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Abstract. We describe an improved spiking silicon neuron (SN) [6] that approximates the dynamics of ionic

currents of a real nerve cell. The improved version has less circuitry and fewer parameters than previous circuits

thereby improving the spiking characteristics. We describe the differential equations governing the revised circuits

and use them to explain the spiking properties of the SN. We also describe how to tune the parameters ef®ciently to

bring the neuron quickly into its correct operating regime. The new neurons are suf®ciently robust for operation in

large networks. We demonstrate their robustness by comparing the neuron's frequency-current curve between

different chips for the same set of parameter values.
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1. Introduction

Previous SNs [6,10] suffered from oversensitivity to

parameters. It was dif®cult to ®nd a parameter space

which elicits the desired spiking properties. The

reason for the instability laid in the many parameters

and unbalanced circuit parts. The circuits required two

major improvements. First, the parameter values

should be easy to ®nd. Second, these parameter

values should be suf®ciently stable, to be stored on-

chip by ¯oating-gate technology.

Fig. 1 is a simpli®ed electrical diagram of the

silicon neuron circuitry. The left diagram summarizes

the somatic ionic conductances of our neuron model

in a parallel conductance model [5]. The right diagram

shows a model of the intracellular calcium concentra-

tion. The separation into a soma equivalent and a

calcium model is based on location of these processes.

Another kind of separation we make is based on

function: The basic spike mechanism, and the

adaptation mechanism. The basic spike mechanism

represents the spiking behavior of the neuron and

contains both a passive component and a spike

component. The passive component simulates the

passive behavior of the neuron. The spike component

contains the actual mechanism that generates spikes

[4]. The adaptation mechanism is responsible for

spike-frequency adaptation and bursting and relies on

the after-hyperpolarization (AHP) conductance and

the calcium model [5].

The soma equivalent can be expressed in terms of

currents as follows:

ICm � ILeak � INa � IKd � IAHP � IInj �1�
where ICm is the current across the membrane

capacitance, IInj is the stimulation current (either

synaptic or injected input, not shown in Fig. 1), ILeak is

the leakage current, INa is the sodium current, IKd is

the potassium current and IAHP is the after-hyper-

polarization current. The arrows across the spike

conductances indicate that these conductances have

an explicit voltage and time dependence.

The calcium model is a model of the intracellular

calcium concentration, Vc. Every time a spike occurs,

Vc increases through in¯ux of calcium ions �ICain� into

the soma [13]. In Fig. 1 this trigger of calcium in¯ux is

indicated by the grey arrow (labelled ``spike

discriminator''), pointing from the membrane poten-

tial, Vm, to the switch in the calcium model. The

calcium concentration decays �ICabuf � towards a

resting concentration due to intracellular processes

like, e.g. buffering [5]. The calcium model can be

expressed in terms of currents as follows:

ICc � ICain � ICabuf �2�
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where ICc is the current across the calcium capaci-

tance. When the spike frequency of the neuron

increases the calcium concentration rises. A higher

calcium concentration increases the AHP current,

which in turn inhibits Vm, leading to spike-frequency

adaptation. In Fig. 1, this negative feedback loop is

indicated by the grey arrow (labelled ``Ca-dep''),

pointing from Vc to the AHP current.

2. Methods

The building blocks used in our SN circuits are the

transconductance ampli®er (TCA), the follower

integrator (FI), the current mirror (CM) and the half-

wave recti®er [7]. We use the term ion conductance,

e.g. sodium conductance, if we speak of the entire ion

conductance circuit. We use the term ion current for

the actual output of the ion conductance circuit. Fixed

voltage parameters are noted by capitalized letters

(e.g. ELEAK), state variables are noted by V (e.g. Vm).

2.1. The Basic Spike Mechanism

The basic spike mechanism is expressed by equation

(1), neglecting the AHP current. We approximate the

passive behavior of a neuron, a RC circuit, with a FI

circuit (Fig. 2(a), left grey block, FI1). The input is a

®xed voltage, ELEAK, representing the resting

potential of the neuron. The output voltage, Vm,

represents the membrane potential. The dependence

of the leakage current, Ileak, on the membrane voltage,

Vm, is given by current-voltage relationship of the

TCA:

ILeak�Vm� � IGLEAK tanh
ÿ
cT�ELEAK ÿ Vm�

� �3�

where IGLEAK is the maximal bias current of the TCA.

The parameter cT , combines the constants which are

associated with a TCA [7].

The sodium current, INa, is generated by subtrac-

tion of an activation current, Im, and an inactivation

current, Ih (Fig. 2(a), upper middle grey block). The

activation current rapidly turns on by a fast positive

feedback loop implemented by TCA1 and CM2. The

Fig. 1. Electrical diagram of the neuron circuitry. Left part ``soma equivalent'': Parallel conductance model for ionic currents in a

membrane. Vm, membrane potential; Cm, membrane capacitance; ELEAK, resting potential; EK, potassium reversal potential; ENA, sodium

reversal potential. Right part ``calcium model'': A model for the intracellular calcium concentration. Cc, calcium concentration (voltage);

Cc, calcium buffer (capacitance); CAREST, calcium resting concentration; SRC, calcium source. See text for further explanations.
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(a)

(b)

(c)

Fig. 2. Neuron circuitry. (a) The basic spike mechanism: The horizontal wire represents the membrane potential, Vm. The grey boxes mark

the various ion current circuits and the injection current. (b) Spike discriminator. (c) Adaptation mechanism. The left grey box contains

circuitry to simulate the calcium concentration. The right grey box contains circuitry for generation of the after-hyperpolarization (AHP)

current. See the method section for a detailed description.
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inactivation current turns on by a slower negative

feedback loop, implemented by FI2, TCA2, CM1 and

CM2. Because the positive feedback loop constitutes

a half-wave recti®er, we can summarize the sodium

current as follows:

INa�Vm; t� �
ÿ
Im ÿ Ih�t�

�
y�Vm ÿ THRES� �4�

where y is the Heaviside function: y�x� � 0 for x � 0

and y�x� � 1 for x40. As long as Vm is below the

spiking threshold, THRES, INa is zero. When Vm rises

above THRES, the activation current Im rapidly turns

on by the positive feedback loop, therefore we can set

Im to the maximal current of TCA1:

Im � INASAT �5�
The circuits that provide the inactivation of the

sodium conductance contain another half-wave

recti®er (TCA2 and CM1). Consequently, Ih is only

generated if Vfna is above THRES. After the activation

current has turned on, the follower voltage Vfna will

rise above THRES due to the steeply rising Vm.

Because FI2 operates then in the large signal domain,

the output voltage DVfna �Vfna ÿ THRES� increases

linearly with time:

DVfna�t� �
INATAU

Cf

�tÿ t0� �6�

where t0 corresponds to the time, at which Vm crosses

THRES (spike onset). INATAU is the maximal bias

current of FI2, Cf is the follower capacitance. The

inactivation current is then:

Ih�t� � INASAT tanh cTDVfna�t�
ÿ � �7�

The sodium current can now be expressed by

replacing the currents Im and Ih in equation (4) by

the expressions in equations (5) and (7):

INa�Vm; t� � INASAT

ÿ
1ÿ tanh

ÿ
cTDVfna�t�

��
� y�Vm ÿ THRES� �8�

Once the sodium current is fully turned on, it decays

due to the tanh behavior.

The potassium conductance is only an activating

conductance; it lacks an inactivation. It constitutes the

second negative feedback loop implemented by FI3,

TCA3, CM3 and CM4 (Fig. 2(a), lower middle grey

block). The potassium conductance is on as long as

the voltage Vfkd is above THRES, otherwise it is zero

due to half-wave recti®cation:

IKd�Vm; t� � Iny
ÿ
DVfkd�t;Vm�

� �9�
The output voltage Vfkd increases linearly with timeÐ

in response to the quickly rising VmÐas it is the case

for Vfna. DVfkd �Vfkd ÿ THRES� rises linearly as long

as Vm is above Vfkd, and falls linearly when Vm is

below Vfkd:

DVfkd�t;Vm� �
IKDTAU

Cf

�tÿ t0�� � sign�Vm ÿ DVfkd�

� DVfkd;t1
�10�

IKDTAU is the maximal bias current of FI3. Vfkd;t1
is the

initial condition when Vfkd starts to follow the

decreasing Vm at time t1. The current In can then be

described as

In�t;Vm� � IKDSAT tanh
ÿ
cTDVfkd�t;Vm�

� �11�
IKDSAT is the maximal bias current of TCA3. We

rewrite equation (9) by replacing In by the expression

given in equation (11):

IKd�Vm; t� � ÿ IKDSAT tanh
ÿ
cTDVfkd�t;Vm�

�
� yÿDVfkd�t;Vm�

� �12�
IKd turns on and off with the same tanh-like dynamics.

There is a minus sign in equation (12), because the

potassium current is a negative current through CM4.

The positive feedback loop of the sodium

conductance could be suppressed by an early onset

of the two negative feedback loops due to device

mismatch. To guarantee that the negative feedback

loops turn on later, FI2 and FI3 are sealed in such a

way that the voltage output lags with respect to Vm by

a few millivolts. We did that by using a wide diode-

connected transistor (12 mm instead of 6 mm) in the

current mirror of the TCA. We also have to ensure that

the sodium inactivation completely turns off the

activation, by using a wider bias transistor (12 mm) for

TCA2 than for TCA1.

2.2. Spike Discriminator

The purpose of the spike discriminator is to generate a

pulse of ®xed width, PUDISC, in response to a

membrane spike (Fig. 2(b)). PUDISC is used as input

to the adaptation mechanism as well as for the

address-event representation (AER) system con-

necting neurons [1].

The parameter PUTHRES determines the
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threshold of pulse generation. The parameter

PADBIAS is the chip's bias parameter. As long as

Vm is below PUTHRES, the voltage output of the TCA

is high otherwise (during a membrane spike) it is low.

The subsequent inverter, INV1, generates a proper

pulse, which still pulse depends on the actual

membrane spike width. As the membrane spike

width may vary for different stimulation currents

and can make tuning dif®cult, we added an edge-

detection circuit that generates pulses of ®xed width.

The edge-detection circuit is standard digital circuitry

and contains a RS-¯ip-¯op [2]. The parameter

PUWIDTH is a bias voltage and sets the desired

pulse width of PUDISC.

2.3. Adaptation Mechanism

The input to the adaptation circuit is the pulse

PUDISC applied to the source of transistor T1.

CAIN determines the calcium in¯ux (represented by

ICain) into the neuron that occurs during each spike.

The voltage, Vc, on the capacitance Cc, represents the

intra-cellular calcium concentration. Vc decays

towards a resting concentration by ICabuf , which is

the output of a follower-connected wide-range-input

TCA (FI4) [14]. CAREST sets the voltage for the

calcium resting concentration. The current ICabuf is

analogous to the leakage current (equation (3)).

The AHP conductance circuitry is analogous to the

potassium conductance circuitry TCA3, CM3 and

CM4 and is simply expressed by the equation of the

TCA. The calcium current is integrated onto the Vm

node, thereby forming a slow negative feedback loop

causing the spike-frequency adaptation.

The transistors of FI4 are sealed in the same way as

FI2 and FI3. This guarantees that the AHP current

does not strongly leak, due to device mismatch, when

the neuron is at rest. Otherwise, tuning of the

adaptation characteristics can be dif®cult.

3. Results

A chip of approximately 262 mm2 was fabricated

using a standard 1.2 mm CMOS technology.

Transistors sizes are generally 6 mm by 6 mm. We

chose such a large size, because our 1.2 mm process

choice is less well controlled compared to our

previous choice, a 2.0 mm process. In the digital

circuitry (spike discriminator), transistors are

miminum size. For some of the bias transistors we

chose larger widths (8 mm). The overall size of the

layout is 662 mm652 mm.

The basic spike mechanism comprises 38 tran-

sistors (3 FI, 3 TCA, 4 CM) and 3 capacitances. The FI

capacitances, FI2 and FI3, are about 0.4 nF each. The

adaptation circuit comprises 20 transistors and 1

capacitance. The capacitance Cc we estimate 0.6 nF.

The spike discriminator has 20 transistors. Cm is about

7 nF. Current injection to the neuron is mediated by a

p-type transistor. We report the amount of injection

either as a gate voltage or as an approximate current.

To tune the passive behavior of the neuron we

stimulate it with step currents. When the step current

is turned off, the slope of the falling Vm is solely

determined by the leakage current. To obtain optimal

spiking properties, we tune GLEAK such that the

slope (in the large signal domain) is tuned to a value of

about 500 mV/15 ms.

Fig. 3 shows the shape of a single spike extracted

of a spike train (as for example in Fig. 4). Before the

membrane spike the follower voltages Vfkd and Vfna

follow Vm smoothly with a DC-offset of about

ÿ 100 mV due to the sealed followers. During, and

Fig. 3. Trace of a single Vm spike and the follower voltages Vfna

and Vfkd . t0 is spike onset, t1 is the time where Vfkd starts to

decay, t2 is spike offset. ELEAK� 2.0 V, GLEAK� 0.38 V,

THRES� 2.50V, NATAU� 0.37 V, NASAT� 0.63 V,

KDTAU� 0.43 V, KDSAT� 0.58 V, ENA� 5.0 V, EK� 1.5 V.

Spike duration: 0.0179 s to 0.0186 s. Spike amplitude� 2.5 V

(ENA-THRES).
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some time after the spike, the follower voltages rise

and fall linearly, as predicted by equations (6) and

(10). About 1 ms after spike offset, the follower

voltages catch up with Vm again. The slope of the

rising ¯ank is shallower than the one of the falling

¯ank for each follower voltage due to the sealed

follower design. To obtain a spike form as shown in

Fig. 3, Vfna rises with about 200 mV per ms, Vfkd rises

with about 500 mV per ms.

Fig. 4 demonstrates spike trains for three

different spiking modes. During fast spiking, only

the basic spike mechanism is operating and

interspike intervals (ISI) are of the same length

(Fig. 4(a)). Regular spiking is with spike frequency

adaptation (Fig. 4(b), AHP current on). The neuron

initially ®res at a high frequency and then adapts to

a lower steady-state frequency: the rising Vc slowly

increases the AHP current, which in turn progress-

ively inhibits Vm. The parameters of the calcium

circuit are tuned to have Vc dynamics as follows:

calcium increase per spike is about 15 mV, calcium

decay shows a time constant of about 100 ms. Vc

increases between the ®rst few spikes due to

capacitive coupling across T1 (see Fig. 2). The

AHP current has most in¯uence between spikes in

the subthreshold range of the neuron, where

equation (1) is ICm � ILeak � IAHP � IInj. The AHP

current must be stronger than the leakage current,

otherwise it has hardly any effect on Vm.

Bursting is achieved by changing the potassium

and AHP conductance when the neuron is in spike

frequency mode (regular spiking). First, the maximal

potassium conductance is signi®cantly decreased,

which leads to very fast spiking (not shown).

Second, the AHP conductance is slightly decreased,

which leads to bursting (Fig. 4(c)). During a burst the

calcium level builds up and increases so the AHP

current. After 3 to 5 spikes the AHP current is strong

enough to interrupt the burst and to hyperpolarize Vm

extensively due to the accumulated calcium level. The

adaptive feedback loop runs until the calcium level is

low again.

The input-output behavior of an adaptive neuron

(for the regular spiking mode Fig. 4(b)) is analyzed

by plotting instantaneous spike frequencies as a

function of the step current amplitudes [5,13]. The

instantaneous spike frequency is de®ned as the

reciprocal of the ISI. Fig. 5(a) shows the fre-

quency-current (F-I) curve for the parameters given

for the spike train in Fig. 4(b). The ®rst two step

currents (1 and 2) are subthreshold stimulations. The

following step currents (3 to 8) are suprathreshold

stimulations. The instantaneous frequencies of the

®rst eight ISIs are calculated. The ®rst interval �f1�
shows a frequency range of 50 Hz (third stimulation

current) to 190 Hz (8th stimulation current). The last

three intervals (6 to 8) show a frequency range from

25 Hz to 60 Hz and we consider these as the steady-

state frequency. The highest stimulus current is

chosen to yield a f1 of about 200 Hz. The AHPSAT

is set high enough to yield a steady state frequency

below 100 Hz. In Fig. 5(b), the instantaneous

frequency is plotted as a function of time, to

visualize the time course of adaptation. The decay

in frequency is nonlinear and reaches steady state

after about 50 ms.

To check the robustness of the neuron circuit, the

remaining chips of the same series were tested with

the same parameter values as in Fig. 5. Fig. 5(c) shows

the F-I curves for another two chips. In Fig. 5(c),

the frequencies are slightly smaller compared to the

default F-I curve in Fig. 5(a). In Fig. 5(d), the

frequencies are larger and adaptation occurs from

Fig. 4. Spiking characteristics. Response of the neuron to a step

current of 120 ms (see black bar below). a. Fast spiking. Only

the basic spike mechanism is turned on. Parameter values as in

Fig. 3 (b). Regular spiking (with corresponding calcium level).

Spike frequency adaptation caused by the AHP current.

AHPSAT� 0.50 V. The peaks on Vc are caused by crosstalk

from Vm. CABUF� 0.22 V, CAIN� 4.40 V, CAREST� 2.0 V.

Current injection^ 180 nA. (c) Bursting. AHP� 0.48 V,

KDSAT� 0.41 V. The width of the initial spike in the ®rst burst is

larger than the remaining ones due to the weaker potassium

current.
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the second interval on. Two of ®ve chips of a series

did not have proper spike-frequency adaptation. It

seems that these chips contain severe mismatch due to

the fabrication process.

4. Discussion

4.1. Improvements

The number of parameters required to control the

basic spike mechanism has been reduced from 10 to 7

[10]. Three parameters were saved by reducing the

threshold parameters from 3 to 1. In the sodium

conductance, a single parameter (NASAT) instead of

two is now used to control the maximal conductance.

In previous neuron circuits, we could not simply

connect the parameters because then the spike

mechanism was not properly operating due to device

mismatch. The reduction is now possible, because the

followers are sealed such that the membrane spike is

operated properly despite possible device mismatch.

In older adaptation circuits, the duration of the

calcium in¯ux depended on the width of the

membrane spike, which made it extremely dif®cult

to yield the appropriate FI curve. Therefore, the spike

discriminator (not published previously) was

extended by an edge-detecting circuit, that generates

®xed width pulses independent of the membrane spike

width. This allows us to tune the adaptation and

bursting behavior in very short time.

In all previous circuits, an emulation of the calcium

conductance was included. Because its effect on the

spiking pattern was marginal and its tuning was

Fig. 5. Adaptation characteristics. (a) Frequency-current (F-I) curve. Step currents (1 to 8) ranging from approximately 20 nA to 340 nA of

equal step are applied. The instantaneous spike-frequency (1/ISI) of the ®rst 8 interspike intervals (ISI) are calculated. (b) Instantaneous

frequency as a function of time, for the stimulus currents 4 to 8. Parameter values are the same as listed in the previous Fig. captions. (c)

and (d) F-I curves from SNs from two different chips. Parameter values are identical to the ones for the F-I curve in (a).
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dif®cult, we omitted it in the present version. We

simulate now the calcium in¯ux by connecting the

discriminator pulse directly onto the source of a p-

type transistor emulating the calcium in¯ux.

These modi®cations resulted in the following four

new circuit features: First, the circuits are now robust.

The present circuits allow us to change parameter

values by tens of millivolts without losing the spiking

pattern. All parameter values except the injection

values were set to the second decimal place. Second,

the number of parameters is reduced. Third, as a

consequence of the ®rst two features, the tuning of the

parameter values can be performed within minutes.

Fourth, bursting behavior is possible.

Differences in spike properties among chips are

small Fig. 5(c). The parameter values are therefore

suf®ciently stable to be set by ¯oating gate

technology. This is a requirement if we use the SN

for large-scale network simulations [1]. Except of the

parameters EK and ENA, all parameter values are

gate voltages, which can be easily stored on-chip. We

have already succesfully applied the ¯oating gate

method to a previous neuron circuit [3]. The accuracy

of setting the ¯oating gates is about 3 mV, which is far

less than the accuracy for setting the neurons

parameters (about 10 mV). We therefore can expect

that with the present neuron version initialization of

the ¯oating gates will be greatly facilitated because of

the robustness and ease of setting the parameter

values.

4.2. Tuning

In some paragraphs of the result section, we have

given hints how to tune the neuron. We shortly

summarize the tuning hints as an algorithm:

1. Passive behavior: The constant decay of Vm after

offset of a step current should be about 500 mV/

15 ms.

2. Spike behavior: Spike offset should occur at a low

voltage, close to EK (Fig. 3). The AHP current has

then a suf®cient voltage range (THRES-EK� 1V)

to inhibit Vm. The detailed spike dynamics do not

play a crucial role. In our case we tuned the slopes

of the follower voltages Vfna and Vfkd to values of

200 mV/ms and 500 mV/ms, respectively.

3. Calcium dynamics: The amplitude of calcium

in¯ux should be tuned to a fraction of the linear-

range of the TCA (Fig. 4), in our case the amplitude

is 15 mV. The decay time constant should be about

100 ms.

4. AHP conductance: The AHP conductance is

increased until the steady state frequency is in a

low-frequency range (Fig. 5) around 50 Hz.

5. Bursting: The maximal potassium conductance

(KDSAT) is decreased by about 0.17 V. The AHP

conductance (AHPSAT) is decreads by only a few

millivolts (20 mV).

4.3. Correspondence to Real Neurons

In the Hodgkin-Huxley-formalism [4], an ion current

has the following general form:

IIon � gIonmh�Vm ÿ EIon�: �13�
gIon is the maximal conductance of the ion current, m
is an activation term, h is an inactivation term. Both

terms can depend on time, voltage or substances, like

for example calcium. The product mh represents the

fraction of the maximal conductance. EIon is the

reversal potential of the ion. The difference

�Vm ÿ EIon� is called the driving force (or electrotonic

potential). The product mh plotted as a function of

time, shows a typical shape for a particular ion

current, which we will call now the activation

function. In the silicon ion conductance circuits, the

general dynamics of the activation functions are

roughly approximated, rather than the details of the

equation itself. TCAs generate currents which corres-

pond to either an activation m or inactivation h. The

parameter SAT (NASAT, KDSAT, AHPSAT) of the

TCA is analogous to the maximal conductance gIon.

The voltage dependence of the TCA can be interpreted

as being the voltage dependence of the term m or h.

FI2 and FI3 determine the delay of the activation m or

inactivation h and represent so the time dependence of

the terms. The reversal potentials EK and ENA are

analogous to the reversal potentials in real cells. They

represent the battery for a particular ion current. A

simulation of the driving force �Vm ÿ EIon� is not

incorporated in our circuits.

The sodium current circuitry dynamic resembles a

typical fast sodium inward current, which typically is

modeled by an activation function, m3h [4,5]. The

shape of this activation function is mimicked by a

subtraction of an activation current and an inactiva-
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tion current. The activation current lacks a delay

element since it is supposed to turn on very quickly.

The real potassium outward current is only

activating and therefore has only an activating term

n, depending on voltage and time. The current turns

on slowly and turns off when Vm is low again. The

activation function in the HH formalism reads n4,

which shows a bell-shaped curve, plotted as a function

of time. The silicon potassium circuit behaves

similarly. The potassium current turns on at a rate

given by FI3 and turns off when Vfkd is below THRES.

The parameters of the sodium and potassium

conductance were tuned to generate spikes of

plausible shape (Fig. 3). This leads to a spike width

of about 0.6 ms, which is shorter than the spike width

in real neurons (1-2 ms). The form of the spike would

be altered if one choses larger spike widths. The shape

of the spike above threshold looks then rather pulse-

like: after Vm has hit ENA, it stays there for a short

period, before the potassium conductance repolarizes

Vm.

The real AHP current, a calcium-activated

potassium current, has an activation function which

is roughly linear to the calcium level. The silicon AHP

current expresses the linearity mCa in the linear part of

the tanh of the TCA.

The F-I curve in Fig. 5 is qualitatively the same as

for real neurons (see [6] for a comparison). In real

neurons the decay in (instantaneous) frequency is

exponential and has ®nished after about 100±130 ms

[13]. In the SN, the decay is nonlinear and adaptation

has occured after about 50 to 60 ms Fig. 5(b). The lack

of linear decay and long adaptation time constants is

due to the non-ideal behavior of Vc.

4.4. Comparison and Use

Simoni and DeWeerth constructed a SN which has

apparent similarities to our SN [12]. It also consists of

a spiking and an adaptation mechanism. In contrast to

our adaptive mechanism, their adaptation is adjusting

the conductances of the spiking mechanism to make it

robust to changes in a network. A similar adaptive

mechanism was constructed by Shin and Koch to

regulate our silicon neuron on a long-term scale [11].

It is not clear yet what the phenomenon of spike

frequency adaptation is used for in a real cells [5]. But

these issues can be addressed in a network simulation

[1].

The improved neuron has already been used for

other neuronal models, like dendritic models [8,10],

where we show how the three different spiking modes

affect a silicon dendritic cable.
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