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We investigate a canonical microcircuit containing four 
neurons: two interacting pyramidal neurons N1, N2 that form 
the basic computational circuit, a (stellate) control neuron 
N3, and a pyramidal neuron N4 acting as a reading-out device. 
Using in-vitro experiments, we experimentally prove that un- 
der generic input conditions, the computationally most rele- 
vant neurons N1, N2 are on limit-cycle solutions. We propose 
a novel coding scheme, which is established through along 
Arnold tongues-organized neuron synchronization, and use it 
to estimate the computational properties of the microcircuit. 

I. INTRODUCTION 

It is undisputed that for the understanding of the 
brain, typical physiological, and, as can be speculated, 
also corresponding computational microcircuits play an 
important role. In our paper, we experimentally and the- 
oretically study the properties of the simplest variants of 
canonical [l] microcircuits, whose wiring is depicted in 
Fig. 1. We find that their natural behavior is dominated 
by the phenomenon of locking, which can be understood 
as a generalized s y n h n i z e d  neuron spiking. This be- 
havior is best understood from the assumption that the 
natural state of a biological neuron, when subject to sus- 
tained current injection from by network environment, is 
a limit cycle (=LC) solution of the underlying dynami- 
cal equations. The associated regular firing of the neuron 
can be considered as its simplest working state. Although 
several mathematical models of neurons [2] predict LC- 
solutions [3] of neuronal activity, under physiological con- 
d i t i o ~ ,  experiments verifying this behavior thus far have 
lacked conviction. 

T 
0UiP"l 

FIG. 1. Wuing of the canonical neocortical micronetwork. 

* 
In this paper, we first establish the LC nature of sim- 

ple neocortical pyramidal cells. Pyramidal neurons con- 
tribute the vast majority of neocortical neurons; together 
with the stellate cells, they are generally considered to be 
responsible for the cortical integrative information pro- 
cessing [2]. When we compare LCuniversality predicted 
locking behavior with in vitro synaptic perturbation ex- 
periments, we find excellent agreement: the synaptic in- 
teraction among pyramidal neurons is well-described by 
the phenomenon of locking along Arnold tongues. 

We then r e h e  our analysis of canonical microcir- 
cuits by discussing the possibility of dynamical control 
of Arnold tongues synchronization, by means of small 
additional control inputs. The control loop allows for 
switching from one periodicity to another, without r e  
quiring a change the firing frequency of one of the neu- 
rons in the main loop, an effect that might be either too 
resource demanding or too slow. Simple mechanisms like 
pre-/postsynaptic dendro-dendritic loops or even synap- 
tic loops of the neuron onto itself can be sufficient for 
establishing this etfect. Most flexibility is obtained if the 
control is performed by specific control neuron, equally 
well either by inhibitory or excitatory pathways, and the 
control process is most efficiently applied during tran- 
sient behavior. There is anatomical evidence of such a 
control mechanism by means of a disinhibitory pathway 
from the thalamus, where N3 is an inhibitory neuron [4]. 

Arnold tongues structures that naturally emerge from 
of the basic computational Nl-N2 loop naturally imply a 
coding scheme. The strength of the locking phenomenon 
leads us to infer that information encoding and process- 
ing in the brain is essentially through this phenomenon. 
In particular, we propose a resolution of a long contro- 
versy among groups favoring rate- and spike-time- coding 
of information, respectively [2]. We will show that both 
aspects are naturally embodied in the proposed coding 
of information. In our approach, we start from " q w  
sistatic" network conditions, where the input to the main 
N1-N2- loop of the microcircuit is slowly varying in the 
considered time window. To arrive at this state, we as- 
sume the small-size inputs to arrive in large numbers and 
to  essentially obey a Gaussian probability distribution. 
Given a surplus of the excitatory input, the neurons are 
thus supplied with constant driving currents from exter- 
nal cortical areas. Strong inputs are then produced by 
the interaction of strongly coupled neurons or neuronal 
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ensembles. The read-out properties by the neuron N4 
are also taken into account. Finally, we discuss the pos- 
sible role of recurrent excitation in our computational 
paradigm and then extrapolate from the microcircuit te 
wards global in vivu network behavior. 

We first aperimentally prove our claim that the neu- 
rons Nl-N2 displays limit cycle properties. 

11. EXPERIMENTS 

In our experiments with real neurons, slices of rat 
neocortex were prepared for in vitro recording. Follow- 
ing standard techniques, individual pyramidal neurons 
in layer 5 of barrel cortex were intracellularly recorded 
with sharp electrodes. A constant current was injected 
into the target neuron [SI, bringing it into <regular fir- 
ing state. This state then was periodically perturbed 
by extracellular stimulation of a synaptic input. Exci- 
tatory perturbations were generated by the stimulation 
of adjacent white or gray matter by means of bipolar 
electrodes, inhibitory perturbations were generated when 
fast excitatory transmission was blocked pharmacologi- 
cally (by application of 1:5 DNQX and AP5) and stim- 
uli were applied to fibers making synaptic contacts with 
the recorded neuron. In the context of in vivo neural 
networks, these perturbations approximate synaptic in- 
put &om strong synaptic connections (see, e.g., [5]). For 
more details of the experimental set-up, preparation and 
recording, see refs. [SI. 
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FIG. 2. lbp: Ekperimental membrane potential V(t ) .  In- 
hibition changes the regular interspike time TO into a variable 
length T. Bottom: Measured neuron data (dots) and PRCs 
(interpolating solid lines). Left: inhibition, right: excitation. 

Fig. 2 shows a spiketrain V(t), measured in this exper- 
iment. The first two spikes in the figure exhibit regular 

spiking behavior. The last two spikes show the response 
of the regularly spiking neuron to strong perturbation 
represented by the downward deilection of the membrane 
potential V. At a fived perturbation strength, the re- 
sponse depends in a nonlinear way on the phase t$ with 
respect to the unperturbed cycle, at which the pertur- 
bation is applied. This property is revealed by the per- 
turbation response curve (PRC) g(t$), which returns the 
quotient of the length of the perturbed interspike interval 
T = T(t$) to  the length of the unperturbed interval To, 
as a function of t$ (i.e., g(t$) = v), see Fig. 2. 

Simulations have shown that the noteworthy excita- 
tory effect of inhibitory connections when perturbed at 
early phases i s  due to voltage-sensitive current depen- 
dent slowly reacting K+-channels [Sa]. As a function of 
the perturbation strength, we found the characteristic 
responses to be well-described by the parameterization 

g K ( t $ )  = (gKo(4) - 1)K + 1, (1) 

where K denotes the perturbation strength scaled such 
that the reference curve gn,Ko is at 75 percent of the max- 
imal perturbation of the curve. The perturbation of g is 
fairly proportional to the physical stimulation strength. 
K can therefore be identified with a generalized pertur- 
bation strength that comprises both perturbation input 
and synaptic efficacy. Note that the parameterization 
of Eq. (1) allows us to extrapolate the perturbation re- 
sponse behavior beyond the biologically accessible range 
of R = [0, 1.31. If the neuron is repeatedly perturbed with 
a constant period of perturbation (="continued regular 
perturbation"), locking into periodic firing emerges (Fig. 
3 (left)). As the frequency of perturbation is allowed to 
change (="sweeping"), several bifurcations are observed 
that lead the system from one periodicity into another 
(Fig. 3 (right)). Similar plots are obtained for different 
individual neurons for variable perturbation strengths. 

111. LC-INTERACTION MODEL 

The LC-based nonlinear dynamics approach of Gkss 
and Mackey [7] is suitable for explanation and description 
of the W i g  behavior of the perturbed neuron. Accord- 
ing to Fig. 2, for two successive perturbations we have 
T+tz  = tl +To, with T, the time between successive per- 
turbations, T = T(t$) the perturbed cycle length, t~ the 
time after spiking at which the perturbation was applied, 
and t 2  the time after spiking at which the next pertur- 
bation will occur. Expressing this relation in terms of 
phases relative to  the unperturbed cycle length To yields 

4 2  = 91 + Q - g(t$1), m 4 N ,  (2) 

where It = TO/To is the phase shift between the periodic 
LC and the periodic perturbation, and g(t$) = as 
above. From Eq. 1 we obtain the phase return map on 
the circle I := [0,1] [8], fn(41) = &, where 41, & E I .  
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to ensure the LGrelaxation before arrival of the next 
perturbation (that this is indeed the case in our exper- 
iment is shown below). When the through iteration of 
fn generated set of phases P = {q5ii)iE~ has a finite car- 
dinality p = mrd[P], p is the periodicity of the spiking. 
However, p can also be infinite. To obtain an overview 
on the response of the noise-driven neuron under asym- 
metric pair-interaction, we investigated the dependence 
of p on the stimulus type (inhibition/excitation) and the 
perturbation strength. 

FIG. 3. Continued experimental inhibitory perturbations. 
&om top: Fixed conditions (4 runs), followed by two sweep 
ings showing membrane voltage, phasea q5 of arrival of 
inhibitory perturbations (experimental), themretically pre- 
dicted phases. First run f: R E [OS, 0.91, K - 0.85, entrained 
periods p = 2,3,4, followed by a high p and by p = 1 (not 
shown). Second run 8: R E [0.65,0.7], K - 1.05, entrained 
p = 1,5,4, followed by p = 3 and p = 2 (not shown). 

PRCs are derived from single, isolated perturbations. 
Iteration of fn describes the effect of continued perturba- 
tions, provided that the stability of LCs is strong enough 

0.a 

0.0 

0.1 

0.2 

0 
D O d  0.0 0.a 

n 
1.1 

> .2 

0.- 

0.0 

0.4 

0.2 

0 
0 0.2 0.. 0.6 0.- 

a 

FIG. 4. Top: Arnold tongues as predicted response of 
synaptically perturbed pyramidal neurons (inhibitory, excita- 
tory interaction). Numbers: Periodicity of the main tongues. 
Bottom: Corresponding Lyapunov exponents. Chaos is 
prevalent for inhibition in the boxed region. Horizontal lies: 
Directions of the sweepings of Fig. 3 (f: first, a: second run). 
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Investigation of the returned periodicities as a function 
of (0, K} results in typical Arnold-tongue structures [3], 
as shown in Fig. 4. For each p, there are different Arnold 
tongues that comprise areas of the {n,K}-parameter 
space having stable solutions of the same periodicity p. 
In fact, the Arnold tongues are extensions of the Farey- 
tree structures from the R- to  the {a, K}-space. For the 
different tongues and as a function of the perturbation 
strength K ,  the stability properties of the solutions, mea- 
sured in terms of Lyapunov exponents [9], are of interest, 
see Fig. 4 (bottom). Positive Lyapunov exponents indi- 
cate chaotic behavior, negative exponents indicate stable 
behavior. Zooming in reveals that for strong inhibitory 
synaptic input (K E R), chaotic response is possible. An- 
alytic investigations [lo] confirm this observation. They 
further yield that chaotic response occurs on an open set 
of positive (Lebesgue) measure in the parameter space 
[ll]. A comparison between inhibition and excitation 
shows that the excitatory bifurcation structure is shifted 
towards high K-values. The size of this shift, taking into 
account the normalization of K, implies that chaos can- 
not be reached by excitation [12]. 

IV. MODEL VERIFICATION 

The predicted LC-assumption based interaction was 
compared with continued experimental perturbations of 
pyramidal neurons for a fine sample of parameter specifi- 
cations in the {K, 0)-space. We obtained full confirma- 
tion of the theoretical prediction. Experimentally, peri- 
odicities up to  5, sometimes 8, could consistently be re- 
solved quite at the expected parameter locations. To con- 
firm these observations also under conditions of changing 
cortical activity, we also considered sweepings. The two 
horizontal lines in Fig. 4 indicate the directions of the 
sweepings of Fig. 3 (with f for the first, s for the sec- 
ond run). To understand the results of sweeping, observe 
that sweeping automatically restricts the response to  low 
periods, due to  the strong stability properties of these 
periodicities, where the convergence onto these orbits is 
within one interspike interval. Fig. 3 shows the good 
agreement between experiment and model. Not only the 
periodicities, but also the ordering of phases is correctly 
predicted. Rather unexpectedly, the specific form of the 
fitting function g(4) is only of little relevance for the ob- 
tained results. The circle-map universality [3] implies 
that qualitative results l i e  topological properties (e.g., 
structure of periods) will persist under different fits. 

The as a function of n generated of phase bifurca- 
tion diagrams are typical of the circle-map universality 
class [3]. The two PRC's shown in Fig. 2 are from a 
set of more than 100 experimentally investigated cells 
[SI that all produced relatively identical response t o  per- 
turbations. The largest deviations among the individual 
responses were caused by sometimes more extended re- 
fractory periods; for all statements that follow below, the 

influence of these variations has been checked. The lack 
of variation in the Arnold tongue structure allows us to 
concentrate our investigations to two characteristic PRC 
response curves, one for excitatory and one for inhibitory 
perturbation as a paradigm for the generic behavior of by 
synaptic interaction perturbed pyramidal neurons. How- 
ever, it when p is displayed as a function of R, for both 
stimulations the identical characteristic ordering of the 
periodicities emerges (the Farey-ordering, c.f. [3]). This 
is an intrinsic property of interacting LCs and ensures 
the existence of all possible periodicities p from the set 
of positive integers. The lack of significant individual 
variation of Arnold tongues also implies that coding is 
very unlikely a dynamic property that is mediated by 
the specific neuron considered. Below we will investigate 
the problem of information coding in the micronetwork 
in detail. 

V. ARNOLD TONGUE CODING 

The NbN2 micronetwork naturally defines a dynamic 
system, an encoding of which consists of a partition of 
a usually continuous phasespace of the evolving system 
into areas that then are symbolically labeled, for exam- 
ple, by letters. Each time the system's trajectory enters 
a specific area of the phasespace, the associated letter is 
reported. The code is useful if it succeeds in the discrim- 
ination of states in an unambiguous way, up to  a ch+ 
sen precision, by a symbol sequence of sufficient length. 
For the micronetwork, the Arnold tongue structure pro- 
vides a local coding scheme of the network evolution, 
where noise levels and neuron excitabilities, which fully 
describe the local states, are encoded by the periodic- 
ity of the spiking of the targeted neurons and by their 
spiking frequencies: 

Coding : 

where fi is the frequency of the perturbing neuron, f2 
is the intrinsic frequency of the perturbed neuron, f is 
the frequency of the perturbed neuron (bracketed since it 
generally differs only little from fi), and p labels the pe- 
riodicity. When the local network state changes in time, 
this corresponds to  a trajectory in the {fl,K}-space. 
Along the trajectory, various periodic spiking patterns 
are emitted. They constitute an encoding of the trajec- 
tory. Fig. 4 can be used to  estimate how the encoding 
sequence looks like when 0 or K is slowly varied (e.g., 
due to  slow local gradients of the noisy input). Theory 
and experiment reveal that Arnold coding: 

0 is robust against adaptation and relaxation pro- 
cesses (the relaxations towards the asymptotic so- 
lutions observed in experiments are very fast, of the 
order of one interspike interval, for periods 5 10, s. 
Fig. 3), 
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0 is independent of the level of excitation in homoge- 
neously excited area R = T./To is able to respond 
to local gradients of the noise level, but remains 
fixed under homogeneous changes of the network 
activity), 

0 has optimal coding properties, similar to the Huff- 
man code [13] (the shortest code (period 1) cor- 
responds to  the largest partition element in the 
parameter-space, the second shorteat (period 2) to 
the second largest, etc. For signals that are equidis- 
tributed on the {R,K}-parameter space, this cod- 
ing is therefore optimally efficient), 

0 is self-refining under increased network activity. In 
in vitro experiments with neocortical pyramidal 
neurons, we found that the returned periodicities 
are related with the spiking frequency in the follow- 
ing way, s. Fig. 3: For low activity per parameter 
change, only the lowest periodicities {1,2,3,4, ..} 
are returned. To return longer, more complex peri- 
odicities, higher spiking frequencies must be used. 
In this way, increased spiking activity leads to a hi- 
erarchical refining of the low-activity encoded sig- 

0 is able to  represent spike-time coding as well 
as frequency-coding (frequency-encoded network- 
input essentially modifies R, whereas spike- time 
coded input essentially leads to an increase in K. In 
this way, both presently discussed coding schemes 
are naturally embedded in the Arnold code). 

nal> 9 

VI. CONTROL OF CODING AND REAITOUT 

Whereas the interaction Nl-N2 is the heart of the com- 
putational unit, the role of neuron N3 is to control or 
modify this result, with the help of small inputs applied 
at the correct time [14]. Why should this be an ad- 
vantage for the neural network ? Recent investigations 
[15] have shown that in the neocortex, strong identifiable 
correlations exist between the spiking of an individual 
neuron and the network state, identical for evoked com- 
pared with spontaneous activity. This implies strongly 
connectiondominated overall response of individual neu- 
rons. However, neurons also need to  respond in a fine 
tuned way, e.g. to small inputs from the thalamus (that 
essentially represents the short-time memory). The con- 
trol unit is able to change the result of the computation, 
without the need of spikefrequency adjustment of N1 or 
N2, a strategy that biologically makes sense. In Fig. 5 
we show how, after the arrival of a strong perturbation 
(whose possible origin will be discussed at the below), 
small applied perturbations (of the order of of the 
original signal) are sufficient for modifying the periodicity 
of the output. The paradigm implies that the dynami- 
cal process must "have been taught" to  perform a proper 

job. A biological plausible pathway is that the control is 
mediated by means of observed disinhibitory inputs from 
the thalamus. 
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FIG. 5. Top: Controlled neuron interaction, &om (stable) 
period 2 to stabilized period 5 (generated phases). Bottom: 
Corresponding orbits. 

The read-out of the generated computational result by 
neuron N4 is also nontrivial. For simplicity, we shall 
assume that the neuron's membrane potential is below 
threshold, although it also may be locked to the read-out 
input. Our key observation is that, in either case, the 
read-out by neuron N4 will depend on its own state (spec- 
ified by the membrane potential level and its decay-time 
constant), implying statespecific read outs. This puts 
the computational circuit in a similar role to the quantum 
computing scheme, where, using Werent preparations 
of the read-out, an exponential number of calculations 
can be done in one computational step. Since natural 
quasistatic conditions can be estimated to extend up to  
some hundreds of milliseconds, the in vivo length of a 
fixed-conditions coding may typically be limited to a few 
dozen significant spikes. As a function of this number, n, 
2" different states could be distinguished asymptotically. 
Note, however, that not in all casea the whole periodic 
message might need to  be transmitted. Computationally 
of primary importance is, that locking to a welldefined 
state occurs. 

VII. BEYOND BINARY IN-VITRO COUPLING 

How much of the Arnold structures can be expected 
to  be in viw observable ? First of all, Arnold struc- 
tures also emerge if more that two LCs interact (161. 
For natural neocortical neural networks, we propose that 
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these responses play a role similar to the unstable pe- 
riodic orbits in chaotic dynamical systems [14]. There, 
the periodic orbits provide a firm backbone for the com- 
plex structure that is hidden in the seemingly intractable 
chaotic activity. Recent experimental evidence from cat 
neocortex is consistent with this view [15]. To verify the 
assumption, we simulated 2-d quasistatic networks where 
experimental PRCs were the only sources of interaction. 
The network topology was defined by strong synaptic in- 
teraction among the four checkerboard neighbor neurons 
using cyclic boundary conditions. Random physiologi- 
cal synaptic interaction strengths and spiking frequencies 
were applied. n o m  this network, similar to  in vivo com- 
plex and variable neuron spiking emerges. Often neurons 
are observed that show periodic spiking riding on top of 
a complex long-time behavior that is dictated by the col- 
lective network influence (see Fig. 6). This supports our 
view that local synchronization continues to odst and 
remains detectable when embedded into the network en- 
vironment: 

10- .DO a v o  .00 .on 

t 

FIG. 6. Example of network-embedded periodicity (p=8). 

0 Locally, short-time low-periodic spiking behavior 
may be expected in abundance, by the interaction 
of otherwise freely spiking neurons. This periodic 
response is organized along Arnold tongues and 
obeys the circle-map class universality. 

0 As a consequence, the network is able to respond 
locally with any desired periodicity. While for weak 
local interaction the local spiking behavior is dom- 
inated by a wealth of different periodicities, for 
stronger interaction there is a tendency for the re- 
sponse to settle towards simpler, and more stable, 
spiking patterns. 

These stable spiking patterns are in sharp contrast 
to  the chaotic response that exists for strong inhi- 
bition on an open set of nonzero Lebesgue measure 
in the parameter space. 

0 Using the universality principles of the circle-map 
class, we are able to  prove that our experimental 
observations are not dependent on specific prepa- 
rations of the system, but are “generic” results. 

In in vivo neocortical networks, the time needed to  ex- 
tract spatietemporal pattern features is very short (as 

few as 5 10 spiking cycles are estimated be sufficient 
[17]). This means that in vivo, the observation of locked 
states may be difficult, since quasistatic network condi- 
tions may only be needed to  be sustained for these rela- 
tively short time. Additionally, the detection of locking 
phenomena for low spiking frequencies will be difficult, al- 
though (since $2 is the ratio between spiking frequencies) 
they may identically exist with high frequency lockings. 
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