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Visual cortex: Fatigue and adaptation

Matteo Carandini

Prolonged exposure to a visual pattern perturbs visual
perception, affecting the appearance of subsequently
viewed patterns. Recent results demonstrate that this
visual adaptation is explained partly by a cellular
mechanism acting in individual cortical neurons.
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The visual system is endowed with a number of self-
calibration mechanisms that are continuously at work. As
with football referees, we tend to notice these
mechanisms only when they appear to misbehave. This
happens, for example, during visual adaptation, induced
when the visual system is exposed to the same stimulus
for a prolonged time (seconds to minutes). The calibration
mechanisms adapt the visual system according to the
prevailing statistics in the stimulus. When the stimulus is
turned off, the calibration mechanisms are caught off-
guard, and visual perception is briefly perturbed.

Adaptation involves a variety of visual attributes and
stages of visual processing [1]. The early stages in the
retina adapt to mean light intensity: the incoming light
intensity signals are divided by their recent mean value,
effectively computing contrast [2]. Adaptation at the level
of the cerebral cortex involves more complex attributes.
Striking effects are observed with visual motion [3], but
there are also clear effects involving attributes such as
orientation and contrast [4]. An example of such effects is
illustrated in Figure 1, with a stimulus consisting of two
grating patterns, one slightly oblique and the other verti-
cal. After staring at the oblique grating for 30 seconds or
so, the vertical one appears briefly as if it were tilted in the
opposite direction (pattern adaptation). Similarly, pro-
longed exposure to high contrasts reduces the perceived
contrast of subsequent stimuli (contrast adaptation).

A simple explanation for these perceptual effects is based
on the assumption that prolonged stimulation with a visual
pattern ‘fatigues’ the neurons that respond most strongly
[4,5]. The fatigued neurons are assumed to respond less
than they normally would, so that perception is biased
away from the adapting pattern. T'his fatigue hypothesis is
supported by the finding [6] that, after a few seconds of
stimulation with a high-contrast stimulus, neurons in the
primary visual cortex (V1) of the cat give a weaker

response than they otherwise would to a subsequent low-
contrast stimulus. Research in the 1980s showed that this
adaptation is to some extent a form of input gain control,
which increases the amount of contrast needed to obtain a
given firing rate (Figure 2a) [7,8]. Because an adapting
stimulus in one eye affects the responses to stimuli pre-
sented to the other eye (and only cortical neurons are
binocular), and because the responses of subcortical
neurons adapt only very weakly [6,7], contrast adaptation
is thought to originate in the cortex, not in the retina or in
the thalamus.

But what is the mechanism underlying this uniquely
cortical form of fatigue? A recent pair of elegant papers by
Sanchez-Vives, Nowak and McCormick [9,10] has made a
strong case that the mechanism is cellular. Their
combined approach, involving intracellular recordings
made both iz vivo and in vitro, points to a novel type of
current as a biophysical substrate of neural fatigue and
visual adaptation. This discovery helps to settle a debate
that originated with the publication of two earlier
intracellular 7z vivo studies of visual adaptation [11,12],
one of which [11] I was directly involved in.

Figure 1

.
il

Current Biology

A classical demonstration of after-effect in the orientation domain,
derived from [19]. For at least 30 seconds, look at the line between the
two gratings on the left, while moving your eyes from one end to the
other (to avoid the formation of retinal after-images). Then, look at the
dot between the two gratings on the right. They should briefly appear
tilted in the opposite orientations to the two gratings on the left.
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A schematic illustration of contrast responses measured intracellularly
in the cat primary visual cortex, derived from the data in [11]. The
responses obtained with adaptation to a blank screen are illustrated in
green, whereas those obtained with adaptation to a high-contrast
adapting stimulus are shown in red. The value in the abscissa is the
contrast of a test stimulus presented after the adapting stimulus.

(a) The firing rate responses. (b) The first harmonic component of the
membrane potential (Vi) — that is, the size of the membrane potential
modulations caused by the passage of each bar of the grating over the
cell's receptive field. (c) The mean membrane potential of the cell
(Vpo)-

In 1997, Ferster and I [11] reported on the effects of visual
adaptation on the membrane potential responses of simple
cells to drifting grating stimuli. We measured the size of
the membrane potential modulations caused by the
passage of each bar of the grating over the cell’s receptive

field. We termed this component the Vi, and found it to
be unaffected by adaptation (Figure 2b). We also mea-
sured the mean membrane potential, which we termed
Vpe» and found that it was substantially reduced by visual
adaptation (Figure 2c¢). This hyperpolarization was large
(5-10 mV) and long-lasting (10-20 seconds). The resulting
shift in the curve of mean potential against contrast leads
in turn to the rightward shift in the curve of firing rate
against contrast shown in Figure 2a [13]. The interpreta-
tion of our results, however, was soon made difficult by a
study [12] that did not observe any hyperpolarization.

The in vivo study of Sanchez-Vives and colleagues [9]
confirms that adaptation does indeed involve the hyperpo-
larization of cortical neurons. Using established methods
of visual stimulation [6] and data analysis [11], Sanchez-
Vives and colleagues [9] found that adaptation makes Vg
more negative by 1-12 mV. Moreover, they have con-
firmed our [11] other findings that visual adaptation does
not affect the stimulus-induced modulation in membrane
potential — the Vi;; — and that the generation of spikes
during exposure to the adapting stimulus is not a
necessary condition for the subsequent hyperpolarization
[11]. But what causes the hyperpolarization? This could
potentially involve changes in the activity of other
neurons in the network or in the efficacy of synapses, or
the action of some intrinsic cellular mechanism.

To tease apart these possible contributions, Sanchez-
Vives and colleagues measured membrane conductance
changes associated with hyperpolarization, and found
average increases of 22%. Ferster and | had found no such
changes in conductance [11], but it seems likely that our
measurements were flawed [14]. Sanchez-Vives and
colleagues also compared the adaptation effects of high-
contrast visual stimulation, on the one hand, and of steady
current injection of similar duration (presumably eliciting
a similar number of spikes), on the other. The effects of
these two types of stimulus were in many respects similar,
suggesting that intrinsic membrane mechanisms might
account for at least some of the adaptation observed with
high-contrast visual stimulation.

Given that adaptation increases membrane conductance,
it becomes natural to ask whether it involves the opening
of any ion channels. The second study [10] addressed this
issue with recordings from slices of ferret visual cortex
in vitro. The authors found that current injection alone
caused in most neurons a slow reduction in firing rate, and
was followed by a long after-hyperpolarization, similar to
that observed 7 vivo. This cortical after-hyperpolarization
is much longer — about 30seconds — than those
described previously [15], and is largely absent in thalamic
neurons. Sanchez-Vives er a/. [10] argue that the after-
hyperpolarization is caused by a K* current. Using a
hybrid current clamp-voltage clamp protocol, they found



reversal potentials of =109 mV, which depolarized as the
external K* concentration was increased. This current is
not Ca%*-sensitive, as neither blocking transmembrane
Ca%* nor introduction of a Ca2*+ chelator could block the
after-hyperpolarization. Because reducing the external
Na* concentration reduced the after-hyperpolarization,
the authors argue that the current is Na*-dependent.
Sanchez-Vives and colleagues [10] have thus discovered a
new slow after-hyperpolarization in cortical neurons,
mediated by a current that is most likely permeable to K+
and probably sensitive to Na*.

There are, however, reasons to doubt that this newly
discovered slow after-hyperpolarization explains all of the
effects of visual adaptation on the membrane potential.
Firstly, the slow after-hyperpolarization disappears when
action potentials are blocked with the Na* channel
blocker tetrodotoxin — presumably because less Na* is
entering the cell — whereas the intracellular effects of
visual adaptation are seen also when the cell is prevented
from firing [9,11]. Secondly, the reduction in firing rate
during adaptation to a visual stimulus is much larger (58%)
than during steady current injection (13%), indicating that
not all the effects of visual adaptation are a consequence
of current entering the cells [9].

But even if the slow after-hyperpolarization were the final
explanation of neural fatigue in cortical cells, there are
indications that there is more than just fatigue to adapta-
tion. Fatigue should affect the responses to all stimuli
equally, without knowledge of the visual stimulus that is
being shown after the adapting stimulus. The effects of
visual adaptation, instead, are somewhat specific, being
strongest when the adapting and test patterns are identical
[8,16]. The missing pieces that are needed to explain
adaptation are thus probably to be found in the network
[12] or in the synapses [17,18].

The recent studies of Sanchez-Vives ez a/. [9,10] have thus
provided key evidence for the effects of visual adaptation
at the cellular level. Moreover, they point to the existence
of a novel current that is likely to operate constantly to
control the responsivity of cortical cells. Given the field’s
enthusiasm for 7z vitro methods, it may help to point out
that the process that led to these discoveries originated
from experiments /7 vivo [9,11,12]. Indeed, the reports of
Sanchez-Vives er al. [9,10] are a particularly happy
outcome of the increasingly frequent mating of systems
neuroscience with cellular neuroscience. In particular, the
hybrid methods of current injection and natural stimula-
tion that they introduce are likely to become standard in
the investigation of a variety of sensory structures.
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