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Abstract. We identify generic sources of complex and
irregular spiking in biological neural networks. For the
network description, we operate on a mathematically
exact mesoscopic approach. Starting from experimental
data, we determine exact properties of noise-driven,
binary neuron interaction and extrapolate from there to
properties of more complex types of interaction. Our
approach fills a gap between approaches that start from
detailed biophysically motivated simulations but fail to
make mathematically exact global predictions, and
approaches that are able to make exact statements but
only on levels of description that are remote from
biology. As a consequence of the approach, a novel
coding scheme emerges, shedding new light on local
information processing in biological neural networks.

1 Noise-driven neurons

In our study, we focus on the properties of pyramidal
neurons that make up about 70% of all cortical neurons.
From physiological observations, these cells are expect-
ed to be of special importance for the integrative tasks in
biological neural networks. The vast majority of the
pyramidal neurons outside of layer V consist of
intrinsically regularly spiking neurons (Abeles 1982;
Koch 1999). Our approach to studying generic biolog-
ical neuron interaction is based upon the distinction of
different levels of synaptic input to these cells. Although
synaptic transmitter release is quantal, different orders
of magnitude of input are received:

1. Small-scale input (e.g. from remote synapses) drives
the neuron towards regular spiking with well-defined
spiking frequency. This small-scale input will be re-
ferred to as noisy input. It is able to reflect local gra-
dients of excitation in the network.
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2. Strong input from next neighbors (i.e. from strongly
connected neurons or from groups of synchronized
neurons).

3. Medium-size interactions that may take account of
changing neighborhood conditions on time scales
typically of the order of an interspike interval.

Due to the enormous number of synaptic contacts,
a large number of small-scale synaptic inputs arrive at
a typical neuron (Abeles 1982; Koch 1999). Assuming a
Gaussian central limit behavior of this input [other
distributions that allow for a well-defined average are
also suitable (Feller 1971)], an almost constant inflow of
charge results that can be identified with a constant
driving current. This point of view is also adopted in
most simulation approaches (Hines 1989, 1994). To this
driving current, simple pyramidal neurons respond with
regular spiking. Mathematically, this behavior is de-
scribed by a limit-cycle. Limit cycles are objects by
mathematical abstraction, like fixed-points, defined in
terms of characteristic stability properties of their
response to perturbations. Abstract models of pyrami-
dal neurons fulfil these criteria. The proof that also
biological pyramidal neurons are limit cycles has been
given in detail in (Stoop et al. 2000a). Substantial
input by strongly connected neurons or by strongly
synchronized groups of neurons lead to considerable
perturbations of these limit-cycles. This is our concept
of noise-driven neocortical interaction. In our opinion,
part of the complicated geometrical structure of the
neuronal dendrites may only serve to establish reliable
stable driving currents, where it is perfectly possible that
different functional driving currents could be generated
on the same neuron. This aspect of our approach
is similar to the recent observation that, on the
microscopic level, thermal noise can be converted into
directed activity (by so-called Brownian motors (Chil-
lemi and Barbi 1999)). In our investigation, effects
generated by strong waves of neural excitability will be
excluded. Under these quasistatic network conditions,
spike-time coded information transmission is naturally
prevalent.
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2 Interaction of noise-driven neurons

The response of a regular spiking neuron upon a strong
synaptic perturbation is the main biological ingredient in
our approach. This characteristic of a neuron can be
captured in the phase-response function g(¢), which
measures the lengthening/shortening effect to the unper-
turbed interspike interval, as a function of the phase ¢ at
which a strong synaptic perturbation of strength K
arrives. If i denotes the perturbed and u the unperturbed
interval length, we have g(¢) = i(¢$)/u, which is equally
easily calculated in simulations and in experiments. We
start our presentation by focusing on fixed values of K,
until we include the dependence on the perturbation
strength in a straightforward way.

In our experiments with real neurons, slices of rat
neocortex were prepared for in vitro recording. Fol-
lowing standard techniques, simple pyramidal neurons
of the barrel cortex were intracellularly recorded with
sharp electrodes. To induce regular firing, a constant
current was injected into the neurons (Abeles 1982;
Reyes and Fetz 1993; Koch 1999). Regularly firing
neurons were periodically perturbed by strong extracel-
lular stimulations of synaptic inputs to the neurons.
Excitatory perturbations were generated by the stimu-
lation of adjacent white or gray matter by means of
bipolar electrodes. Inhibitory perturbations were gener-
ated when fast excitatory transmission was pharmaco-
logically blocked by application of DNQX and APS,
while regular current pulses were applied to fibers
making a synaptic contact with the regularly firing
neuron. Typical results of our experiments are shown in
Fig. 1, for inhibitory and for excitatory perturbations.
In the context of in vivo neural networks, these pertur-
bation paradigms can be regarded as the representations
of synaptic inputs from strong synaptic connections
(Reyes and Fetz 1993). Our approach can be seen as an
extension of related experiments described in detail by
Reyes and Fetz. Our related theoretical development,
however, leads in entirely new directions.

In our study, we are interested in the properties of
networks of simple pyramidal neurons, into which both
excitatory and inhibitory connections are incorporated.
A simple case of such networks can be built up from
intrinsically regularly firing neurons that are under
continued perturbations by other neurons. Since the
effects of perturbations decrease as a function of the
topological neighboring order, in our model the per-
turbations are restricted to emerge from a number nn of
next-neighbors, where we define as next-neighbors those
neurons from which the strongest perturbations result.
For all presented simulations, we choose the checker-
board (nn = 4) topology of interaction, and the distri-
bution between inhibitory and excitatory connections
always reflects the generic situation in the neocortex (1
inhibitory: 4 excitatory connections). To represent the
variability seen in biological networks, the remaining
interaction characteristics (perturbation strengths K,
spiking frequencies, interaction types) are chosen at
random, and then, unless stated otherwise, held fixed.
With the help of the experimentally measured pertur-

Fig. 1. Experimental measurements (dots) of the relative change of
the interspike interval length, for perturbations of fixed strength K
applied at variable phases ¢, together with the interpolating phase
response function ¢(¢), for (a) inhibitory, and (b) excitatory
interaction. For some experimental cells, the refractory period cannot
be neglected. The functional description of the inhibitory map is
approximately

g($).p = 0.611432 + 5.37780¢ + 0.00777/(0.02 + )
for 0 < ¢ <0.02;

= 0.90326 + 0.48012¢ + 1.03433¢* — 0.65917¢°
for 0.02 < ¢ <0.9;
= 394.32344 — 144.92539¢ — 471.95630/(0.9 + ¢)
for09<¢p<1.

In addition to the presented piecewise linear excitatory map g(¢)exc
we also used variants with (horizontal) refractory period extending to
¢ = 0.15 and cosine-modeled descending part for 0.15 < ¢ <0.3

bation response functions g(¢) (cf. Fig. 1), the described
concept can be implemented in a straightforward way.
In Fig. 2, the described network topology, the principles
of the interaction, and a typical result are shown.
Figure 2 shows, for one typical neuron, the resulting
spiking behavior. In the figure, the deviation at the nth
spike event between average-based expected and actual
spike time, dev(n) := n oty — »_; 0t;, is displayed (where
ot; denotes ith and dt,, denotes the over a sufficiently
long time averaged mean interspike interval. For the
plot, linear interpolation between spiking events has
been used). The complexity of the spiking behavior is
obvious, in spite of the simplicity of the network. Along
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Fig. 2. a Topology of the simplest type of network of intrinsically
regularly spiking, via g(¢) interacting, neurons. Each neuron is
perturbed by four next-neighbors, providing inhibitory/excitatory
synaptic input. A neuron’s spiking time is determined by its intrinsic
interspike interval plus the effects of past perturbations. The effect of a
perturbation depends on the strength of the connection, the
excitability of the target neuron (both contained in K), and on the
phase of its arrival. b Complex behavior emerging from this network,
demonstrated by the deviation dev between expected and actual spike
time, measured for a particular neuron (see text)

with obviously non-periodic behavior, locally induced
low-order periodicity is often found to modulate glob-
ally induced irregular spiking behavior.

A rather precise idea of the origin of this complexity
can be obtained from binary interaction alone. Binary
interactions are characterized by various bifurcation
cascades that emerge both as a function of the involved
firing frequencies and of the interaction strength K
(Stoop et al. 1999). To arrive at a more detailed de-
scription of these phenomena, it is useful to focus on the
phases at which the perturbations arrive, defined with
respect to the neuron’s unperturbed spiking. In a stan-
dard way, the temporal succession of phases is captured
by the phase-return function fq (Glass et al. 1984; Glass
and Mackey 1988) that, mathematically, has the form of
a circle map (Cornfield et al. 1982):

fai ¢y = ¢ +Q—g(¢), modl , (1)

where the parameter Q is the ratio of the intrinsic
interspike time 7 of the targeting neuron divided by the
interspike time 7, of the targeted neuron (Glass et al.
1984; Glass and Mackey 1988); ¢, is the phase of the
next perturbation, if the last perturbation arrived at
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Fig. 3. Example of an experimental spike train, where the character-
istic quantities T, T, t;, t, and Ty are indicated. From this, the
evaluation of the function g and the derivation of (1) are immediate

phase ¢,. Relation (1) can immediately be derived from
Fig. 3. The same figure also illustrates how function g,
which is most essential to (1), can be determined from
measurements. [teration of fq describes the effect of a
continued regular perturbation of the neuron, where
the generated sets of phases unambiguously characterize
the associated firing patterns. From the observed phases,
the extraction of the periodicity (if the emergent spiking
is periodic) as well as the distinction of differently
ordered orbits of the same periodicity, is straightforward
(Let ¢, denote the phases at which the ith perturbation
arrives. The periodicity of the spiking then is defined as
the positive integer p := Min{q/¢; = ¢, for all i}).

On the basis of extensive experiments, we were able to
include the dependence on the stimulation strength K.
Define first the reference curve gg, as the g-function that
is measured at 75% of the maximal experimentally ap-
plicable perturbation strength. The experimental obser-
vation is that the effect of a perturbation is, to high
accuracy, a linear function of K, at all phases of the
interspike interval and for both stimulation paradigms.

As a consequence, we obtain a stimulation strength-
dependent response function gk (¢) of the form (Stoop
et al. 2000b)

9k (9) = (gro(d) — DK+ 1 . (2)

Numerical simulations with the corresponding phase-
return function

Jok: iy = ¢ +Q—gx(¢;), mod1 | (3)

show that the perturbed spiking behavior is governed by
the phenomenon of locking to periodic behavior, an
effect that is generically observed for interacting oscil-
lators (Cornfeld et al. 1982). Figure 4 illustrates this
principle for fixed K = 1, where locking is characterized
by the step-wise dependence of the observed periodicity
p as a function of Q.

Locking also emerges as a function of the parameter
K. A well-established mathematical fact assures that for
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Fig. 4. Locking of the firing patterns to periodic response of
periodicity p, as a function of variable Q, but at fixed K = 1. The
sequence of periodicities p can be interpreted as encoding of the
corresponding trajectory in the {Q, K }-parameter space (see Sect. 3)

every (in our experiment) accessible value of K, upon
variation of Q all positive integer periodicities p appear
(Cornfield et al. 1982; Glass et al. 1984; Glass and
Mackey 1988; Stoop et al. 2000b), but with ever-smaller
support in the {Q, K }-parameter space.

As an extension of previous work (Schindler et al.
1997) by refined synaptic stimulation techniques, we
compared fog-predicted spiking properties of perturbed
neurons with slice experiments of continued excitatory
and inhibitory perturbations, and with sweepings of
continued perturbations over ranges of Q. In these ex-
periments, excellent agreement between prediction and
experiment was obtained. For a comparison between

predictions and experiments, the stability properties of
the predicted spiking patterns, as a function of {Q, K},
are of importance. The stability of orbits is commonly
measured in terms of Lyapunov exponents J(q gy, which
measure the exponential separation rates to neighboring
orbits in the tangent bundle (Peinke et al. 1992). In
Fig. 5, the Lyapunov exponents are calculated over the
{Q, K}-parameter space, for the inhibitory perturbation
paradigm.

Characteristic in this figure are the deep scars in the
emergent triangular sheet at height zero. These struc-
tures, called Arnol’d tongues, indicate strong stability
properties of the associated spiking patterns [4iqx} < 0
(Peinke et al. 1992)]. Each tongue comprises only one
specific periodicity p. However, for each periodicity
there are tongues for every possible ordering of the orbit
(as is indicated in Fig. 4; see also Stoop et al. 1999).
Zooming in on this figure reveals that for inhibition,
chaotic behavior is possible in the boxed {Q,K}-region
[Arak) > 0 (Peinke et al. 1992), at least from the nu-
merical point of view]. However, large input strengths
are needed to generate this response. Analytical inves-
tigations corroborate this observation. It is possible to
prove that chaotic behavior indeed occurs on an open
set of positive Lebesgue measure in the parameter space
(Stoop et al. 2000b); to obtain more insight into the
problem and into the involved technicalities, the reader
may also consult Stoop and Steeb (1997). As a conse-
quence, chaos should be experimentally observable, or
the system could be tuned to chaotic states. These exact
results are obtained for binary interaction; however,
they also extend to higher n-ary interaction
(n=3,4,...), for which similar results are obtained
(Baesens et al. 1991). As a consequence, the following

Fig. 5. Lyapunov exponents 4
express the stability of the inhib-
itory binary neuron interaction as
a function of the natural param-
eter space. 4 > 0 indicates un-
stable, 4 > 0 indicates stable
response. Observe the emergence
of the scars in the plot, the so-
called Arnol’d tongues. On each
scar, the periodicity p of the
perturbed neuron’s response is
fixed, as is indicated for the
lowest periodicities. In general,
the lower the periodicity p, the
more stable the neuron’s re-
sponse. The box indicates the
location where chaotic response
occurs. Similar results are ob-
tained for excitation, which,
however, fails to reach the region
associated with chaotic behavior
(the biological cell is unable to

= 0 endure excitatory inputs of the

required strength)



spiking behavior of noise-driven neocortical networks
emerges:

1. Locally, low-periodic spiking behavior may be ex-
pected in abundance, by the interaction of otherwise
freely spiking neurons. This periodic response is or-
ganized along Arnol’d tongues and obeys the circle-
map class universality (Argyris et al. 1994).

2. As a consequence, the network is able to respond
locally with any desired periodicity. While for weak
local interaction the local spiking behavior is domi-
nated by a wealth of different periodicities, for
stronger interaction there is a tendency for the re-
sponse to settle towards simpler, and more stable,
spiking patterns.

3. These stable spiking patterns are in sharp contrast to
the chaotic response that exists for strong inhibition
on an open set of nonzero Lebesgue measure in the
parameter space.

4. Using the universality principles of the circle-map
class, we are able to prove that our experimental
observations are not dependent on specific prepara-
tions of the system but are “generic” results.

For natural neocortical neural networks, we propose
that the above-described responses play a role similar to
the unstable periodic orbits in chaotic dynamical
systems (Grebogi et al. 1988; Ott et al. 1990). There,
the periodic orbits provide a firm backbone for the
complex structure that is hidden in the seemingly
intractable chaotic activity. This view justifies an even
closer examination of the local firing behavior.

3 Efficient Arnol’d coding

The activity of a perturbed neuron naturally defines a
dynamical system. An encoding of a dynamical system
consists of a partition of a usually continuous phase-
space of the evolving system into areas that then are
symbolically labeled, for example, by letters. Each time
the system’s trajectory enters a specific area of the phase-
space, the associated letter is reported. The code is useful
if it succeeds in the discrimination of states in an
unambiguous way, up to a chosen precision, by a
symbol sequence of sufficient length. Let us reconsider a
neural network that consists of a number of coupled
noise-driven limit-cycles. Intrinsically, the Arnol’d
tongue structure provides a local coding scheme of the
network evolution, where noise levels and neuron
excitabilities, which fully describe the local states, are
encoded by the periodicity of the spiking of the targeted
neurons and by their spiking frequencies. This coding
process can be schematically expressed in the following
form:

Coding: {f1,/2} = {p, (£2)} (4)

where f] is the frequency of the perturbing neuron, f5 is
the intrinsic frequency of the perturbed neuron, f is the
frequency of the perturbed neuron (bracketed since it
generally differs only little from f5), and p labels the
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periodicity. When the local network state changes in
time, this corresponds to a trajectory in the {Q,K}-
space. Along the trajectory, various periodic spiking
patterns are emitted. They constitute an encoding of the
trajectory. Figure 4 indicates what the encoding se-
quence looks like when Q is slowly increased (e.g. due to
slow local gradients of the noisy input), at fixed
interaction strength K = 1. Let us focus on some special
properties of this code. Indeed, it is a code that is

1. robust against adaptation and relaxation processes [the
experimental relaxations towards the asymptotic so-
lutions are very fast, of the order of one interspike
interval, for periods <10 (Stoop et al. 2000a)],

2. independent of the level of excitation in a homoge-
neously excited area [Q = T,/ T, is able to respond to
local gradients of the noise level but remains fixed
under homogeneous changes of the network activity],

3. has optimal coding properties, similar to the Huffman
code (Huffman 1952; Ash 1965) [the shortest code
(period 1) corresponds to the largest partition element
in the parameter-space, the second shortest (period 2)
to the second largest, etc. For signals that are equi-
distributed on the {Q, K}-parameter space, this cod-
ing is therefore optimally efficient],

4. self-refining under increased network activity [in
in vitro experiments with neocortical pyramidal neu-
rons, we found that for low activity in relation to the
speed of parameter change, only the lowest periodic-
ities (1,2,3,4,...) are returned. To return longer,
more complex periodicities, higher spiking frequen-
cies must be used. In this way, increased spiking
activity leads to a hierarchical refining of the
low-activity encoded signal], and

5. able to represent spike-time coding as well as frequen-
cy-coding [frequency-encoded network-input essen-
tially modifies Q, whereas spike-time coded input
essentially leads to an increase in K. In this way, both
presently discussed coding schemes are naturally
embedded in the Arnol’d code].

4 Phase-coincidence and synchronization

To arrive at a network that can perform neocortical
perception tasks, the interaction between the strongly
coupled subsystems must be defined. To this end, and to
include medium-size interaction, we refine our model of
cortical activity by using a coupled-map lattice approach
with diffusive coupling (Bunimovich and Sinai 1988;
Losson and Mackey 1994). On this level of description,
the binary interaction maps are assumed to act on equal
time scales. In spite of the increased level of abstraction,
this refined model still incorporates the generic proper-
ties of noise-driven networks. The site maps in this
coupled-map lattice consist of randomly excitatory/
inhibitory binary interaction maps fox, where also Q
and K are chosen at random. In the numerical exper-
iments below, the local excitabilities K (cf. Eq. 2) were
taken from the interval [0.3, 0.8], monitoring in this way
rather massive coherent packages of transmitted infor-
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mation. The diffusive coupling is established by the
update-rule

¢{i7j}(tn+l) = (1 - ka{ivj})fKQ(d){i)j}(tn))
+ha/nn k{i, 3> d{k, () (5)

where ¢ is the phase of the phase-return map at the
indexed site, and nn again denotes the cardinality of the
set of all next-neighbors of site {i,j}. The overall
coupling among the site maps is described by k. This
global coupling strength is locally modified by realiza-
tions k{i, j} taken from some distribution, which may or
may not have a first moment (in the first case, k, can be
normalized to be the global average over the local
coupling strengths). In (5), the first term reflects the
degree of self-determination of the phase at site {i,j};
the second term reflects the influence by next-neighbors,
which are again understood in the sense of strongest
interaction. A moderate example of the spatio-temporal
behavior of this network is shown in Fig. 6.

For biologically reasonable parameters, the response
of the network is essentially unsynchronized, in spite of
the coupling. Extrapolations from simpler models, for
which exact results are available (Bunimovich and Sinai
1988; Losson and Mackey 1994), provide us with the
reasons why. Generically, from weakly coupled regular
systems, regular behavior can be expected. If only two
systems are coupled, generally a simpler period than the

maximum of the involved periodicities emerges. If,
however, more partners are involved, a competition sets
in, and high periodicities most often are the result.
Typically, synchronized chaotic behavior results from
coupling chaotic and regular systems, if the chaotic
contribution is strong enough. Otherwise, the response
will be regular. When chaotic systems are coupled,
however, synchronized chaotic behavior as well as ma-
croscopically synchronized regular behavior may be the
result (Bunimovich and Sinai 1988; Losson and Mackey
1994). For obtaining fully synchronized networks, the
last possibility is of special interest.

Figure 7a illustrates these findings for a model of
coupled identical tent maps [where the results have been
obtained analytically following Losson and Mackey
(1994) and by using thermodynamic formalism meth-
ods]. In Fig. 7b we demonstrate the good correspon-
dence between this model and the more general network
that we are interested in. As a function of the slope a of
the local tent map (which corresponds to the local ex-
citability K) and of the coupling strength k,, contour
lines indicate the instability of the network patterns. As
can be seen, due to the coupling, even for locally chaotic
maps (¢ > 1), stable network patterns may evolve (often
in the form of statistical cycling; see Losson and Mackey
1994). Upon further increasing the local instability, fi-
nally chaotic network behavior emerges. Unfortunately,
in the case of measured neuronal phase return maps, this
possibility only exists for the inhibitory connections.

neuron pair

Fig. 6. Complex spiking behavior from the
phase-coupled model. Time development of
a chain of n = 10 diffusively coupled
binary interaction maps, of inhibitory and
of excitatory type, where the phases are
distinguished by colors
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Fig. 7. a Network Lyapunov exponent 4, describing stability of
patterns of a network of coupled tent maps, as a function of the
(identical) site maps slopes @ and coupling k. Contour lines of
distance 0.25 are drawn dashed where stable network patterns evolve
(A4n < 0), starting with 4, = —1 (leftmost curve). b Maximal site-
Lyapunov exponent A, of a network of locked inhibitory site maps,
as a function of the coupling k,. For the network, the local excitability
is K = 0.5 for all sites and Q is from the interval [0.8, 0.85]. The
behavior of this network closely follows the behavior predicted by the
tent-map model

Furthermore, the part of the parameter space on which
the maps would need to dwell is rather small (although of
nonzero measure). Therefore, additional fine tuning (e.g.
by thalamic ‘“‘control” circuits) may be necessary for
putting a large number of inhibitory connections into
synchronizing working conditions. The latter conditions
have been postulated as necessary for the performance of
perception tasks (Singer 1994; Von der Malsburg 1994).

5 Phase-coincidence learning

As an alternative to control mechanisms, we tested
phase-coincidence-based  Hebbian learning  schemes
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[which modify the connection strengths between the
lattice sites (Hebb 1949; Abeles 1982; Koch 1999)]. To
explore this possibility, we use a hyperbolic tangent
function to discriminate between phase-coincident
neighboring site maps (whose connection strengths will
be enhanced) and out-of-phase neighboring site maps
(whose connection strengths will be reduced). The
update rule for the connection strengths is

k{i, j}(tny1) := k{i, j} (&) (Tanh[r] + 1)/2 (6)

where r is the sum of the absolute inverse differences Ay
between the phase at the lattice point against the phases
of its neighbors. A biophysically reasonable cutoff (e.g.
Ay < 0.01 to Ay = 0.01) prevents divergent influence of
nearly equally phased neighbors. The immediate effect
of the update rule is to suppress the connection k only at
strongly out-of-phase sites. For the large majority of
sites with in-phase connections, the rule is without a
noticeable effect. The involved (small) decrease of the
total sum of connection strengths can be compensated
by a corresponding factor, or the decrease can be
interpreted as an adaptation effect that is balanced when
the input pattern is changed (see below). The biological
idea behind this implementation is that network ele-
ments taking part in a specific perception task will be
synchronized, whereas the remaining elements will be
disconnected from this process. Under this Hebbian
phase-coincidence learning, the connection strengths
k{i,j} converge within a few (<10) iterations to (for
practical purposes) fixed values. To investigate the
pattern discrimination properties of this network, we
chose one horizontal layer of a two-dimensional net-
work to be the input layer. On this layer, we imple-
mented distinct phase profiles, to model different
sensory inputs. A comparison of the emerging network
patterns, as a function of the inputs, yields the following
results. As a function of the inputs, only a small number
of localized, input-specific coding sites modify their
phases (see Fig. 8a). To obtain this figure, the phase
differences evoked by two distinct sensory inputs were
plotted, using color coding. The large red sea represents
the part of the network where no significant phase
changes are induced. Within this sea, the coding sites
emerge as small islands (note that the phase differences
in the bottom layer reflect the distinct input signals and
that the top layer is affected through the cyclic boundary
conditions). In this way, input information is directly
transferred to specialized network sites, from where it
may be read off and processed. From the simulations,
two remarkable properties emerge. Similar input pat-
terns generate similar coding-site patterns (quite in the
sense of a metric), and coding-site activities generally are
of a periodic nature. The latter property is demonstrated
in Fig. 8b, where inputs from three patterns are
compared. Figure 8c shows how large excitatory refrac-
tory periods strongly enhance synchronization. In
contrast, strong local inhibitory circuits enhance the
formation of isolated coding sites, whose preferred
location seems to be at boundaries between inhibitory
and excitatory interactions.
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These findings may be relevant to perception and
feature binding. The feature-binding problem relates to
the cortical task of associating one single object with its
different features (Singer 1994, Von der Malsburg 1994).
In the context of our approach, it is natural to identify
subsets of coding site activity with the representations of
different object features. Correspondingly, the set of
temporally varying coding sites could be interpreted as a
spatio-temporal object representation, or, at least, a pre-
state thereof. For this interpretation to make sense, the
metric property mentioned above is of importance.
Moreover, also the amount of time needed for the
convergence of coding sites is in the range typically
needed for perception tasks (a few 100 ms).

6 Conclusions

From our combined experimental, theoretical, and
numerical studies, we draw the following conclusions:

1. Arnol’d tongues may provide an efficient coding
scheme for cortical activity. This coding unifies fre-
quency coding with spike-time coding. The code is
optimal in an information-theoretic sense.

2. Locally, chaotic response emerges on a nonzero
measure of the parameter space accessible only to
strong inhibitory perturbations. This implies that in

Fig. 8. a Phase differences evoked by two distinct input patterns (2-d
network, evolution under phase-coincidence detection). In the red
area, no changes are observed. The bottom layer (=input layer) shows
the differences in the input patterns. Due to two-torus periodic
boundary conditions, this also affects the top layer. Coding sites are
the islands within the red sea. At these sites, prominent phase changes
are observed. b Corresponding figure when excitatory phase return
maps have extended refractory periods. A visibly increased “pene-
tration depth” of coding sites indicates increased degree of synchro-
nization. ¢ Temporal phase difference evolution, at a coding site from
(a). Three input signals were compared (constant random phase layer
1;, constant layer 1, with phase 0.2, constant layer 13 with phase 0.6).
Absolute phase differences are shown of, top curve: 1| — 1,, medium
curve: 1| — 13, bottom curve: 1, — 13

the brain, chaotic behavior is already introduced on a
local level. On the global level, complex behavior
emerges from the competition between different stable
n-ary interactions (where n = 2,3,...). This competi-
tion is mediated by medium-size synaptic inputs,
which in our model are represented by phase cou-
pling.

3. Possible local chaotic behavior does not desynchro-
nize but rather may contribute to a synchronization
of the network. Synchronization is impossible for the
quasi-static phase-coupled networks at moderate lo-
cal coupling, unless strong inhibitory circuits are
active (strong inhibitory circuits correspond to the
modeling case k, = 1). In the latter case, the syn-
chronization effect is largely independent from the
local coupling strengths K. Detailed simulations show
that synchronization is enhanced by large refractory
periods (Stoop et al. 1999).

To what extent finally the brain makes use of these
principles can only be speculated at the moment. Re-
fined investigations are needed to answer this issue more
profoundly. From the point of view of computation, it is
obvious that the proposed encoding in terms of peri-
odicities would be very efficient (in comparison with
binary elements with no optimized coding), especially if
the self-refining property of the coding is taken into
account. In future, we need to study this concept in more



detail to see whether it can prove useful for the design of
computationally more powerful hard- and software.
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