuity in the visual system

is during the perception of relative spacings in the visual �eld in two dimensions

at the plane of �xation { so-called vernier-style hyperacuity. The e�ect can be

measured empirically using a wide range of psychophysical experiments, a well

known example being the estimation by an observer of relative spacing between

four parallel lines on a plain background, studied by Klein and Levi (1985)[11].

By varying the spacing between the lines by minute amounts they managed to

test the acuity of the visual system in detecting relative displacement shifts in

the visual �eld. To demonstrate hyperacuity in this context requires the just

noticeable di�erence (jnd) in the displacement between the lines, as reported by

the observer, which gives rise to a small displacement of the projected image



onto the retina, to be far smaller than the receptor spacing. Klein and Levi

measured the perceptual thresholds to be ca. 0.9 seconds of arc, whereas the

receptor spacing on the retina is ca. 30 seconds of arc[11].

While hyperacuity may confound our intuition regarding detection limits in

the biology, it becomes far less ba�ing when considered in a statistical sense.

For the example of relative line spacing in the visual �eld, the signals from

many more than a single receptor can be called upon to solve the task. By

recruiting the signals from a population of receptor cells it is possible to surpass

the detection limits to which individual receptors are subject. Population coding

and hyperacuity can be considered to be closely related phenomena.

Within the olfactory system, at �rst glance there appears to be two very

separate forms of hyperacuity present. The �rst of these relates to sensitivity

enhancement, formalised above. Here, ORNs expressing identical single receptor

proteins (or combinations thereof) aggregate their signals at common sites, re-

sulting in an overall jnd to a preferred compound that exceeds that of individual

chemoreceptors. We may refer to this as a kind of concentration hyperacuity,

which may be quanti�ed by comparing reported detection thresholds obtained

from psychophysical or electrophysiological experiments conducted using pure

odour compounds with those thresholds observed at the individual receptor

level using single-unit recordings. Another form of olfactory hyperacuity can

be considered to arise from the combined action of a broadly tuned population

of ORNs. By combining signals from many ORNs expressing di�erent receptor

proteins, the later stages of the olfactory pathway may enhance discrimination

between similar complex odour stimuli over and above that achievable by any

single chemoreceptor type. We may refer to this as a form of odour quality hy-

peracuity which may be quanti�ed by comparing ORN single-unit recordings in

response to paired odour stimuli for their ability to account for discrimination

of the same odour pair as reported psychophysically or measured electrophysio-

logically.

Consideration of the underlying neuronal architecture uncovers just how

closely related these two forms of hyperacuity might be. For example, overlapping

receptor tunings also contribute to lower detection limits to single compounds

and so it is not possible to attribute the phenomena of sensitivity enhancement

to a single receptor type. Similarly, convergence of single receptor types also sup-

ports better multicomponent odour quality discrimination within the olfactory

system and so single receptor types make signi�cant contribution to encoding

quality. Also note that in this context odour quality and quantity are not en-

tirely separable since changes in concentration of some odour compounds are

known to have marked e�ects on the perceived odour quality. A single de�nition

of olfactory hyperacuity might suÆce that avoids this awkward distinction. As

a working de�nition consider

Olfactory hyperacuity is demonstrated by the discrimination of two chem-

ically di�erent odour stimuli (which may vary in both quantity and

quality) observed at the later stages of the olfactory pathway and mea-



sured either psychophysically or electrophysiologically, that cannot be

accounted for by any single underlying chemosensor.

Notice that this de�nition is broad enough to encompass many olfactory

scenarios { in particular changes in both odour intensity and quality. Fig. 2

shows an odour space representation, which provides an intuitive understanding

of this de�nition for olfactory hyperacuity. Here, each point in odour space has

an associated odour perception, the quality of which varies with changes in the

relative concentration between the components of a complex odour mixture. The

nearest excursion from a given point in odour space that produces a shift in the

reported perception corresponds to the jnd in the stimuli that can be recognised

{ vector sh�acuity. The excursion that demonstrates a statistically signi�cant

change in response at the single-unit level represents the jnd for that particular

ORN { vector siacuity for receptor class i. To demonstrate olfactory hyperacuity,

the magnitude of jnd observed at the perceptual level must be far smaller than

for any underlying receptor

jsh�acuityj2 � jsiacuityj2 for all i; (3)

where j � j2 is the usual l-2 Euclidean norm.

Hyperacuity of this form has already been demonstrated within the olfactory

system through electrophysiological measurements in both mammals and insects.

Duchamp-Viret et al. (1989) measured sensitivity enhancement to a variety of

single odour ligands at both the receptor and olfactory bulb level in the frog[12].

Their results show a clear lowering of the detection limits at the bulb level when

compared with that observed for the underlying receptors. Interestingly, this

e�ect is observed only when a large portion of the olfactory mucosa is exposed,

compared with a punctate delivery to the receptor sheet. This provides further

evidence that hyperacuity in the olfactory system relies upon the recruitment

of a large population of receptors. Given that the convergence ratio of receptors

onto glomeruli in the frog is similar to other small mammals and estimated to

be ca. 1000 [12, 13] the theoretical model of hyperacuity at the front-end of

the olfactory system, represented by (2), predicts a lowering of the detection

limit by a factor of ca. 32. In support of this prediction, Duchamp-Viret and

co-workers observed between 1-2 orders of magnitude sensitivity enhancement

in their measurements[12].

Similar measurements in the antennal lobe of cockroach have been made by

Boeckh and co-workers demonstrating spectacular sensitivity enhancement to

pheromone compounds - regularly between 1-4 orders of magnitude but also as

high as six orders of magnitude between measurements taken at the antennae

and the Macroglomerular Complex (MGC) of the antennal lobe[14]. These results

are intriguing since although high convergence ratios of ORNs onto specialised

glomeruli in the MGC of insects have been reported, these are nowhere close to

the enormous convergence ratios required to support such extreme hyperacuity

(1012:1 receptor:glomeruli convergence ratios). Alternative mechanisms must be

involved in enhancing sensitivity to such a high degree { one example of which

might be noise-shaping[15].



The early stages of the olfactory pathway not only ensures eÆcient and robust

signal transmission from the transduction sites to the �rst stage of processing,

but clearly lower the overall system detection limits in the process. This provides

only one example of how the convergent architecture of the olfactory pathway can

teach us valuable lessons about robust signal processing within neural systems

as it maintains high levels of sensitivity to relevant stimuli.

3 Hyperacuity in an Arti�cial Nose

Can we demonstrate such sensitivity enhancement within practical chemical

sensing technology using the mechanism of hyperacuity in the olfactory sys-

tem as a model? Even though arti�cial nose systems typically rely on arrays of

widely tuned non-speci�c chemosensors, numbers of individual sensing elements

are usually restricted overall, to reduce both system complexity and implemen-

tation costs. As a consequence it has not been possible to exploit the statistical

properties of large numbers of chemosensor elements, simply due to lack of sensor

numbers, as has been successfully exploited in the biological olfactory pathway

to boost detection limits.

Optical microbead sensor technology, as depicted in Fig. 3a is ideally placed

for such neuromorphic implementation. Enormous populations of microbeads

may be deployed in a small area (the diameter being ca. 30�m), from which

the signal produced by each sensor element can be addressed individually. Only

in such an arrangement can the issues of population coding in chemical sensing

be addressed realistically. Individual microbead sensors are broadly-tuned to a

wide range of organic compounds and so are reminiscent of the wide ranging but

preferentially tuned responses observed in ORNs[16]. It is possible to e�ectively

tune these devices by choosing di�erent polymer/dye combinations so as to repli-

cate to some extent the diversity of receptor types present in the biology. The

devices are also small and low-power { a 3mW output laser-diode assembly can

energise billions of optical microbeads in tandem, making it a useful chemical

sensor technology in its own right[17].

Our aim, then, is to investigate the statistics across a population of iden-

tical optical microbeads in order to test for evidence of olfactory hyperacuity

as demonstrated in the biology. This would provide both a practical method

for sensitivity enhancement in chemical sensing instrumentation as well as add

credence to the biological model discussed in Sect. 2.
For this work 201 optical microbeads with similar response characteristics were

imaged on a glass slide as these were exposed to di�erent dilutions of the saturated

vapour headspace of a single chemical compound { toluene. Fabrication details for the

microbeads have been reported elsewhere[18]. The uorescence response of each bead

is sensitive to di�erent chemicals in the microenvironment surrounding that sensor

and can be imaged using a simple optical arrangement based upon a cooled CID cam-

era and microscope lens similar to that described by White et al. [19] Odour delivery

was achieved using an air-dilution olfactometer to apply pulses of analyte vapour to

region of beads being imaged. A make-up carrier ow of ultra zero grade air was con-

trolled at varying ow-rates to act as a diluent for the saturated vapour headspace
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Fig. 3. (a) A grey-scale image showing 201 uorescent microbeads responding to satu-

rated toluene vapour at a single point in time. (b) A single bead response to di�erent air

dilutions of saturated toluene vapour over time, indicating concentration discrimina-

tion down to 1:61 dilution. The data were standardised by taking the average greyscale

value for each individual bead and for each frame subtracting the greyscale value of

the respective bead on the �rst frame of the sequence and �nally dividing the result

by the same �rst frame value. This results in a fractional pre-processing metric. The

solid black line indicates odour exposure.



of toluene (ca. 3800 ppm concentration). Dilutions achieved using this odour deliv-

ery arrangement ranged between 1:10 to 1:300, corresponding to 154.8 nmolml�1 and

5.2 nmolml�1 respectively.

Using this arrangement it was possible to image large numbers of these beads

within a single CCD-frame - in this experiment 201 beads in total. The luminosity

response of each bead to the analyte (across a small bandwidth in the uorescent

emission spectrum, 10 nm) may be accurately assessed by measuring the grey-scale

levels around localised points in the image. After storing the individual bead responses

during exposure to di�erent concentrations of analyte over time, the statistics of the

responses across the bead population were investigated.

The graph of Fig. 3b shows the variation in standardised luminosity over

time for an individual microbead responding to di�erent dilutions of saturated

toluene vapour. The beads show a well de�ned response to a wide range of

organic compounds that are both reversible and reproducible during repeated

exposures. Clearly, the magnitude of the response is related to the concentration

of the analyte and so the task is to be able to discriminate between the single

analyte at di�erent dilutions. A close inspection of the responses shown in Fig.

3b shows that for this particular bead, reliable discrimination was only possible

down to the 1:61 dilution level. Below this concentration level the luminosity

signal is seen to descend into the background noise.

To be able to demonstrate hyperacuity we must show that the discrimination

capability of the population of microbeads surpasses that of a single bead. The

best way to quantify the response of the bead population is statistically. From

preliminary experiments with very high bead numbers (> 1000) the distribution

of luminosity values, y obtained from a single bead population was found to

closely match the Laplace (or double exponential) probability density function

(pdf) at any particular point in time

p(y) =
1

2�
exp

�
�jy � �j

�

�
(4)

where � is the scale parameter determining the dispersion, � is the mean, and

the variance is given by �
2
y
= 2�2. The statistics of the population can be used

to make a more accurate assessment of the true concentration of the analyte

using fundamental concepts from signal detection theory.

Given a single bead measurement, y, we can assign it to the most likely

dilution class, Hi, by maximising the a posteriori probability p(Hijy). In the

case of equally likely dilution classes, it is simple to show using Bayes rule that

this is equivalent to maximising the conditional probability, and so our decision

rule reduces to (for two classes, H1 and H0)

if p(yjH1) > p(yjH0) choose H1; otherwise choose H0 (5)

This decision process is depicted in Figure 4a, showing how the overlapping

distributions of two signals can be used to assign the most probable class mem-

bership. Exactly the same approach is used here for a number of dilution classes.

By �tting a distribution of the form given by (4) to the bead responses to each
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Fig. 4. The detection of two signals with distinct Probability Density Functions (pdfs).

Using a threshold function it is possible to minimise the likelihood of making an error

in assigning a hypothesis, H0 or H1, to observation y. The areas �0 and �1 represent

the probability of making this error.
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Fig. 5. Best �t Laplace distributions to the microbead population response to a variety

of dilution categories. Distinct pdfs are observed down to 1:80 dilution taken at frame

25 where the bead luminosity response is maximum. The �gure demonstrates how the

expected value (the peak) of each distribution provide a far more accurate and robust

measure of the actual dilution class - this being the basis of sensitivity enhancement

in our arti�cial nose.



dilution the power of this discrimination scheme becomes clear. Figure 5 shows

the multiple Laplace pdfs for each of the dilutions analysed. This can be used

to make an optimal dilution class assignment for a single bead response to an

unknown dilution of the analyte. Some overlap exists between the �tted pdfs,

and so a level of risk must be tolerated in making this assignment. However, it

is also clear from the distributions that the expected value (mean) across the

bead population in each case provides a far more accurate estimator of the dilu-

tion category than any single bead response { which is the central issue in any

hyperacuity e�ect. This can be quanti�ed by the standard error in the mean,

�� which measures how much variation can be expected in the expected value

of the distribution given by (4) when, n multiple samples are taken from a bead

population.

�� =
�yp
n
=

2�2

p
n

(6)

so while a single bead response is subject to variance 2�2 the variance of the

mean taken from n independent and identically distributed bead responses is
2�2p
n
.

We can also quantify this e�ect by estimating the SNR between the aggre-

gated bead response of the population to the odour applied at a speci�c dilution

(an estimate of the expected value �̂Hi) with the same population responding

to air, �̂H0. It can be shown that the SNR between these two estimates of the

mean can be calculated using the Student's t-test statistic[20]

^SNR > t�;� (7)

where the degrees of freedom � = 2n� 2, n is the number of microbeads within

the population, and � gives the signi�cance level required for the SNR estimate

(taken here as � = 0:05). After applying a t-test statistic it was possible to

estimate how the SNR of the aggregated signal varied with di�ering numbers

of beads { as shown in Fig. 6. The results show clear agreement with the SNR

enhancement predicted by the biological model and demonstrate how olfactory

hyperacuity may be implemented within an arti�cial nose to achieve sensitivity

enhancement.

Figure 6 may also be used to estimate the number of beads required to

reach a particular system detection limit and so solve a speci�c odour detection

problem. Assuming a minimum SNR of 3 for reasonable detection, it is clear from

extrapolating the characteristics that the 1:171 toluene dilution odour detection

task could be solved with ca. 500 concurrent bead measurements and the 1:300

task with ca. 1,300 bead measurements.

4 Stimulus Encoding in the Olfactory System

Another issue of interest when considering robust signal processing within neural

systems is how sensory signals are encoded in the CNS. It appears that a wide
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range of encoding strategies are employed by the biology in order to eÆciently

transmit sensory information under a wide range of conditions. Examples of

coding strategies include graded potentials (usually over short distances), action

potentials, rate codes, and speci�c temporal codings.

The key method of signal transmission between the �rst two stages of the

olfactory pathway is known to be action potentials. Although these spiking sig-

nals are known to provide an eÆcient mechanism for long-distance transmission

in the nervous system, how it can provide the signalling basis for reliable and

accurate stimulus encoding is still debated[21, 22]. One approach to address this

issue is to investigate di�erent stimulus encoding schemes within computational

models. In this section, we investigate the mass action of sensory input to a

simple olfactory model that is driven by optical chemosensors to understand its

behaviour in what has been termed a high-input regime[23].

In this context realistic chemosensory input derived from optical microbead

input confers advantages in terms of more natural statistics of sensory input than

can be achieved with a small number of sensors or simulated input. Accordingly,

we can investigate the behaviour of our model under a probabilistic, high-input

regime akin to the biology.

We applied the data-set shown in Fig. 3b to a simple model of the front-end of

the olfactory system. The layout for the model is shown in Fig. 7a where data from

each individual bead is mapped onto a series of cell populations in a 1-to-1 fashion.

To address the stimulus encoding issues we consider here it is reasonable to connect

a single simulated glomerular "cell" to a population of ostensibly identical uorescent

beads, to model the convergent architecture discussed in Section 2. In order to closely

follow the biology of the system, the baseline response of the bead data was applied to a
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Fig. 7. (a) Architecture of a simple model of the early stages of the olfactory system,

showing the di�erent layers, including uorescent bead population, input layer, sigmoid

layer, integrate-and-�re layer, and a single glomerular cell entity. (b) Behaviour of the

model over time at each successive stage of the system during a complete cycle of

the stimulus { top to bottom: examples of the activity of a single simulated neuron

belonging to the input layer responding to the bead response shown in Fig. 3b, sigmoid

layer, and integrate-and-�re layer respectively. The bottom trace shows the stimulus

after reconstruction from multiple spike trains at the level of the simulated glomerulus.



sigmoid layer in order to mimic the sigmoidal concentration dependence of transduction

current within olfactory receptor neurons[24]. This also acts to auto-scale the data so

that each bead response lies within the range [0; 1].

Integrate-and-�re neurons were then used to generate a volley of spike trains that

represent the stimulus using Poisson statistics as outlined in (1). This arrangement

provides a simple yet reasonably accurate model of spike generation by olfactory re-

ceptors, which can be considered to produce spike trains with Poisson statistics where

the mean �ring frequency is sigmoidally dependent upon stimulus concentration. The

convergence of receptor input in the biology has been represented in our model by the

aggregation of spike trains from many integrate-and-�re cells at any one point in time

at the glomerulus "cell". While the glomerulus does not exist as a cell entity in its

own right (it comprises neuropil made up from axons from olfactory receptor neurons

synapsing onto the dendrites of mitral, tufted, and periglomerular cells), we can use

this in our model as a convenient site for integration that represents the excitatory

e�ect of the receptor input on the olfactory bulb.

The behaviour of our model to real-world chemosensory input is shown in

Fig. 7b. Here, a single cell in the input layer presents a complete cycle of the lu-

minosity response of an individual microbead. This signal is then compressed by

its corresponding cell within the sigmoid layer, and then transformed into a prob-

abilistic spike train at the integrate-and-�re layer. By integrating a large number

of such spike trains in both space and time (Fig. 7b, bottom), the glomerular

cell is then able to reconstruct the stimulus. The key point to note here is that

the signal can only be reconstructed accurately if spikes arrive at random points

in time, and that at any point in time the glomerulus is receiving an accurate

mean signal from the entire population of chemosensors. The system is therefore

dependent upon the massively convergent rate-coded receptor input in order to

accurately reconstruct the stimulus.

An important aspect related to how robustly the transmission scheme be-

haves under realistic input conditions, is how well the glomerulus is able to

track the change in the stimulus over time using only discrete spiking input.

This issue is central to the performance of any sensory system that must use

the input provided from a population of receptors in order to make decisions

about the stimulus, such as in the visual and auditory pathways. To estimate

the SNR of the reconstructed stimulus, and so quantify the information avail-

able to any subsequent neuronal processing within the olfactory pathway, we

conducted experiments on two models of the form shown in Fig. 7a in parallel.

By comparing the signal produced from a single glomerulus in one model whilst

being exposed to air, to an identical model during exposure to 1:10 dilution of

saturated toluene vapour, an accurate estimate of the ability of the arti�cial

sensory system to reconstruct the stimulus could be made.

To address the central issue related to robust signal encoding strategies we

asked the question, does a rate-coded representation of the stimulus at the re-

ceptor level limit the signal quality that is recoverable at the glomerulus? To

investigate this issue, we compared the results obtained from two models, one in

which probabilistic spike trains representing the receptor input were integrated



at the glomerular cell and another in which the graded (non-spiking) receptor

input was transmitted directly to the glomerulus for integration.
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Fig. 8. A comparison of the signal-to-noise ratio obtained at the glomerulus cell of

our neuronal model for two di�erent encoding schemes { rate-coded spike trains and

graded signal transmission.

The results comparing the SNR obtained at the glomerular cell for both oper-

ating regimes are shown in Fig. 8. The results demonstrate that direct transmis-

sion of graded receptor input gives rise to uniformly high SNR which is robust

to variations in the charging time-constant at the glomerulus. For very short

time constants the spiking rate-coded equivalent does very poorly, achieving an

SNR at the glomerulus that is worse than that of any single receptor. However,

for longer integration periods the SNR under the rate-coded regime approaches

that achieved during graded signal transmission, showing that a similar eÆ-

ciency of stimulus encoding can be achieved, but only within a speci�c range of

temporal integration. The cost for adequately recovering a reasonable SNR at

the glomerulus in the case of spiking rate-coded stimuli is, though, a far longer

integration period, which slows the dynamics of the system as a whole and so

limits the response time of the system. If the temporal dynamics of the odorant

di�usion through the mucous layer of the olfactory epithelium and signal trans-

duction dynamics at ORNs matched those of the glomeruli there would be no

cost to pay since the system would act as a matched �lter. Rate-coded stimulus

encoding confers clear advantages in terms of its robust properties in the face



of external noise sources, and so is preferable for reliable transmission over long

distances such as between the epithelium and the olfactory bulb in the CNS.

These results indicate a clear trade-o� between integration time and recon-

structed signal quality during spike-based stimulus encoding. This represents an

important aspect of how signal integrity can be maintained within a rate-coded

regime which is fundamental to understanding the transmission of stimulus in-

formation throughout sensory systems.

5 Discussion and Summary

The focus of this chapter has been the robust transmission and reconstruction of

sensory signals within neural systems. The olfactory pathway provides an excel-

lent model system from which to address these issues. Two models of the early

stages of this system have been presented; a mathematical model of sensitivity

enhancement in the olfactory pathway and a computational model for compar-

ing action- and graded-potential based signal transmission. Both models provide

insight into aspects of robust signal processing and transmission. Massive con-

vergence of receptor input coupled with population coding brings advantages to

the olfactory system by way of fault-tolerance and sensitivity enhancement. Our

computational model has demonstrated how spike based communication can be

as eÆcient for signal transmission as graded-potential communication subject to

temporal constraints.

How the CNS manages to transmit huge quantities of sensory information to

the higher brain centres is a fascinating example of parallel processing. Individual

sensory and bulbar neurons may only operate on a millisecond timescale, yet

the entire olfactory system is able to make important decisions relating to the

stimulus within a remarkable short period of time. Such a feat of information

processing requires highly organised strategies to communicate and deal with

sensory data in parallel. Investigating key organisation principles within the

CNS, such as population coding provides a promising approach to replicating

some of the robust properties of signal transmission whilst maintaining high

bandwidth or sensory data.

An interesting aspect related to achieving such enormous bandwidth of sen-

sory information that is suggested by our models, and merits further investiga-

tion is the matching of dynamics in the time domain of the perireceptor, signal

transduction, transmission and processing stages. Further issues that might be

investigated using a similar modelling approach are how stimulus and time is

represented in the olfactory bulb and in particular the role of temporally com-

plex mitral/tufted cell responses, and oscillations present within the system as

a whole[25].
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